

REPORT DISTRIBUTION

Detailed Site Investigation

3-7 Regent Street, 13-17 Regent Street and 287-309 Trafalgar Street, Petersham, NSW

EI Report No .:	E22913 AA_Rev0	
Date:	9 May 2016	
Copies		Recipient
1 Soft	Copy (PDF – Secured, issued by email)	Deicorp Projects Petersham Suite 301, Level 3, 161 Redfern Street, Redfern NSW
Origi	nal (Saved to Digital Archives)	Environmental Investigations Suite 6.01, 55 Miller Street, PYRMONT NSW 2009

Authors

Technical Reviewer

MARIANA TORRES MALCOLM DALE Environmental Engineer Snr Principal - Contaminated Land Revision Details Date Amended By 0 Original 9 May 2016 -

© 2016 Environmental Investigations Australia Pty Ltd T/A Environmental Investigations (EI)

This report is protected by copyright law and may only be reproduced, in electronic or hard copy format, if it is copied and distributed in full and with prior written permission by EI.

EXECUTIVE SUMMARY

Background

Mr. Adam Pinto of Deicorp Projects Petersham engaged Environmental Investigations Australia Pty Ltd (EI) to conduct a Detailed Site Investigation (DSI) for the properties located at 3-7 Regent Street, 13-17 Regent Street and 287-309 Trafalgar Street, Petersham, NSW. For the purpose of this DSI 3-7 Regent Street will be considered Site 1 (Lot 1 DP 629058), 13-17 Regent Street Site 2 (Lot 2 DP 830175) and 287-309 Trafalgar Street Site 3 (Lot 10 DP 1004198 and Lot 1 DP 1208130). This environmental assessment was completed as part of a development application process through Marrickville City Council to allow site development for mixed, multi-storey, residential and commercial land uses.

The objectives of the assessment were to evaluate the potential for site contamination based on historical land uses, anecdotal and documentary evidence of possible pollutant sources; and make recommendations for the appropriate management or remediation should contaminated soils and/or groundwater be identified.

Findings

Based on the findings of this assessment it was concluded that:

- At the time of this DSI Site 1 was occupied by Petersham RSL Club covering the entire footprint of the site, Site 2 by a 1,936 m² car park and Site 3 by three vacant warehouse structures and two car parks.
- Review of historical records suggested the following:
 - Site 1 was primarily residential land use until the 1960s when it was redeveloped for commercial uses as Petersham RSL. Site 2 was primarily residential land use until the 1970s when residential structures on site were demolished for the construction of an open car park. Lot 10 of Site 3 was mainly residential use until the 1960s when it was redeveloped for commercial use and then as an open carpark. Lot 1 of Site 3 has remained commercial / industrial since the 1930's. A specialised ball bearing company occupied part of the site since the 1950's until 2015. Other historical uses on site 3 were lime and cement merchants , furniture and possible home appliance manufacture or warehousing.
- A search of WorkCover NSW Authority did not locate any records relating to the site.
- The site was free of statutory notices issued by the NSW EPA/DECC, and was not recorded on the List of NSW Contaminated Sites Notified to EPA.
- Site walkover inspection identified the presence of an underground petroleum storage system (UPSS) at Site 3 (305-309 Trafalgar Street, Petersham). An above ground Diesel storage Tank and associated infrastructure was identified at Site 1 on the southern side of the RSL basement car park;
- Two boreholes were drilled and sampled at Site 1, 6 boreholes on Site 2 and 13 boreholes onon Site 3. Seven of the boreholes were converted to groundwater monitoring wells;
- The general site geology encountered during the soil investigation is described as a layer of anthropogenic filling in depths raging from 0.03 mBGL to 1.89 mBGL overlying clayey soils in depths raging from 0.6 mBGL to 3.4 and shale at depths raging from 2.2 mBGL to 17+mBGL. Groundwater seepage was encountered at depths of between 4.5 mBGL and 6 m BGL during drilling;

- Laboratory analytical results of tested soil samples were assessed against the health-based investigation level for residential sites with minimal access to soil (HIL-B) and Ecological Investigation Levels (EILs) based on the proposed site configuration. The analytical results suggested the following:
 - Results of soil samples collected at BH9M, BH11 and BH12 (Site 2) indicated concentrations of heavy metals (nickel and zinc) in excess of the adopted EILs.
 - Results of soil samples collected at BH15M and BH3 (Site 3) indicated concentrations of PAHs in excess of the adopted HILB criteria but had not leached to the natural material.
 - Elevated concentration of Carcinogenic PAHs in excess of the adopted health-based criterion (HIL-B) were
 reported in samples BH15M, BH3 (Site 3) and BH12 (Site 2) but were reported below the adopted criteria
 indicating that Carcinogenic PAHs had not leached to the natural material in BH15M and BH12. Results of
 tested natural material at BH3 indicated a lower concentration of Carcinogenic PAH, however reported
 above the adopted criteria.
 - Elevated concentration of naphthalene in excess of the adopted health-based criterion (HIL-B) was reported in BH3but was below the adopted criteria in the natural material.
 - Elevated concentration of benzo(a)pyrene in excess of the ESL was reported in sampling locations BH11, BH12 and BH25 probably from the asphalt hardstand.
 - Asbestos was identified in laboratory examined fill soil sample BH3_0.2-0.4 collected during the field investigation at a concentration less than 0.01%. Asbestos was not identified in any of the other collected samples.
- Groundwater investigation conducted indicated the following:
 - Groundwater results reported concentration below the detection limit for PAHs and BTEX. The majority of the heavy metals were screened below the adopted criteria with the exception of zinc in all sampling locations, nickel for sampling locations BH1M and BH6M (Site 3) and BH 11 M (Site 2) and Copper in BH1M, BH4M, BH6M (Site 3), BH11M (Site 2) and BH15M (Site 3).
 - TRH concentrations were reported either below or slightly above LOR, expect F1 TRH and F2 TRH at sampling location BH10M and F2 TRH at sampling location BH9M situated at Site 2 which occur at concentrations exceeding the adopted GIL.
 - Background groundwater quality entering site 2, as inferred from monitoring well BH10M and BH11M is characterised by concentrations of TRH F1 and TRH F2 at BH10M. Concentrations of TRH F2 were reported as well at the downgradient well BH9M situated at the north western side of the carpark.
 - Background groundwater quality entering site 3, as inferred from monitoring well BH6M is characterised by concentrations of copper, nickel and zinc above the GILs. Concentrations of copper, nickel and zinc above the GILs were reported in BH1M and BH15M inferred to be down-gradient.
 - A low concentration of chloroform was recorded in BH1M (Site 3) likely to be associated with leaking reticulated water supply infrastructure.
 - Heavy metal concentrations were inferred to be representative of the regional groundwater quality. Inferred groundwater flow direction was towards the north-west. Standing water levels at the site were measured between approximately 1.8 m to 4 mBGL during the DSI. The main aquifer encountered in this DSI was located within fractured Ashfield Shale, the top of which was estimated at between 4.5 mBGL to 6 mBGL. The aquifer was considered to be a semiconfined to confined aquifer.

- Due to onsite restrictions monitoring wells at Site 1 could not be installed therefore, the water quality has not been assessed.
- The following data gaps identified in this DSI will require closure by further investigations:
 - The quality of site soils beneath the RSL structures (Site 1), requires further investigation.
 - Delineation of the vertical and horizontal extent of zinc, carcinogenic PAHs, and benzo(a)pyrene soils, at Site 2, requires confirmation.
 - Asbestos identified in sample BH3_0.2-0.4 on Site 1indicating further asbestos testing is required following demolition of site structures.
 - Further groundwater investigation be undertaken at Site 1 following demolition of site structures to allow drill rig access and following the decommissioning of the known above ground Diesel storage tank;
 - One additional monitoring round for all wells at site 2 and site 3 and newly installed wells at Site 1 to confirm
 groundwater quality staus; and
 - Potential presence of hazardous materials present within the existing structures requires verification.

Conclusions and Recommendations

Based on the findings of this report and with consideration of the Statement of Limitations (Section 11), EI concludes that widespread contamination was not identified at the sites. Concentrations exceeding human health based SILs were identified within hotspots at the northern and south eastern areas of Site 3 and northern and southern boundaries of Site 2. In view of the proposed development, and currently available information, EI consider that the contamination identified can be remediated after carrying out the following data gap closure investigations and any subsequent site management and remedial actions that may be found to be warranted:

- Prior to site demolition, carry out a Hazardous Materials Survey on existing site structures;
- Preparation and implementation of a Remediation Action Plan (RAP), which should:
 - Design supplementary investigations to close the data gaps identified during this investigation;
 - Outline the remediation requirements for contamination identified during this DSI and other contamination that may be identified during data gap closure investigations;
 - Provide the requirements and procedure for waste classification assessment, in order to enable classification of site soils to be excavated and disposed off-site during the proposed basement excavation, in accordance with the *Waste Classification Guidelines* (EPA, 2014); and
 - Provide a sampling plan for the validation of remediation activities performed on-site.
- Preparation of a final site validation report in accordance with the RAP to ensure the site suitability for the proposed land use.

CONTENTS

EXEC	CUTIVE SUMMARY	2
1.	INTRODUCTION	7
	1.1 BACKGROUND AND PURPOSE	7
	1.2 PROPOSED DEVELOPMENT	7
	1.3 Regulatory Framework	8
	1.4 Project Objectives	8
	1.5 Scope of Works	9
2.	SITE DESCRIPTION	11
	2.1 PROPERTY IDENTIFICATION	11
	2.2 Surrounding Land Use	12
	2.3 REGIONAL SETTING	12
	2.4 GROUNDWATER BORE RECORDS AND LOCAL GROUNDWATER USE	13
	2.5 SITE WALKOVER INSPECTION	13
3.	SITE HISTORY	17
	3.1 SITE LAND TITLES INFORMATION / HISTORIC AERIAL REVIEW	17
	3.2 SURROUNDING LANDS HISTORICAL AERIAL PHOTOGRAPHY REVIEW	25
	3.3 Council Information	26
	3.4 WorkCover NSW Authority Search	28
	3.5 HAZARDOUS CHEMICALS AND REGULATORY COMPLIANCE	28
4.	CONCEPTUAL SITE MODEL	30
	4.1 SUBSURFACE CONDITIONS	30
	4.2 CHEMICAL HAZARDS AND CONTAMINATION SOURCES	30
	4.3 POTENTIAL CHEMICALS	31
	4.4 POTENTIAL SOURCES, EXPOSURE PATHWAYS AND RECEPTORS	31
	4.5 CSM OVERVIEW	32
	4.6 POTENTIAL DATA GAPS	35
5.	METHODOLOGY	36
	5.1 SAMPLING, ANALYTICAL AND QUALITY PLAN (SAQP)	36
	5.2 DATA QUALITY OBJECTIVES (DQO)	36
	5.3 Data Quality Indicators	41
	5.4 SAMPLING RATIONALE	42
	5.5 Investigation Constraints	42
	5.6 Assessment Criteria	42
	5.7 Soil Investigations	45
	5.8 GROUNDWATER INVESTIGATIONS	46
6.	DATA QUALITY ASSESSMENT	48
7.	RESULTS	49
	7.1 Soil Investigation Results	49
	7.2 GROUNDWATER INVESTIGATION RESULTS	51
	7.3 LABORATORY ANALYTICAL RESULTS	52
8.	SITE CHARACTERISATION	56
	8.1 Soil	56
	8.2 GROUNDWATER CHARACTERISATION	57
	8.3 UPDATED CONCEPTUAL SITE MODEL	58
9.	CONCLUSIONS	62
10.	RECOMMENDATIONS	66
11.	STATEMENT OF LIMITATIONS	67

REFERENCES

ABBREVIATIONS

TABLES (In Text)

TABLE 2-1	SITE IDENTIFICATION, LOCATION AND ZONING	12
TABLE 2-2	LOCAL LAND USE	12
TABLE 2-3	REGIONAL SETTING INFORMATION	12
TABLE 2-4	SUMMARY OF SELECTED REGISTERED GROUNDWATER BORES	14
TABLE 3-1	SUMMARY OF OWNERS AND HISTORICAL AERIAL PHOTOGRAPHY	18
TABLE 3-2	SUMMARY OF AERIAL PHOTOGRAPH REVIEW	27
TABLE 3-3	SUMMARY OF HISTORICAL RECORDS ARCHIVED AT MARRICKVILLE CITY COUNCIL	27
TABLE 4-1	PRELIMINARY CONCEPTUAL SITE MODEL	35
TABLE 5-1	SUMMARY OF PROJECT DATA QUALITY OBJECTIVES	39
TABLE 5-2	DATA QUALITY INDICATORS	42
TABLE 5-3	ADOPTED INVESTIGATION LEVELS FOR SOIL AND GROUNDWATER	44
TABLE 5-4	ADOPTED ACL AND ABC VALUES FOR EIL DERIVATION	44
TABLE 5-5	SUMMARY OF SOIL INVESTIGATION METHODOLOGY	46
TABLE 5-6	SUMMARY OF GROUNDWATER INVESTIGATION METHODOLOGY	47
TABLE 7-1	GENERALISED SUBSURFACE PROFILE SITE 1	50
TABLE 7-2	GENERALISED SUBSURFACE PROFILE SITE 2	50
TABLE 7-3	GENERALISED SUBSURFACE PROFILE SITE 3	51
TABLE 7-4	MONITORING WELL CONSTRUCTION DETAILS	52
TABLE 7-5	GROUNDWATER FIELD DATA	52
TABLE 7-6	SUMMARY OF SOIL ANALYTICAL RESULTS	54
TABLE 7-7	SUMMARY OF GROUNDWATER ANALYTICAL RESULTS	55

TABLES

- TABLE T1 SUMMARY OF SOIL RESULTS HEAVY METALS, TRH AND BTEX
- TABLE T2 SUMMARY OF SOIL RESULTS PAHS, OCP, OPP AND PCB
- TABLE T4SUMMARY OF SOIL RESULTS ASBESTOS
- TABLE T5 SUMMARY OF GROUNDWATER RESULTS

FIGURES

- FIGURE 1 LOCALITY PLAN
- FIGURE 2 SAMPLING LOCATION PLAN
- FIGURE 3 GROUNDWATER FLOW DIRECTION

APPENDICES

APPENDIX A PROPOSED DEVELOPMENT PLANS APPENDIX B REGISTERED GROUNDWATER BORES SEARCH APPENDIX C SITE PHOTOGRAPHS APPENDIX D HISTORICAL PROPERTY TITLES SEARCH APPENDIX E NSW WORKCOVER DANGEROUS GOODS SEARCH APPENDIX F BOREHOLE LOGS APPENDIX F BOREHOLE LOGS APPENDIX G FIELD DATA SHEETS APPENDIX H CHAIN OF CUSTODY AND SAMPLE RECEIPT FORMS APPENDIX I LABORATORY ANALITICAL REPORTS APPENDIX J QA/QC ASSESSMENT APPENDIX K LABORATORY QA/QC POLICIES AND DQOS

1. INTRODUCTION

1.1 BACKGROUND AND PURPOSE

Mr. Adam Pinto of Deicorp Projects Petersham engaged Environmental Investigations Australia Pty Ltd (EI) to conduct a Detailed Site Investigation (DSI) for site characterisation purposes at 3-7 Regent Street, 13-17 Regent Street and 287-309 Trafalgar Street, Petersham, NSW (see Figure 1).

For the purpose of this DSI 3-7 Regent Street will be considered Site 1 (Lot 1 DP 629058), 13-17 Regent Street Site 2 (Lot 2 DP 830175) and 287-309 Trafalgar Street Site 3 (Lot 10 DP 1004198 and Lot 1 DP 1208130) covering a total area of approximately 9,800 m²see **Figure 2**. It is understood that the site is located on the southern side of Petersham Rail Corridor.

El understand that this assessment is required by Marrickville City Council to assess the current Development Application (DA) and for the purpose of enabling the developer to meet its obligations under the Contaminated Land Management Act 1997 (CLM Act), for the assessment and management of contaminated soil and/or groundwater. El was not made aware of any previous environmental investigations conducted at the site.

At the time of this DSI Petersham RSL Club occupied the entire footprint of the site 1, the building had two street frontages at Regent Street and Fisher Street. The RSL comprised a two-storey building with associated basement carpark entry via Regent Street and an open carpark on the northern side. Site 2 was occupied by an open carpark bound by Regent Street west and New Canterbury Road south. Site 3 was occupied by two carparks and one basement carpark entry via Regent Street, three warehouses bound by Trafalgar Street north occupied the remainder of the site footprint. The site layout is presented in **Figure 2**.

1.2 PROPOSED DEVELOPMENT

EI was provided with the following drawings prepared by Architecture and Building Works Pty Ltd for Site 1:

"Elevations", Project No. PN-15010, Drawing No. A-1400, RSL Club Site, dated 25 November 2015;

- "Lower Basement Level", Project No. PN-15010, Drawing No. A-0900, RSL Club Site, dated 25 November 2015; and
- "Upper Basement Level", Project No. PN-15010, Drawing No. A-0910 dated 25 November 2015.

The proposed development for **Site 1** comprises a 9 storey building with associated two level basement car parking facilities covering the majority of the site footprint. Proposed development plans are presented in Appendix A. In view of the proposed development and basement excavation extent, land use at the site post redevelopment is considered to qualify as *HIL-B Residential sites with minimal opportunities for soil access* as defined in 2013 amendment of *National Environment Protection (Assessment of Site Contamination) Measures* 1999 (NEPM 2013). The north eastern, western and southern boundary of Site 1 will also be assessed against the NEPM 2013 Ecological Investigation Levels (EILs).

EI was provided with the following drawings prepared by Candalepas Associates for <u>Site 2:</u>

• "Elevation Regent Street", Job No. 5766, Drawing No. SK-1301, dated 20 November 2015;

- "Elevation", Job No 5766, Drawing No. SK-1302, dated 20 November 2015
- "Basement B3 Floor Plan+Basement B2 Floor Plan", Job No 5766, Drawing No. SK-1101, dated 20 November 2015.

The proposed development for **Site 2** comprises a five storey building with associated three level basement car parking facilities across the majority of the site (see Appendix A). In view of the proposed development and basement excavation extent, land use at the site post redevelopment is considered to qualify as *HIL-B Residential sites with minimal* (NEPM 2013). The western and south eastern boundary of Site 2 (soil location samples BH9M, BH11M, BH12M, BH25, BH26 and BH27) will also be assessed against the NEPM 2013 EILs given the presence of deep planting areas at these locations.

EI was provided with the following drawings prepared by Nordon Jago Architects for Site 3:

- "Plan Level B3", Job No. DEI00614, Drawing No. DN.012 D, dated 21 September 2015;
- "Plan Level B2", Job No. DEI00614, Drawing No. DN.011D, dated 21 September 2015;
- "Plan Level B1", Job No. DEI00614, Drawing No. DN.010D, dated 21 September 2015
- "Iso Sections", Job No. DEI00614, Drawing No. DN015, dated 21 September 2015; and
- "Principle Elevation", Job No. DEI00614, Drawing No. DN020, dated 21 September 2015.

The proposed development for **Site 3** comprises a seven storey building with associated four level basement car parking facilities across the majority of the site. Proposed development plans are presented in Appendix A. In view of the proposed development land use at the site post redevelopment is considered to qualify as *HIL-B residential sites* with minimal opportunities for soil access (NEPM 2013).

1.3 **REGULATORY FRAMEWORK**

The following regulatory framework and guidelines were considered during the preparation of this report:

- DEC (2006) Guidelines for the NSW Site Auditor Scheme (2nd Edition);
- EPA (1995) Sampling Design Guidelines;
- NEPC (2013) Schedule B(1) Guideline on Investigation Levels for Soil and Groundwater;
- NEPC (2013) Schedule B(2) Guideline on Site Characterisation;
- Contaminated Land Management Act (1997);
- State Environment Protection Policy 55 (SEPP 55) Remediation of Land, and
- OEH (2011) Guidelines for Consultants Reporting on Contaminated Sites.

1.4 PROJECT OBJECTIVES

The primary objectives of this investigation were to:

• Evaluate the potential for site contamination on the basis of historical land uses, anecdotal and documentary evidence of possible pollutant sources;

- To investigate the degree of any potential contamination by means of limited intrusive sampling and laboratory analysis, for relevant contaminants; and
- Where site contamination is confirmed, make recommendations for the appropriate management of any contaminated soils and/or groundwater.

1.5 SCOPE OF WORKS

In order to achieve the above objectives, and in accordance with EI Proposal P13544.1 (dated 22 February 2016), the scope of works was as follows:

1.5.1 Desktop Study

- A review of relevant topographical, geological, hydrogeological and soil landscape maps for the project area;
- Search of historical aerial photographs archived at NSW Land and Property Information to review previous site use and the historical sequence of land development in the neighbouring area;
- A land titles search conducted through NSW Land and Property Information for information relating to historical ownership of the site;
- A search of Marrickville City Council records for information relating to operational site history and/or relevant environmental incidents;
- A search of NSW EPA Land Information records under the *Contaminated Land Management Act* (1997) and *Protection of the Environment Operations Act* (1997);
- A search of the Stored Chemical Information Database (SCID) and microfiche records held by WorkCover NSW relating to possible underground tank approvals and locations, and storage of dangerous goods; and
- A review of existing underground services on site.

1.5.2 Field Work & Laboratory Analysis

Field work and subsequent analysis of soil and groundwater samples comprised:

- A detailed site walkover inspection;
- Intrusive soil investigation at 21 locations across accessible areas of the site;
- Upon completion of the drilling, installation of seven groundwater monitoring wells;
- Multiple level soil sampling within fill and natural soils and one groundwater sampling event (GME) at the seven newly constructed groundwater monitoring wells; and
- Laboratory analysis of selected soil and groundwater samples for relevant analytical parameters as determined from the site history survey and field observations during the investigation programme.

1.5.3 Data Analysis and Reporting

A DSI report would also be prepared to document desk study findings, the conceptual site model, data quality objectives, investigation methodologies and results. The report would also provide a record of observations made

during the detailed site walkover inspection, borehole and monitoring well construction logs and a discussion of laboratory analytical results in regards to potential risks to human health, the environment and the aesthetic uses of the land.

2. SITE DESCRIPTION

2.1 **PROPERTY IDENTIFICATION**

The site identification details and associated information are presented in **Table 2-1**, while the site locality is shown in **Figure 1**.

Attribute	Description
Street Address	3-7 Regent Street, 13-17 Regent Street and 287-309 Trafalgar Street, Petersham, NSW
Location Description	Approximately 6 km south west of the Sydney CBD. Site 1 is an irregular shaped block bound by residential properties north, Fisher Street south Marrickville Council Chambers east and Regent Street west. North western corner of site unde GDA94-MGA56 coordinates: Easting: 329510.607, Northing: 6248019.869 (Source http://maps.six.nsw.gov.au).
	Site 2 is an irregular shaped block bound by Fisher Street north, New Canterbury Road south residential properties east and Regent Street west. Easting: 329478.441, Northing: 6247931.86 (Source: http://maps.six.nsw.gov.au).
	Site 3 is an irregular shaped block bound by Trafalgar Street north, residential properties south Regent Street east and commercial properties west.
	North western corner of site under GDA94-MGA56 coordinates: Easting: 329452.58, Northing: 6248045.502 (Source: http://maps.six.nsw.gov.au).
Site Area	Approximately 9,800 m ²
Site Owner	Deicorp Projects Petersham
Lot and Deposited Plan (DP)	Site 1: Lot 1 DP 629058
	Site 2: Lot 2 DP 830175
	Site 3: Lot 10 DP 1004198, Lot 1 DP 1208130, Lot 10 DP 1004198
State Survey Marks	Two State Survey Marks are situated in close proximity to Sites 1 and 2:
	 SS103974AD located 70 m south east of Site 1 on Crystal Street;
	• SS103979 located 20 m south west across regent Street of Site 2; and
	Three State Survey Marks are situated in close proximity to Site 3:
	 SS81795D, located north west of the site on the footpath on Trafalgar Street approximately 52 m away, SS103976D on the north eastern boundary and SS103977 12 m south eas on Fisher and Regent Street intersection.
	(Source: http://maps.six.nsw.gov.au).
Local Government Authority	Marrickville City Council
Parish	Petersham
County	Cumberland
Current Zoning	R4 – High Density Residential (Marrickville Local Environmental Plan, 2011, Land Zoning Map Sheet LZN_003)

2.2 SURROUNDING LAND USE

The site is situated within a predominantly residential area. Detailed description of surrounding land uses is provided in **Table 2-2**. The local sensitive receptors within close proximity to the site are also identified.

Direction	Land Use Description	Sensitive Receptors (& distance from site)	
North	Site 1. Residential followed by Trafalgar Street then a railway corridor.	Neighbouring residential properties (immediately adjacent to site 1)	
	Site 2. Fisher Street then Petersham RSL Club.	, , , , , , , , , , , , , , , , , , ,	
	Site 3. Trafalgar Street then a rail corridor.		
South	Site 1. Fisher Street followed by residential properties to the south east and a car park to the south west.	Neighbouring residential properties (immediately adjacent to Site 1 and Site 3) and the heritage listed	
Site 2. New Canterbury Road then the Heritage listed elevated tank Petersham Water Tower and elevated tank constructed in 1965 (Marrickville City Council).		elevated tank south of Site 2.	
	Site 3. Residential properties to the south west and Fisher Street to the south east.		
East	Site 1. Marrickville City Council to the south east and residential properties to the north east	Neighbouring residential properties (immediately adjacent to the north east of Site 1 and Site 2.	
	Site 2. Residential properties.		
	Site 3. Regent street the residential properties to the		
	north east and Petersham RSL Club to the south east.		
West	Site 1. Regent Street followed by an open car parking. Site 2. Residential properties.	Neighbouring residential properties to Site 3 and beyond Regent Street of Site 2;	
	Site 3. Commercial properties	Petersham Primary High School; and	
	· · · · · · · · · · · · · · · · · · ·	Petersham Children's Education situated 400 m west of the sites.	

Table 2-2 Local Land Use

2.3 REGIONAL SETTING

Regional topography, geology, soil landscape and hydrogeological information are summarised in Table 2-3.

Attribute	Description
Topography	The Soil Conservation Service of NSW Soil Landscapes of the Sydney 1:100,000 Sheet Chapman and Murphy, 1989), indicated that the site overlies a Blacktown (bt) Landscape. According to Chapman and Murphy, this landscape type includes gently undulating rises with local relief between 10-30m. Slopes are generally <5% but occasionally up to 10%. The local topography was gently undulating with a 10% downward slope to the north west.
Site Drainage	Based on observations on-site, stormwater is anticipated to be diverted by pit and pipe drainage to the municipal stormwater system or as subsurface infiltration or overland flow to Hawthorn Canal.

Table 2-3 Regional Setting Information

Attribute	Description
Regional Geology	The site is likely to be underlain by Ashfield Shale of Wianamatta Group (Rwa), which typically comprises black to dark-grey shale and laminite. (Ref. 1:100 000 scale Geological Series Sheet 9130 (Sydney).
Soil Landscapes	Soils are shallow to moderately deep (<150cm) Red Podzolic Soils and Brown Podzolic Soils on crests, upper slopes and well-drained areas. Deep (150-300cm) Yellow Podzolic Soils and soloths on lower slopes and in drainage depressions and localised areas of poor drainage. Limitations include moderately reactive, highly plastic subsoils and low soil fertility.
Acid Sulfate Soil Risk	The site lies within an area mapped as "No Known Occurrence" of ASS materials on the Marrickville Local Environmental Plan 2011 (Acid Sulfate Soils Map Sheet ASS_003) therefore acid sufate soils are not known or expected to occur in such area.
Nearest Surface Water Feature	Hawthorne Canal situated 1 km north west of the sites and Cooks River situated 3 km south of the site. (Source: http://maps.six.nsw.gov.au/).
Anticipated Groundwater Flow Direction	North to north-west towards Hawthorn Canal, which joins Parramatta River via Iron Cove at approximately 2.5 km north-west of the site draining to Sydney Harbour.

2.4 GROUNDWATER BORE RECORDS AND LOCAL GROUNDWATER USE

An online search of registered groundwater bores was conducted by EI on 14 March 2016 through NSW Office of Water online database (Ref: http://allwaterdata.water.nsw.gov.au/water.stm). There were 3 registered bores within 1 km of the site of the site. The identified bores and their direction and distance from the site are listed in **Table 2-4**

Bore No.	Direction and approx. Distance (m)	Date Drilled	Drilled Depth (m)	SWL	Bore Purpose
GW111088	NE – 700 M	2007	9	-	Monitoring Bore
GW111089	NE – 700 M	2007	9	-	Monitoring Bore
GW111087	NE – 700 M	2007	8.7	-	Monitoring Bore

Table 2-4 Summary of Selected Registered Groundwater Bores

Notes: - Data not recorded; * SWL – Standing water level measured in m BGL

Three registered bores were identified within 1 km of the site, being recorded as monitoring bores. These registered bores were located cross hydraulic gradient relative to the site. The drilled bore depths ranged between 8.7m and 9m BGL, water table information was not available at the time of reporting. Given the available reticulated water supply in the region, the likelihood of groundwater being used for drinking purposes in the local area was considered to be low. A map showing the locations of the identified bores is provided in **Appendix B**.

2.5 SITE WALKOVER INSPECTION

El staff made a number of observations during a detailed site inspection on 17 March 2016. The recorded observations are summarised below with photographic log provided in **Appendix C**:

The inspection comprised the following sites:

3-7 Regent Street, Petersham

- At the time of this DSI Petersham RSL Club occupied the entire footprint of the site, the building had two street frontages at Regent Street and Fisher Street. The RSL comprised a two-storey building with associated basement carpark via Regent Street and an open carpark on the northern side.
- A loading dock was situated on the southern side of the RSL building entry via Fisher Street, skip bins containing biodegradable as well as non biodegradable waste were situated on the loading doc. Wood, metal and platic scrap materials were noted next to the skip bins.
- The existing building appeared to be in good condition with minor weathering it appeared to have undergone recent refurbishement works and additions.
- The open car parking surface was covered by concrete pavement. Minor, localised cracking and occasional minor oil staining was noted on the concrete stand.
- An above ground storage Diesel tank and associated infrastructure was situated on the southern side of the basement.
- A sewer main traversing the site was noted on the ground level car parking area south of the RSL building.
- Hazardous materials such as fluorescent light fittings potentially containing PCB's were noted throughout the basement carpark, a hot water system presumed to contain SMF insulation was situated on the south easten side of the basement.

13-17 Regent Street, Petersham

- This property was occupied by an open carpak entry via Regent Street. The open car park surface was covered by concrete pavement. Minor, localised cracking and occasional minor oil staining was noted on the concrete stand.
- A vacant small building structure constructed in brick assumed to be a former administrative building was situated at the south eastern side of the site.
- A sewer main was noted along the western boundary of the site on Regent Street.
- Petersham Reservoir (Sydney Water WS0204) was noted across New Canterbuty Road south of the site,
- As the site sloped generally to the north to north-west, areas associated with site concrete hardstand were
 observed to be underlain by filling presumed to be utilised for levelling purposes. It is uncertain as to whether this
 material was sourced directly from the site, or has been imported for the establishment of site grades.
- Some minor filling was also noted at the deep planting areas along the perimeter of the site and on the central area of the car park. Fill was observed as well on the batter adjacent to the fencing along the southern boundary of the site.

287-295 Regent Street and 2 Regent Street, Petersham

• One open carpark of approximately 44 car spots occupied the northern side of the area. Entry to the carpark was via Regent Street.

- Car park surface was covered by concrete pavement. Site pavements were generally in good condition, with
 minimal cracking and deformation observed. Some minor localised oil staining was observed in car parking
 areas, along the main access driveway.
- An underground basement carpark was situated on the northern side of 2 regent street south of 287-295 Regent Street carpark. This basement carpark was inaccessible at the time of inpsection.
- The ground level car park surface was covered by concrete pavement. Minor, localised cracking and occasional minor oil staining was noted on the concrete stand.
- A third carpark with frontages to Regent Street and Fisher Street was situated south of the site. Trees were noted along the perimeter of the whole of the site.
- As the site sloped north- north west areas associated with site concrete hardstand were observed to be underlain by filling. An embankment was noted on the northern side of the car park adjacent to the basement carpark.
- Deep planting areas were observed at the northern and southern side of the carpark these areas were observed to be underlain by filling.
- Underground petroleum storage systems (UPSS) were not observed during the site walkover.
- A general waste skip bin was noted on the norther side of the car park entry, with degradable waste and scrap materials. An oil tin was noted on the gound adjacent to the bin.

305-309 Trafalgar Street, Petersham

- The site comprised a vacant brick and cement rendered two storey warehouse. The warehouse was formerly occupied by McCallum & Co Pty Ltd since approximately the 1950's. A company specialised in the manufacture of ball bearings.
- Redundant LPG gas tanks, wax tins, an ACL (Automotive Components Limited) metal powder container, and a Samson spray paint equipment container were observed on the ground level of the warehouse.
- Equipment such as a furnace and a redundant Wessberg and Tulander oven were noted on the ground floor. Magnesium Stearate, and ammonium chloride tags from Harcros Chemical Pty Limited were noted on the oven.
- The ground level surface was covered by concrete pavement throughout the warehouse footprint. Localised cracking and oil staining was noted on the concrete stand.
- One tank filling point was identified within the northern part of the building, adjacent to the loading dock entry via Trafalgar Street. The area was scanned with Ground-Penetrating Radar (GPR) and the location of one large or two medium sized USTs was confirmed, with an estimated tank size of 3 m x 2.5 m each.

301-303 Trafalgar Street, Petersham

- The site comprised a one storey with first floor semilevel warehouse constructed in brick and aluminium. Entry to the warehouse was through two roller doors fronting Trafalgar Street.
- Ace Props was noted to be the former occupant of the warehouse a company specialising in props and scenery for the event and entertaining industry. Maniquins and prop materials wer noted throughout the warehouse.

- No hardstand was observed on top of ground throughout of the warehouse.
- A redundant hot water system, wooden, plastic and metal scrap materials were noted in different locations of the warehouse.

297 Trafalgar Street, Petersham

- A two storey warehouse constructed in brick occupied the entire footprint of the site. Romantic Furniture company specialising in launge manufacturing was noted to be the former occupant of the site. Entry to the warehouse was via two loading docks fronting Trafalgar Street.
- At the time of inspection the warehouse was unoccupied, machines, equipment and materials had been previously removed from the warehouse.
- Former administrative offices were situated on the second and third level of the warehouse.
- Ground level of the warehouse was covered by concrete pavement in good conditions with minor oil staining.
- Presumed asbestos containing roofing was observed throughout the warehouse.

2.5.1 Observations of Hazardous Building Materials

- Site inspection indicated the presence of asbestos containing materials (ACM) on the building structures;
- Site observations indicated that lead based paint system may have been used on site structures.
- Hot Water Systems presumed to contain SMF insulation were observed on site; and
- Fluorescent Light Fittings with capacitors presumed to contain PCB's were observed on different structures of the site.

3. SITE HISTORY

3.1 SITE LAND TITLES INFORMATION / HISTORIC AERIAL REVIEW

Historical land titles search for the site was conducted through Legal Liaison Services Pty Ltd. Copies of relevant documents, including detailed land title transfer records resulting from this search are presented in **Appendix D**. The approximate outline of the allotments is shown in **Figure 3-1**.

Figure 3-1 Title Division Site 1, Site 2 and Site 3, Petersham

The historical aerial photographs reviewed as part of this DSI included:

- 1930: 20 February 1930, Map 3428, Run 16, B/W;
- 1943: 1943 Sydney Imagery (source : http://maps.six.nsw.gov.au/);
- 1951: May 1951, Run 12, B/W, Map 467-52 Lands Photo;
- 1961: 1961, B/W, NSW 1042-5016 Lands Photo;
- 1982: 1982, NSW 3240-38 Lands Photo;
- 1999: 4 May 1999, Run 6, NSW 4702 Department of Lands;
- 2004: 8 October 2004, Run 6, NSW 4877 (M2451) Department of Lands; and
- 2016: 2016 Aerometrex Imagery (accessed on Google Earth).

Table 3-1	Summary of Owners and Historical Aerial Photography
	Summary of Owners and mistorical Achiar motography

Period	List of Owners in the Period (Refer to Appendix D for further details)	Site description based on historical aerial photographs	Potential Land Uses
1 , 3-7 Regen	t St, Petersham		
1915 - 1950	 Over Part 1: Sarah Ann Knight (Married Woman) / George Edward Knight (Builder) / William Bailey (Butcher) Lillian Ada Bailey (Married Woman) Over Part 2: Georgina Mary Tadich (Married Woman) Over Part 3: Georgina Mary Tadich (Married Woman) Over Part 4: Georgina Mary Tadich (Married Woman) Over Part 5: Georgina Mary Tadich (Married Woman) Over Part 5: Georgina Mary Tadich (Married Woman) Over Part 6: Walter Frank Hosking (Furniture Warehouseman)/ Agnes Eugenie Hosking (Widow) Over Part 7: Walter Frank Hosking (Furniture Warehouseman) / Agnes Eugenie Hosking (Widow) / John Henry Mitchell (Hotel Keeper) 	1930 : The site appears to be occupied by 4 residential dwellings, a vacant field is situated adjacent to the residential property of the northern boundary. 1943: Site remains primarily unchanged form the 1930's aerial.	Residential
1950 – 1960	 Over Part 1: William Bailey (Butcher) Lillian Ada Bailey (Married Woman) / Augustus George Olsen (Retired) Harriett Olsen (Married Woman) / Mabel Olsen (Spinster) Over Part 2: Annie Helena Tadich (Spinster) Over Part 3: Guiseppe William Tadich (Retired Builder) / Vincent Martin Tadich (Electrical Contractor), Annie Helena Tadich (Spinster), Norman Joseph Tadich (Taxi Proprietor), / Robert Joseph Bryan (Retired Builder) / James Glen McGarvie (Store Manager), Audrey Hughena McGarvie (Married Woman). Over Part 4: Guiseppe William Tadich (Retired Builder) / Vincent Martin Tadich (Electrical Contractor), Annie Helena Tadich (Spinster) Norman Joseph Tadich (Taxi Proprietor) / Robert Joseph Bryan (Retired Builder) / Jonis Doreen Brines (Married Woman) Over Part 5: Guiseppe William Tadich (Retired Builder) (Transmission Application not investigated) / Vincent Martin Tadich (Electrical Contractor) Annie Helena Tadich (Spinster) Norman Joseph Tadich (Taxi Proprietor) / Samuel David Grove (Carpenter) Amy Elizabeth Grove (Married Woman) Over Part 6: Phyllis Gulliver (Married Woman) George Woodford Mitchell (Accountant) / Maurice Mervyn Punch (Baker), Edna May Punch (Married Woman) 	<u>1951:</u> Site remains primarily unchanged form the 1930's aerial.	Residential

Period	List of Owners in the Period (Refer to Appendix D for further details)	Site description based on historical aerial photographs	Potential Land Uses
1960-1970	 Over Part 1: Richard Joseph Heagney (Labourer), Patrick Westwood Sullivan (PMG Employee), Ronald Caro Ayrton (Fitter) (Trustees for Petersham RSL Club) / Patrick Westwood Sullivan (Mail Officer) Elwyn Mullaney (Plumber), Maurice George Edward Dennis (French Polisher) (Trustees for Petersham RSL Club) Over Part 2: Frederick David Court (Taxi Proprietor), Elizabeth May Court (Married Worman) / Richard Joseph Heagney (Labourer), Patrick Westwood Sullivan (PMG Employee), Ronald Caro Ayrton (Fitter) (Trustees for Petersham RSL Club) / Patrick Westwood Sullivan (Mail Officer), Elwyn Mullaney (Plumber), Maurice George Edward Dennis (French Polisher), (Trustees for Petersham RSL Club). Over Part 3: Richard Joseph Heagney (Technical College Lecturer), Thomas Henry Bosward (Retired), Joseph Henry McDougall (Solicitor), (Trustees for Petersham RSL Club) / Richard Joseph Heagney (Technical College Lecturer) Joseph Henry McDougall (Solicitor), (Trustees for Petersham RSL Club) / Patrick Westwood Sullivan (PMG Employee) Ronald Caro Ayrton (Fitter) (Trustees for Petersham RSL Club). Over Part 4: Richard Joseph Heagney (Technical College Lecturer), Thomas Henry Bosward (Retired), Joseph Henry McDougall (Solicitor), (Trustees for Petersham RSL Club) / Richard Joseph Heagney (Technical College Lecturer) Joseph Henry McDougall (Solicitor), (? Trustees for Petersham RSL Club) / Richard Joseph Heagney (Technical College Lecturer) Joseph Henry McDougall (Solicitor), (? Trustees for Petersham RSL Club) / Richard Joseph Heagney (Technical College Lecturer), Patrick Westwood Sullivan (Mail Officer), Elwyn Mullaney (Plumber), Maurice George Edward, Dennis (French Polisher), (Trustees for Petersham RSL Club) / Richard Joseph Heagney (Technical College Lecturer), Joseph Henry McDougall (Solicitor), (Trustees for Petersham RSL Club) / Richard Joseph Heagney (Technical College Lecturer), Joseph Henry McDougall (Solicitor), (Trustees for Petersham RSL Club) / Richard Joseph Heagney (Tech	1961: Previously noted residential dwelling to the north of the site appears to have been demolished and a new building structure is situated in this location. RSL building is noted on site. Two residential dwellings sitated on the south western corner of the site remain unchanged.	Commercial

		•	-
Period	List of Owners in the Period (Refer to Appendix D for further details)	Site description based on historical aerial photographs	Potential Land Uses
1974 to Date	Over Part 1: Petersham R.S.L. Club Limited (1974 to date) Over Part 2: Petersham R.S.L. Club Limited (1974 to date) Over Part 3: Petersham R.S.L. Club Limited (1974 to date) Over Part 4: Petersham R.S.L. Club Limited (1974 to date) Over Part 5: Petersham R.S.L. Club Limited (1973 to date) Over Part 6: Petersham R.S.L. Club Limited (1973 to date) Over Part 7: Petersham R.S.L. Club Limited (1973 to date)	1982: New refurbishements and additions appear to have been made to the RSL building, An open carpark is noted north of the building 1999: New refurbishments and additions appear to have been made to the RSL building an open car park is noted north of the building. 2004: Site remains primarily unchanged with refurbishements and additions to the RSL. 2016: Site remains primarily unchanged since the 2004 aerial.	Commercial
As regard Site	e 2 , 13-17 Regent St, Petersham		
1915 - 1950	Over Part 1: William James Watson (Ironmonger) / William McCormack	<u>1930:</u> The site	Residential

1915 - 1950 Over Part 1: William James Watson (Ironmonger) / William McCormack (Gentleman), Eva May McCormack (Married Woman)
 Over Part 2: Archie Neathway Allen (Commission Agent), James Richmond McKie (Bank Officer)
 Over Part 3: Emma Alice Palmer (Married Woman), Andrew Richard Rogers (Engineer), David Hill (Police Officer), Kate Hill (Widow) (Transmission Application not investigated) / Ethel Lillian Rowland (Widow)
 Over Part 4: Benjamin Patrick Lloyd (Inspector of Nuisance) / Edith Florence Lloyd (Widow) / Bridget Corbett (Widow) / Catherine Corbett (Spinster)

Veronica Mary Corbett (Spinster)

Over Part 5: Emma Alice Palmer (Married Woman) / Roy William Bradshaw (Dental Mechanic), Nancy Sybil Bradshaw (Married Woman). <u>1930:</u> The site appears to be occupied by four residential dwellings and associated sheds.

<u>1943:</u> Site remains primarily unchanged from the 1930's aerial.

Period	List of Owners in the Period (Refer to Appendix D for further details)	Site description based on historical aerial photographs	Potential Land Uses
1950 - 1960	 Over Part 1: Eva May McCormack (Widow) / Alister Garnet Lindsay Harris (Chartered Accountant), Alexander Bernard Samuelson (Solicitor) Over Part 2: Emily Sara McKie (Married Woman) Over Part 3: Eric Hayton (Clerk) Over Part 4: Catherine Corbett (Spinster) Veronica Mary Corbett (Spinster) Over Part 5: Phyllis Mary Allwood (Femme Sole) 	<u>1951:</u> Site remains primarily unchanged form the 1930's aerial.	Residential
1960 - 1990	 Over Part 1: Oliver Maitland Clout (Dry Cleaner) / Leslie Ann Whyte Maree Oates Over Part 2: Vincenzo Baldini (Supervisor) / Luigi Barbati (Factory Worker) Maria Italia Barbati (Married Woman) / Sergio Alvarez (Cook) Martha Alvarez (Married Woman) Over Part 3: Phyllis Mary Allwood (Femme Sole) / Daryl Hamilton Allwood (Motor Mechanic) Over Part 4: Catherine Corbett (Spinster) Over Part 5: Daryl Hamilton Allwood (Motor Mechanic) / Muriel Louisa Adams 	1961: Previously noted residential dwellings remain primarly unchanged since 1951's aerial.	Residential
1976 to Date	Over Part 1: Petersham R.S.L. Club Limited (1981 to date) Over Part 2: Petersham R.S.L. Club Limited (1989 to date) Over Part 3: Petersham R.S.L. Club Limited (1990 to date) Over Part 4: Petersham R.S.L. Club Limited (1976 to date) Over Part 5: Petersham R.S.L. Club Limited (1970 to date)	1982: Site remains primarily unchanged since the 1961 aerial. 1999: Previously noted residential dwellings have been demolished, an open car park occupies the site. 2004: Site remains primarily unchanged since 1999 aerial. 2016: Site remains primarily unchanged since the 2004 aerial.	Residential / Commercial

Period	List of Owners in the Period (Refer to Appendix D for further details)	Site description based on historical aerial photographs	Potential Land Uses
As regard Si	te 3 , 287-309 Trafalgar St, Petersham		
<u>As regards Le</u>	ot 1 D.P. 1208130		
1911 - 1950	 Over Part 1: Robert William Fozzard (Lime & Cement Merchant) / Allan Manning Fozzard (Lime & Cement Merchant) Over Part 2: William David Jones (Wood & Coal Merchant) / Frederick Arthur Jones (Fuel Merchant) Over Part 3: Richard Thomas Ball (Gentleman) / William Henry Burns (Lime & Cement Merchant), Edward John Burns (Lime & Cement Merchant), James Thomas Burns (Lime & Cement Merchant) / Allan Manning Fozzard (Merchant) Over Part 4: Richard Thomas Ball (Gentleman) / William Henry Burns (Lime & Cement Merchant), Edward John Burns (Lime & Cement Merchant) Over Part 4: Richard Thomas Ball (Gentleman) / William Henry Burns (Lime & Cement Merchant), Edward John Burns (Lime & Cement Merchant) James Thomas Burns (Lime & Cement Merchant) / Allan Manning Fozzard, (Merchant) 	1930: Three warehouse buildings are noted covering the entire footprint of the site. 1943: Site remains primarily unchanged form the 1930's aerial.	Commercial Industrial
1950 - 1960	Over Part 1: C.S. McCallum Holdings Pty Limited Over Part 2: F. Lowry Pty Limited Over Part 3: Allan Manning Fozzard (Merchant) Over Part 4: Allan Manning Fozzard (Merchant)	<u>1951:</u> Site remains primarily unchanged form the 1930's aerial.	Commercial / Industrial
1960 - 1970	Over Part 1: C.S. McCallum Holdings Pty Limited Over Part 2: Leonard Craig Fozzard (Manager), Robert Alexander Fozzard (Engineer), Allan Victor Fozzard (Student, now Engineer), Valerie Irene Fozzard (Student), Now Valerie Irene Forshaw (Married Woman) Over Part 3: Allan Manning Fozzard (Merchant) Over Part 4: Leonard Craig Fozzard (Company Manager), David Terence Panckhurst (Solicitor)	1961: The three warehouses previously noted remain on site with minor alterations and refurbishements. New additions are noted on the warehouse to the east.	Commercial Industrial
1970 - 2015	Over Part 1: C.S. McCallum Holdings Pty Limited (1964-2015) Over Part 2: E.S. McCallum Holdings Pty Limited (1976-2015) Over Part 3: Leonard Craig Fozzard (Manager), Robert Alexander Fozzard (Engineer), Valerie Irene Lambert , Fozzard Nominees Pty Limited / Fozzard Nominees Pty Limited (1985-1988) / E.S. McCallum Holdings Pty Limited (1988-2015) Over Part 4: Leonard Craig Fozzard (Manager), Robert Alexander Fozzard (Engineer), Valerie Irene Lambert , Fozzard Nominees Pty Limited / Fozzard Nominees Pty Limited (1986-1988), E.S. McCallum Holdings Pty Limited (1988-2015)	1978: Site remains primarily unchanged since the 1961 aerial. 1999: Site remains primarily unchanged since the 1978 aerial. 2004: Site remains primarily unchanged since 1999 aerial.	Commercial / Industrial

Period	List of Owners in the Period (Refer to Appendix D for further details)	Site description based on historical aerial photographs	Potential Land Uses
2015 to date	Over Part 1 to 4 Deicorp Projects Pty Ltd	2016: Site remains primarily unchanged since the 2004 aerial.	Commercial / Industrial
<u>As regards Lo</u>	ot 10 D.P. 1004198		
1911 - 1950	Over Part 1: Samuel Wilkinson (Wesleyan Minister) / Elizabeth Hannah Wilkinson (Spinster) / Ruby Wilkinson (Spinster), Thomas Wilkinson Moffitt	1930: The site appears to be	Residential

	 Wikinson (Spinster) / Ruby Wikinson (Spinster), Thomas Wikinson Molnit (Commonwealth Servant) / Felix Placid Hunt (Mantle Manufacturer). Over Part 2: Sarah Ann Knight (Married Woman) / John Henry West, Betsy West (Married Woman) / Betsy West (Widow) Over Part 3: Samuel Ritchie (Estate Agent) Over Part 4: Henry Maughan (Gentleman) / Walter Henry Everitt (Builder) Over Part 5: Henry Maughan (Gentleman) / Thelma Irene Wilson (Married Woman) Over Part 6: Henry Maughan (Gentleman) / Jaroslav Zelinka / Phyllis Bell (or Belle) MacDonald (Married Woman) 	appears to be occupied by four residential dwellings with associated sheds. Two residential dwellings with trees situated on the northern, southern and western boundary are situated to the south of the site. <u>1943:</u> Site remains primarily unchanged from the 1930's aerial.	
1950 - 1960	 Over Part 1: Felix Placid Hunt (Mantle Manufacturer) Over Part 2: Arthur West (Engineer), Edith West (Spinster), Margaret West (Spinster). Over Part 3: Electrolux Pty Limited (1957-1979) Over Part 4: Stuart Edward Charles Evans (Gentleman) Faith Patricia Evans (Married Woman) Over Part 5: Thelma Irene Wilson (Married Woman) Over Part 6: Isabel Haidee Cull (Spinster) 	<u>1951:</u> Site remains primarily unchanged from the 1930's aerial.	Residential

Period	List of Owners in the Period (Refer to Appendix D for further details)	Site description based on historical aerial photographs	Potential Land Uses
1960-1984	 Over Part 1: Alecia Hall Winston (Married Woman) / Petersham R.S.L. Club Limited Over Part 2: Arnold Swan Young (Company Director) / Patrick Westwood Sullivan (Mail Officer), Elwyn William Mullaney (Plumber) Neville Leigh Saunders (Salesman), (Trustees for Petersham RSL Club) / Patrick Westwood Sullivan (Mail Officer), Elwyn Mullaney (Plumber), Maurice George Edward Dennis (French Polisher), (Trustees for Petersham RSL Club) / Petersham R.S.L. Club Limited Over Part 3: Radio and General Agencies Pty Limited (1979-1990) Over Part 4: Electrolux Pty Limited (1966-1979) Over Part 5: Torlee Properties Pty Limited (1964-1984) Over Part 6: Gregorio Diaz (Plumber), Francisca Diaz (Married Woman) / Natale, Rizzo (Carpenter) / Christos Stavris (Process Worker), Despina Stavris (Married Woman) 	1961: A new building structure is noted on the north eastern corner of the site. Three residential properties previously noted remain on site. The two residential dwellings with a few trees remain south of the site.	Residential / Commercial
1985-1991	 Over Part 1: Petersham R.S.L. Club Limited Over Part 2: Arthur West (Engineer), Edith West (Spinster), Margaret West (Spinster). Over Part 3: Electrolux Pty Limited (1957-1979) / Radio and General Agencies Pty Limited / Silhbat Pty Limited Over Part 4: Stuart Edward Charles Evans (Gentleman) Faith Patricia Evans (Married Woman) / Electrolux Pty Limited (1966-1979) / Radio and General Agencies Pty Limited (1979-1990) / Silhbat Pty Limited (1990-1992) Over Part 5: Thelma Irene Wilson (Married Woman) / Torlee Properties Pty Limited (1964-1984) / Allenby Dadisho George Over Part 6: Isabel Haidee Cull (Spinster) / Gregorio Diaz (Plumber) Francisca Diaz (Married Woman) / Natale Rizzo (Carpenter) / Christos Stavris (Process Worker) Despina Stavris (Married Woman) / Paul Milne 	1982: A new building structure is situated on the north eastern side of the site. Previously noted residential dwellings appeared to have been demolished and a constructed open car park is situated on the southern side of the site. 1999: What appeared to be a residential structure to the east of the site appears to have been demolished.	Commercial

Period	List of Owners in the Period (Refer to Appendix D for further details)	Site description based on historical aerial photographs	Potential Land Uses
1992 to date	Over Part 1: Petersham R.S.L. Club Limited (1975 to date) Over Part 2: Petersham R.S.L. Club Limited (1974 to date) Over Part 3: Petersham R.S.L. Club Limited (1992 to date) Over Part 4: Petersham R.S.L. Club Limited (1992 to date) Over Part 5: Petersham R.S.L. Club Limited (1991 to date) Over Part 6: Petersham R.S.L. Club Limited (1991 to date)	2004: Previously noted structure appears to have been demolished and an open car park is situated on site. 2016: Site remains primarily unchanged since the 2004 aerial.	Commercial

Land title records and historical aerial photographs suggested that:

- Use of **Site 1** was primarily residential until the 1960s when it was redeveloped for Petersham RSL. The building structure appeared to have undergone multiple refurbishements and additions throughout the years.
- Use of **Site 2** was primarily residential until the 1970s when residential structures on site were demolished for the construction of the open car park.
- Lot 1 of Site 3 has remained commercial / industrial since the 1930's, occupied by lime & cement Merchants and fuel merchants until the 1950s when McCallum Holdings Pty Ltd appears to be the proprietor of the site. A company specialised in the ball bearing manufacture.
- Lot 10 of site 3 has remained mainly residential / commercial. Part of the site being occupied by residential proprietors and part by mantle manufacturers until 1957 when Electrolux appears to be the proprietor of part of the site until approximately 1979 when the owner of the property appears to be the RSL Club.

3.2 SURROUNDING LANDS HISTORICAL AERIAL PHOTOGRAPHY REVIEW

As part of the Historical Aerial Review, an assessment of surrounding land uses using historical aerial photographs sourced from NSW Land and Property Information was carried out. A summary of the pertinent information identified at surrounding land parcels from the reviewed photographs is presented in **Table 3-2**.

Table 3-2 Summary of Aerial Photograph Review

Aerial Photograph	Surrounding land uses based on historical aerial photographs
1930: 20 February 1930, Map 3428, Run 16, B/W	Areas north and south of site 1 were occupied by residential dwellings, east of the site was dominated by likely residential and commercial structures. Lands to the west of the site appeared to be residential.
	Area north, east and west of site 2 was occupied by residential dwellings and area to the south by a circular open space lot.
	Area north of site 3 is occupied by a rail corridor with Petersham Station situated to the north east, residential dwellings occupy properties to the east and south and what appears to be commercial and residential properties occupy the west of the site.
1943: 1943 Sydney Imagery (source : http://maps.six.nsw.gov.au/)	Surrounding land uses remain primarily unchanged from the 1930's aerial.
1951: May 1951, Run 12, B/W, Map 467- 52 – Lands Photo	Surrounding land uses remain primarily unchanged from the 1943 aerial a higher density of residential housing is noted to the north and south of the site.
1961: 1961, B/W, NSW 1042-5016 – Lands Photo;	Surrounding land uses remain primarily unchanged from the 1950's aerial. The dominant uses on surrounding lands remained as commercial / industrial and residential.
1982: 1982, Run 17, NSW 3240-38 – Lands Photo	The dominant uses on surrounding lands remained as commercial / industrial and residential.
	Petersham Reservoir (Sydney Water WS0204) is noted on the previously noted circular open space lot to the south of Site 2.
2016: 2016 Aerometrex Imagery (accessed on Google Earth)	Surrounding land uses remain primarily unchanged from the 1982 aerial. The dominant uses on surrounding lands remained as commercial / industrial and residential.

3.3 COUNCIL INFORMATION

A search of historical records held by Marrickville City Council pertaining to the site was requested by EI. Correspondences dated 4 March 2016 from Marrickville City Council indicated files were identified in Council records. The files were inspected by EI subsequently and a summary of information obtained from the files is presented in **Table 3-3**

Table 3-3	Summary	of Historical Records Archived at Marrickville City Council
-----------	---------	---

Period / Year	Document Reference	Description
291 Trafalgar Stree	t, Petersham	
1962	DA 287	Applicant: Electrolux Pty Ltd
		Nature of existing premises: Commercial
		Nature of porposed development: Erection of a radio mast.
		Recommendation: Approved 6 June 1996

Period / Year	Document Reference	Description
1966	DA 407	Applicant: Electrolux Pty Ltd
		Nature of existing premises: Commercial
		Nature of porposed development: Alterations to premises
		Recommendation: Approved 1966
13-17 Regent Street, I	Petersham	
1969	BA 297	Applicant: Gordon P O'Donnel
		Owner: Petersham RSL Club
		Nature of existing premises: Commercial
		Nature of porposed development: Additions to club premises over car park.
		Recommendation: Approved
1979	DA 111	Applicant: Petersham RSL Club
		Nature of existing premises: Commercial
		Nature of porposed development: Car Park for 22 spots and landscaping to the Fisher Street frontage and planting along the side boundary.
		Recommendation: Approved
3-7 Regent Street, Per	tersham	
1957	DA 24	Applicant: Doris Brines
	2/12/	Nature of existing premises: Residential
		Nature of porposed development: Demolition of garage
		Former land use: Residential
		Recommendation: Approved
1960	BA 161	Applicant: Petersham RSL Club
		Nature of existing premises: Commercial
		Nature of porposed development: Erection of new club premises.
		Background: In 12 April 1960 council approved the stablishment for the RSL Club.
		Former land use: Residential cottages. Site plans indicated the presence of fibro sheds.
		Recommendation: Approved 9 June 1960.
		···
1970	DA 150	Applicant: Petersham RSL Club
		Nature of existing premises: Commercial
		Nature of porposed development: Addition to club premises over carpark.
		Former Land use: Residential cottages
		Recommendation: Approved.

Period / Year	Document Reference	Description
1978	DA 199	Applicant: Petersham RSL Club
		Nature of existing premises: Commercial
		Nature of porposed development: Extension to club premises at No. 7A Regent Street, Petersham.
		Recommendation: Approved.
2008	DA 200600425	Applicant: James Clifford Construction
		Owner: Petersham RSL Club
		Nature of existing premises: Commercial
		Nature of porposed development: New smokers terraces to the ground and first floor areas, New Bistro / café servery and refurbished gaming and bistro launge.
		Recommendation: Approved 5 January 2007.

As shown in Table 3-3, the earliest council records pertaining to the site dated in 1961. The RSL Club was stablished on the 1960's, since then various refurbishments and additions have been made to the club premises including the construction of carparking areas at 13-17 Regent Street and at 287-295 Trafalgar Street.

3.4 WORKCOVER NSW AUTHORITY SEARCH

WorkCover NSW Authority records relating to the site were requested from the Dangerous Goods Licensing Section, indicated that no records were found in the Stored Chemical Information Database or microfiche records. Copies of the correspondences are provided in **Appendix E**.

3.5 HAZARDOUS CHEMICALS AND REGULATORY COMPLIANCE

3.5.1 Contaminated Land - Record of Notices under Section 58 of CLM Act (1997)

On 21 March 2016, an on-line search of the EPA *Contaminated Land – Record of EPA Notices* was conducted to identify,

- orders made under Part 3 of the Contaminated Land Management Act 1997 (CLM Act)
- approved voluntary management proposals under the CLM Act that have not been fully carried out and where the approval of the Environment Protection Authority (EPA) has not been revoked
- site audit statements provided to the EPA under section 53B of the CLM Act that relate to significantly contaminated land
- actions taken by EPA under section 35 or 36 of the Environmentally Hazardous Chemicals Act 1985 (EHC Act) This search confirmed that the NSW OEH has no regulatory involvement under Section 58 of the CLM Act 1997 in relation to Site 1, Site 2 or Site 3.

3.5.2 List of notified contaminated sites

Review of the notified sites under Section 60 of the *CLM Act* 1997 was conducted on 21 March 2016 and indicated the site was not notified. This list includes properties on which contamination has been identified. Not all notified land

is deemed to be impacted significantly enough to warrant regulation by the EPA. The search found one notified properties within 1.0 km of the site:

• Fanny Durack Aquatic Centre at Station Street, Petersham, approximately 400 north-west of the site. The list indicated the property was under assessment. This property is not regarded as a potential offsite contamination sources as it is located down-gradient relative to the site.

3.5.3 POEO Public Register

A search of the *Protection of the Environment Operations (POEO) Act Public Register* on 21 March 2016, did not identify environmental protection licences, applications, notices, audits and pollution studies pertaining to the site or properties within 1 km of the site.

4. CONCEPTUAL SITE MODEL

In accordance with NEPM (2013) *Schedule B2 – Guideline on Site Characterisation* and to aid in the assessment of data collection for the site, a preliminary conceptual site model (CSM) was developed to assess plausible linkages between potential contamination sources, migration pathways and receptors. The preliminary CSM was derived based on desktop study findings and provided a framework to review the reliability and useability of collected data and to identify data gaps in site characterisation works.

4.1 SUBSURFACE CONDITIONS

4.1.1 Site Geology and Subsurface Conditions

The site is underlain by Ashfield Shale of Wianamatta Group (Rwa), which typically comprises black to dark-grey shale and laminite. (Ref. 1:100 000 scale Geological Series Sheet 9130 (Sydney). The general site geology is likely to be described as a layer of anthropogenic filling overlying sandy clays and shale at depth. The general geology encountered during this DSI may be described as:

- Gravelly sand fill from 0.05-0.5 (max) mBGL;
- Sandy clay fill from 0.05 to 1.5 (max) mBGL;
- Silty Clay fill from 0.05 to 1.89 (max) mBGL;
- Fill soil profiles are likely to vary in areas of deeper tank pits;
- Silty Clays, from 0.05 to 3 BGL;
- Shale from approximately 2.1 to 17.5+ mBGL

4.1.2 Site Hydrology

Given the general topography of the site, it is assumed that groundwater flow will move towards the north west.

The main aquifer encountered in this DSI was located within fractured Ashfield Shale, the top of which was estimated at between 4.0 mBGL to 6.5 mBGL. This aquifer was considered to be a semi-confined to confined aquifer.

Groundwater flow through the Ashfield Shale is documented to be influenced by the bedrock fracture system with hydraulic conductivities estimated to range between 8.6 x10-9 and 1.7x10-4 m/day (Domenico and Schwartz, 1990).

Porosity of shale varies between 0% and 10% (DIPNR, 2005), while porosity in clay varies between 45% and 55%. Aquifer porosity in shale, however, is largely governed by the presence of discontinuities in the rock mass.

4.2 CHEMICAL HAZARDS AND CONTAMINATION SOURCES

On the basis of site inspection findings (Section 2) site history, EI considered the potential chemical hazards and onsite contamination sources to be as follows:

- Fill materials of unknown origin and quality;
- Impacts from long-term commercial / industrial use of the site, for metal foundry and fabrication;

- Impacts from long-term oil / gasoline leaks from parked vehicles;
- Potential leakage from aboveground and underground petroleum storage systems (UPSS) including USTs, underground fuel lines, fill points, etc.;
- Weathering of building structures (i.e. painted surfaces, metallic structures, etc.);
- Hazardous building materials including, potential asbestos-containing materials resulted from uncontrolled demolition of former residential structures on-site;
- Potential residues from pesticides use under site building structures for the control of termites;
- Hazardous building products present in existing structures.

4.3 POTENTIAL CHEMICALS

Based on the findings of the site history review, the site walkover inspection and the presence of USTsthe potential chemicals at the site were considered to be:

- Soil heavy metals (HMs), total recoverable hydrocarbons (TRH), polycyclic aromatic hydrocarbons (PAH), the monocyclic aromatic hydrocarbon (MAH) compounds benzene, toluene, ethylbenzene and xylenes (BTEX), organochlorine and organophosphorus pesticides (OCP/OPP), polychlorinated biphenyls (PCB), total phenols, volatile organic compounds (VOC), and asbestos; and
- Groundwater HMs, TRH, BTEX, PAH, VOCs.

4.4 POTENTIAL SOURCES, EXPOSURE PATHWAYS AND RECEPTORS

Potential contamination sources, exposure pathways and human and environmental receptors that were considered relevant for this assessment are summarised in **Figure 5.1**

Figure 4-1 Preliminary Conceptual Site Model

4.5 CSM OVERVIEW

Potential contamination sources, exposure pathways and human and environmental receptors that were considered relevant for this assessment are summarised along with a qualitative assessment of the potential risks posed by complete exposure pathways in

Page | **33**

Table 4-1Preliminary Conceptual Site Model

Site Area	Subsurface Profile	Potential Sources	Potential Contaminants	Media	Sensitive Receptor	Migration & Exposure Pathways	Potential Risk of Complete Exposure Pathway
Site 1 (3-7 Regent Street)	Fill (Silty Clays) overlying Residual soil (Clays) and weathered shale at depth. Depth of shale >3.4 m.	Commercial activities, asbestos containing materials from demolition of previously existing residential dwellings, filling, termiticides, lead paint, vehicle parking, leaks from above ground Diesel storage tank, general waste.	Pesticides for terminte control, Heavy Metals, Petroleum Hydrocarbons (including PAHs), OCPs, Asbestos, Unknown	Building fabric Soils Groundwater Air/Soil Vapour LNAPL/DNAPL (if present)	Hawthorn Canal Site Workers during demolition and construction Future site residents	Seepage into the subsurface soils and groundwater. Dermal Contact Ingestion Inhalation	M – H (should contamination be present) L (post development)
Site 2 (13-17 Regent Street)	Fill (Silty Clays), overlying Residual soil (Silty Clays) and distinctly weathered shale at depth. Depth of Shale > 2.1 m.	Vehicle parking, general waste asbestos containing materials from demolition of previously existing residential dwellings, lead paint from administrative structure on the south eastern side of site	Pesticides for terminte control, Heavy Metals, Petroleum Hydrocarbons (including PAHs), OCPs, Asbestos, Unknown	Building fabric Soils Groundwater Air/Soil Vapour LNAPL/DNAPL (if present)	Hawthorn Canal Site Workers during demolition and remediation. Future site residents	Seepage into the subsurface soils and groundwater Dermal Contact Ingestion Inhalation	M – H (should contamination be present) L (post development)

Detailed Site Investigation 3-7 Regent Street, 13-17 Regent Street and 287-309 Trafalgar Street, Petersham, NSW Report No. E22913 AA_Rev0

Page | **34**

Site 3 (287-309 Trafalgar Street)	Fill (Silty Clays), overlying, Residual soil (Silty Clays) and extremely weathered shale at depth. Depth of shale >3.3 m.	Commercial / industrial activities (metal foundry), asbestos containing materials, filling, termiticides, lead paint, vehicle storage, chemical storage, spray paint containers, general waste.	Pesticides, Heavy Metals, Petroleum Hydrocarbons (including PAHs), OCPs, Acid Sulfate Soils, Asbestos, VOCs, Unknown	Building fabric Soils, Groundwater Air/Soil Vapour LNAPL/DNAPL (if present)	Hawthorn Canal Site Workers during demolition and construction Future site residents	Seepage into the subsurface soils, and groundwater. Dermal Contact Ingestion Inhalation	M – H (should contamination be present) L (post development)
---------------------------------------	---	--	---	--	--	--	---

Notes: L = Low Risk; M = Moderate Risk; H = High Risk

4.6 POTENTIAL DATA GAPS

Based on the qualitative assessment of contamination risks and CSM derived for the site, the following data gaps have been identified and are considered to warrant closure by intrusive investigation:

- The presence of onsite contamination from identified sources (listed in Section 4) require confirmation;
- The degree and extent of onsite contamination, if any;
- Uncertainty in regard to the condition of Underground Storage Tanks (USTs) on-site, and the extent and degree of consequent soil and groundwater contaminations;
- Uncertainty in regard to the extent and degree of contamination if any in regard to the Above Storage Tank; and
- Potential presence of any contamination from other unknown onsite and offsite sources.

5. METHODOLOGY

5.1 SAMPLING, ANALYTICAL AND QUALITY PLAN (SAQP)

The SAQP ensures the environmental works carried out at the site are representative, and provide a robust basis for site assessment decisions and includes:

- Data quality objectives, including a summary of the objectives of the DSI;
- Investigation methodology including media to be sampled, details of analytes and parameters to be monitored and a description of intended sampling points;
- Sampling methods and procedures;
- Field screening methods;
- Analysis Methods;
- Sample handling, preservation and storage; and
- Analytical QA/QC.

5.2 DATA QUALITY OBJECTIVES (DQO)

In accordance with the US EPA (2006) *Data Quality Assessment* and the DEC (2006) *Guidelines for the NSW Site Auditor Scheme*, the process of developing Data Quality Objectives (DQO) was used by the EI assessment team to determine the appropriate level of data quality needed for the specific data requirements of the project. The DQO process that was applied for this assessment is documented in **Table 5-1**.

Page | **37**

Table 5-1 Summary of Project Data Quality Objectives

DQO Steps (NSW DEC, 2006)	Details	Comments (changes during investigation)
1. State the Problem Summarise the contamination problem that will require new environmental data, and identify the resources	• The current site is to be demolished and redeveloped into a 9 storey building with associated two level basement car parking facility covering the majority of the site footprint of Site 1, a five storey building with associated three level basement car parking facilities across the majority of Site 2 and a seven storey building with associated four level basement car parking facilities for Site 3.	
available to resolve the problem; develop a conceptual site model	• The historical information and site inspection identified potential for contamination to be present in the site soil and/or groundwater, contributed by various potential sources. Based on the site history information collected, a preliminary conceptual site model of the site has been developed, and is present in Section 4 .	
	• The investigation sampling must provide supportive information on the environmental conditions of the site to determine the site's suitability for the proposed development.	
2. Identify the Goal of the Study (Identify the decisions) Identify the decisions that need to be made on the contamination problem	A site walkover inspection identified the site may be subjected to previous importation of fill of unknown origin for site levelling. The inspection also noted potential presence of asbestos-containing materials within the existing site structures, as well as proximity of a railway corridor may influence the quality of site soils. A review of the land titles suggested previous industrial and commercial activities as a possible source of contamination.	
and the new environmental data	Based on the objectives outlined in Section 1.4, the decisions that need to be made are:	
required to make them	Has the nature, extent and source of any soil and vapour impacts onsite been defined?	
	• What impact do the site specific, geologic and hydrogeological conditions have on the fate and transport of any impacts that may be identified?	
	 Does the level of impact coupled with the fate and transport of identified contaminants represent an unacceptable risk to identified human and/or environmental receptors on or offsite? 	
	• Does the collected data provide sufficient information to allow the selection and design of an appropriate remedial strategy, if necessary?	

Detailed Site Investigation 3-7 Regent Street, 13-17 Regent Street and 287-309 Trafalgar Street, Petersham, NSW Report No. E22913 AA_Rev0

Page | **38**

DQO Steps (NSW DEC, 2006)	Details	Comments (changes during investigation)
3. Identify Information Inputs (Identify inputs to decision) Identify the information needed to support any decision and specify which inputs require new environmental measurements	 Inputs to the decision making process include: Aerial photographs, historical Land Title records, WorkCover hazardous chemical storage records, proposed development plans, Council requirements as stipulated in Development Consent letters; Areas of concern identified during the site inspection prior to intrusive investigations; National and NSW EPA guidleines under the NSW Contaminated Land Management Act 1997; Soil samples obtained from an intrusive investigation in locations, and to depths deemed appropriate for detailed investigation purposes (or prior auger refusal); Investigation sampling to verify the presence of onsite contamination and to evaluate the potential risks to sensitive receptors; Laboratory analysis of selected soil samples will comprise contaminants of concern presented in Section 7; and At the end of the assessment, a decision must be made regarding whether soils are suitable for the proposed redevelopment, or if additional investigation or remedial works are required to make the site suitable. 	
4. Define the Boundaries of the Study Specify the spatial and temporal aspects of the environmental media that the data must represent to support decision	 Lateral – Site 1 is located between residential properties to the north, Fisher Street south, Marrickville Council Chambers east and Regent Street west. Site 2 is located between Fisher Street north, New Canterbury Road south, residential properties east and Regent Street west. Site 3 is bound by Trafalgar Street north, residential properties south, Regent Street east and commercial properties west. Vertical – From existing ground level, underlying fill and natural soil horizons; and Temporal – The results will be valid on the day samples are collected and will remain valid as long as no changes occur on site or contamination (if present) does not migrate on site or on to the site from off-site sources. 	Lateral – the extent of the study onsite was limited to accessible areas of the site due to existing building structures, infrastructure, and provision of access by site tenants.

Detailed Site Investigation 3-7 Regent Street, 13-17 Regent Street and 287-309 Trafalgar Street, Petersham, NSW Report No. E22913 AA_Rev0

Page | **39**

DQO Steps (NSW DEC, 2006)	Details	Comments (changes during investigation)
5. Develop the Analytic Approach (Develop a decision rule) To define the parameter of interest, specify the action level, and integrate previous DQO outputs into a single statement that describes a logical basis for choosing from alternative actions	 The decision rules for the investigation were: If the concentrations of contaminants in the soils data exceed the land use criteria; then assess the need to further investigate the extent of impacts onsite. Decision criteria for QA/QC measures are defined by the Data Quality Indicators (DQI) in Table 5-2. 	
6. Specify Performance or Acceptance Criteria (Specify limits on decision errors) Specify the decision-maker's acceptable limits on decision errors, which are used to establish performance goals for limiting uncertainties in the data	 Specific limits for this project are to be in accordance with the National and NSW EPA guidance, and appropriate indicators of data quality and standard procedures for field sampling and handling. This should include the following points to quantify tolerable limits: The null hypothesis for the investigation is that: The 95% Upper Confidence Limits (UCL) of the mean for contaminants of concern exceed relevant residential, recreational land use criteria across the site. Sampling on a 22 m grid will allow detection of a circular hotspot with a nominal diameter of 26 m with 95% certainty; The acceptance of the site will be based on the probability that The 95% UCL of the mean of the data will satisfy the given site criteria. Therefore a limit on the decision error will be 5% that a conclusive statement may be incorrect; and The standard deviation of the results is less than 50% of the relevant remediation acceptance criterion; and Soil concentrations for chemicals of concern that are below investigation criteria made or approved by the NSW EPA will be treated as acceptable and indicative of suitability for the proposed land use(s); and 	 Due to the existing site structures on-site, a systematic sampling pattern was not achieved in this DSI. As a result, the reliability of detecting a circular hotspot of diameter 26 m could not be achieved with certainty using the adopted sampling pattern. The DSI primarily adopted a targeted sampling pattern, focusing on identified areas of environmental concern. As such, individual soil data points were assessed solely against adopted criteria.

Detailed Site Investigation 3-7 Regent Street, 13-17 Regent Street and 287-309 Trafalgar Street, Petersham, NSW Report No. E22913 AA_Rev0

Page | **40**

DQO Steps (NSW DEC, 2006)	Details	Comments (changes during investigation)
7. Develop the Detailed Plan for Obtaining Data (Optimise the design for obtaining data) Identify the most resource-effective sampling and analysis design for general data that are expected to satisfy the DQOs	 The site area of 9,800 m² required a minimum of 21 sampling points according to EPA (1995); Soil sampling locations were set using a systematic sampling pattern across the accessible areas of the site with allowance for structural obstacles; An upper soil profile sample (or soil extracted immediately beneath the concrete hardstand / pavement) will be collected at each borehole location and tested for chemicals of concern, to assess the conditions of fill layer, and impacts from activities above ground. Further sampling would also be carried out at deeper soil layers. These samples would be selected for testing based on field observations (including visual and olfactory evidence, as well as soil vapour screening in headspace samples) whilst giving consideration to characterise the subsurface stratigraphy; and Written instructions will be issued to guide field personnel in the required fieldwork activities. 	

5.3 DATA QUALITY INDICATORS

To ensure that the investigation data collected was of an acceptable quality, the investigation data set was assessed against the data quality indicators (DQI) outlined in **Table 5-2**, which related to both field and laboratory-based procedures. The assessment of data quality is discussed in **Section 6**.

Data Quality Objective	Data Quality Indicator		
Precision – A quantitative measure of the variability (or reproducibility) of data	Data precision would be assessed by reviewing the performance of blind field duplicate sample sets, through calculation of relative percentage differences (RPD). Data precision would be deemed acceptable if RPDs are found to be less than 30%. RPDs that exceed this range may be considered acceptable where:		
	 Results are less than 10 times the limits of reporting (LOR); 		
	 Results are less than 20 times the LOR and the RPD is less than 50%; or 		
	Heterogeneous materials or volatile compounds are encountered.		
Accuracy – A	Data accuracy would be assessed through the analysis of:		
quantitative measure of the closeness of	 Method blanks, which are analysed for the analytes targeted in the primary samples; 		
reported data to the	 Matrix spike and matrix spike duplicate sample sets; 		
"true" value	Laboratory control samples; and		
	Calibration of instruments against known standards.		
Representativeness – The confidence	To ensure the data produced by the laboratory is representative of conditions encountered in the field, the laboratory would carry out the following:		
(expressed qualitatively) that data are	 Blank samples will be run in parallel with field samples to confirm there are no unacceptable instances of laboratory artefacts; 		
representative of each medium present onsite	 Review of relative percentage differences (RPD) values for field and laboratory duplicates to provide an indication that the samples are generally homogeneous, with no unacceptable instances of significant sample matrix heterogeneities; and 		
	 The appropriateness of collection methodologies, handling, storage and preservation techniques will be assessed to ensure/confirm there was minimal opportunity for sample interference or degradation (i.e. volatile loss during transport due to incorrect preservation / transport methods). 		
Completeness – A measure of the amount	Analytical data sets acquired during the assessment will be evaluated as complete, upon confirmation that:		
of useable data from a	 Standard operating procedures (SOPs) for sampling protocols were adhered to; and 		
data collection activity	• Copies of all COC documentation are presented, reviewed and found to be properly completed.		
	It can therefore be considered whether the proportion of "useable data" generated in the data collection activities is sufficient for the purposes of the land use assessment.		
Comparability – The confidence (expressed) qualitatively) that data	Given that a reported data set can comprise several data sets from separate sampling episodes, issues of comparability between data sets are reduced through adherence to SOPs and regulator- endorsed or published guidelines and standards on each data gathering activity.		
may be considered to be equivalent for each sampling and analytical event.	In additions the data will be collected by experienced samplers and NATA-accredited laboratory methodologies will be employed in all laboratory testing programs.		

Table 5-2Data Quality Indicators

5.4 SAMPLING RATIONALE

With reference to the preliminary CSM described in **Section 4**, soil investigation works were planned in accordance with the following rationale:

- Sampling fill and natural soils from twenty one (21) test bore locations located systematically across the site using a grid-based sampling pattern with allowance for structural obstacles to characterise in-situ soils;
- Sampling groundwater during a single groundwater monitoring event (GME) at seven newly installed groundwater monitoring wells on-site to assess potential groundwater contamination; and
- Laboratory analysis of representative soil samples for the identified chemicals of concern.

5.5 INVESTIGATION CONSTRAINTS

With regard to the scope of works proposed for performing intrusive site investigations, the following investigation constraints were encountered:

- Access to internal areas of the RSL Club was unavailable due to limited drilling rig head clearance, limited space within the buildings, and current operations being performed with the site building.
- Access to internal areas of building structures at 295 309 Trafalgar Street were limited due to limited space within buildings and limited rig head clearance.
- Access to internal areas of the basement carpark situated at Regent Street across the RSL Club and the carpark situated at the north eastern side of the RSL Club were limited, due to limited head clearance, drainage, communications, power services and connections and accessibility to the area.

5.6 ASSESSMENT CRITERIA

The assessment criteria proposed for this project are outlined in **Table 5-2**. These were selected from available published guidelines that are endorsed by national or state regulatory authorities, with due consideration of the exposure scenario that is expected for various parts of the site, the likely exposure pathways and the identified potential receptors.

Environmental Media	Adopted Guidelines	Rationale
Soil	NEPM, 2013 Soil HILs, EILs, HSLs, ESLs & Management Limits for TPHs	Soil Health-based Investigation Levels (HILs) On regards Based on the proposed site configuration and proposed high density residential land use:
		Site 1, Site 2 and Site 3 would be assessed against the NEPM 2013 criteria for HIL-B thresholds for residential sites with minimal opportunities for soil access.
		Ecological Investigation Levels (EILs) Based on the proposed site configuration and proposed land use: The north eastern, western and southern boundary of Site 1 and the western and south eastern boundary of Site 2 (soil location samples BH9M, BH11M, BH12M, BH25, and BH27) would also be assessed against the NEPM 2013 EILs for arsenic, copper, chromium (III), nickel, lead, zinc, DDT and naphthalene, which have been derived for protection of terrestrial ecosystems. Derived EIL criteria are presented in Table 5-3.
		Soil Health-based Screening Levels (HSLs) The NEPM 2013 Soil HSL-A&B thresholds for low-high density residential sites for vapour intrusion would be applied to assess for potential human health impacts from residual vapours resulting from petroleum, BTEX & naphthalene.
		Ecological Screening Levels (ESLs) North eastern, western and southern boundary of Site 1, western and south eastern boundary of Site 2 (soil location samples BH9M, BH11M, BH12M, BH25, BH26 and BH27) to be assessed against the NEPM 2013 ESLs for selected petroleum hydrocarbons & TRH fractions for protection of terrestrial
		ecosystems. Management Limits for Petroleum Hydrocarbons
		Should the ESLs and HSLs be exceeded for petroleum hydrocarbons, soil samples from would also assessed against the NEPM 2013 <i>Management Limits</i> for the TRH fractions F1 – F4 to assess propensity for phase-separated hydrocarbons (PSH), fire and explosive hazards & adverse effects on buried infrastructure.
Groundwater	NEPM, 2013 GILs for	Groundwater Investigation Levels (GILs) for Marine Waters
	Fresh Waters and Marine Waters ANZECC 2000 Trigger Values NEPM, 2013 Groundwater HSLs for Vapour Intrusion	NEPM 2013 provides GILs for typical, slightly-moderately disturbed aquatic ecosystems, which are based on the ANZECC & ARMCANZ 2000 Trigger Values (TVs) for the 95% level of protection of aquatic ecosystems; however, the 99% TVs were applied for the bio-accumulative metals <i>cadmium</i> and <i>mercury</i> . The nearest potential surface water receptor in relation to the site was identified as Parramatta River which ultimately discharges to Sydney Harbour which is identified as a Marine Waters system, GILs for Marine Waters are adopted in this limited investigation to assess groundwater quality.
		Due to the ANZECC (2000) criteria for TRH being below the laboratory limit of reporting, the PQL for each TRH fraction was adopted as the GIL for aquatic ecosystems, in accordance with the procedure described in DEC (2007) <i>Guidelines for the Assessment and Management of Groundwater</i> <i>Contamination.</i>
		Samples are assessed against Region 9 SSL for VOC's. Region 9 SSL are screening levels for tap water set by USEPA drinking-water standards that

Table 5-3 Adopted Investigation Levels for Soil and Groundwater

Environmental Media	Adopted Guidelines	Rationale
		set the maximum permissible level of contamination in water that is delivered to any user of a public water system (U.S.EPA, 2006)
		Health-based Screening Levels (HSLs)
		The NEPM 2013 groundwater HSLs for vapour intrusion are used to assess potential human health impacts from residual vapours resulting from petroleum, BTEX and naphthalene contamination. In the absence of land use details on each level of the proposed development, the <i>HSL A & B</i> thresholds for residential sites are applied as a conservative approach.

Table 5-4 Adopted ACL and ABC Values for EIL Derivation

Metal	EIL Assumptions ²	EIL (mg/kg)
Arsenic	Generic EIL (urban residential / public open space)	100
Zinc	ABC - 15 mg/kg (assumes an old NSW high traffic suburb) ACL - 180 mg/kg (assumes pH=5.5 and CEC=5 in an urban residential / public open space)	195
Copper	ABC - 30 mg/kg (assumes an old NSW high traffic suburb) ACL - 130 mg/kg (assumes pH 5.5)	160
DDT	Generic EIL (urban residential / public open space)	180
Lead	ABC – 160 mg/kg (assumes an old NSW high traffic suburb) ACL – 1,100 mg/kg (Generic ACL for urban residential / public open space)	1,260
Naphthalene	Generic EIL (urban residential / public open space)	170
Nickel	ABC - 5 mg/kg (assumes an old NSW high traffic suburb) ACL - 30 mg/kg (assumes a CEC of 5 for urban residential / public open space)	35
Chromium (III)	ABC – 15 mg/kg (assumes an old NSW high traffic suburb) ACL – 190 mg/kg (assumes a clay content of > 10% for urban residential / public open space)	205

Notes:

ACL - added contaminant limit; ACLs for urban residential and public open space were used for this project

ABC - ambient background concentration

The most stringent ACL values were adopted for Chromium (III), Copper, Lead, Nickel and Zinc, as site soil physiochemical properties (i.e. pH, CEC and clay content) were not tested (Ref. NEPM 2013 Schedule B1, Tables 1B(1), 1B(2), 1B(3) and 1B(4) *Soil-specific added contaminant limits*)

¹ Assumed values are based on NEPM 2013 Schedule B5(c) *Guideline on Ecological Investigation Levels for Arsenic, Chromium (III), Copper, DDT, Lead, Naphthalene, Nickel & Zinc*

² EIL = ABC + ACL, unless Generic EIL is applicable

For the purposes of this investigation, the adopted soil assessment criteria are referred to as the Soil Investigation Levels (SILs). SILs are presented alongside the analytical results in the corresponding summary tables, which are discussed in **Section 7**.

5.7 SOIL INVESTIGATIONS

The soil investigations conducted at the site are described in Table 5-3. Test bore locations are illustrated in Figure 2.

Table 5-5	Summary of Soil Investigation Methodology

Activity/Item	Details	
Fieldwork	The site investigation was conducted on the 4, 9, 11 and 17 ^I March 2016. A total of 21 boreholes (BH1 to BH4 and BH6 to BH7, BH9 to BH11, BH15 and BH16 to BH18 and BH20 to BH25 and BH 27) were drilled and sampled. Upon completion of the drilling, seven groundwater monitoring well were installed at BH1M, BH4M, BH6M, BH9M, BH10M, BH11M and BH15M.	
Drilling Method & Investigation Depth	BH1 to BH7 and BH9 to BH11 and BH15 were drilled using a Hanjin D&B drill, BH16, BH17 and BH22 were hand augered and BH18 to BH21 and BH23 to BH27 were drilled using a Dando Dual Mast Terrier fitted with solid flight augers. Final bore depths ranged between 1.0 mBGL and 17.15 mBGL.	
Soil Logging	Drilled soils were classified in the field with respect to lithological characteristics and evaluated on a qualitative basis for odour and visual signs of contamination. Soil classifications and descriptions were based on Unified Soil Classification System (USCS) and Australian Standard (AS) 4482.1-2005. Bore logs are presented in Appendix C .	
Field Observations (including visual and olfactory signs of potential contamination)	Field observations made during the soil investigation are recorded on the borehole logs. A summary of the observations is provided in Section 7 .	
Soil Sampling	 Soil samples were collected using a dry grab method (unused, dedicated nitrile gloves) & placed into laboratory-supplied, acid-washed, solvent-rinsed glass jars; 	
	• Blind field duplicates were separated from the primary samples and placed into glass jars;	
	A small amount of duplicate was collected from each soil samples and placed into zip-lock bag for Photo-ionisation Detector (PID) screening; and	
	 A small amount of duplicate was separated from all fill samples and placed into a zip-lock bag for asbestos analysis. 	
Decontamination Procedures	Drilling Equipment - The hand auger was decontaminated between sampling locations with potable water and decon until the auger was free of all residual materials.	
	Sampling Equipment - Samples were collected via hand with a new pair of dedicated nitrile gloves for each sample and placed into laboratory prepared and pre-labelled sample jars.	
Sample Preservation	Samples were stored in a refrigerated (ice-filled) chest, whilst on-site and in transit to the laboratory. All samples were submitted and analysed within the required holding period, as documented in laboratory reports discussed in a later section.	
Management of Soil Cuttings	Soil cuttings were used as backfill for completed boreholes.	
Quality Control & Laboratory Analysis	A number of soil samples were submitted for analysis of previously-identified COPC by SGS Laboratories (SGS). QA/QC testing comprised intra-laboratory duplicates ('field duplicates') tested blind by SGS and an inter-laboratory field duplicate tested blind by Envirolab Services (Envirolab). All samples were transported under strict Chain-of-Custody (COC) conditions and COC certificates and laboratory sample receipt documentation were provided to EI for confirmation purposes, as discussed in Section 5 .	
Soil Vapour Screening	Screening for potential VOCs in collected soil samples was conducted using a PID; fitted with a 10.6 eV lamp at sampling location during the course of the fieldwork.	

5.8 **GROUNDWATER INVESTIGATIONS**

The groundwater investigations conducted at the site are described in **Table 5-4**. The location of the monitoring wells is illustrated in **Figure 2**.

Activity/Item	Details		
Fieldwork	The groundwater monitoring wells (BH1M, BH4M, BH6M, BH9M, BH10M, BH11M and BH15M) were installed and developed on the 4, 9, 11 and 17 March 2016. Water level gauging, well purging, field testing and groundwater sampling were conducted on 25 and 29 March 2016 by an EI environmental engineer.		
Well Construction	The groundwater monitoring wells were installed at varying dephs of 6 to 15.3 mBGL. Well construction details are tabulated in Table 7-4 and documented in the bore logs presented in Appendix F.		
	 Well construction was in general accordance with the standards described in NUDLC (2012) and comprised the following: 50 mm (internal diameter), Class 18 uPVC, threaded, machine-slotted screen and solid casing; Base and top of each well was sealed with a uPVC cap; 		
	 Annular, graded sand filter was used to backfill the well annulus from the bottom to minimum 500 mm above the top of screen interval; Minimum 500 mm thick granular bentonite was applied above annular filter in order to seal the screened interval; 		
	 Drill cuttings were used to backfill the bore annulus to just below ground level; and Surface completion comprised a steel road box cover finished flush with the concrete slab level. 		
Well Development	Well development was conducted after well installation. This involved agitation within the full length of the water column using a HDPE, disposable bailer, followed by removal of groundwater by the same bailer. Bailers were replaced between groundwater wells. Groundwater removal was continued until the monitoring wells were purged dry, or until further decrease in groundwater turbidity was not observed.		
Well Gauging	All monitoring wells were gauged for standing water level (SWL, depth from ground level to groundwater) prior to well purging at the commencement of the GME. The gauging was conducter with an oil-water interface probe to assess for potential presence of phase-separated hydrocarbor (PSH). The measured SWLs are shown in Table 7-4 .		
Well Purging, Field Testing and Groundwater Sampling	Monitoring wells were purged and sampled using a bailer. Field measurement of water quality parameters was conducted on groundwater with a water quality meter (Hanna Multi Parameter 9829). Groundwater parameters tested in the field were Dissolved Oxygen (DO), Electrical Conductivity (EC), Redox, Temperature and pH. The measured parameters were recorded onto a field data sheet, along with the purged water volume at the time of measurement.		
	Total water volume purged and stabilised groundwater parameters at each groundwater monitoring well are summarised in Table 7-4 .		
Sample Preservation	The following sample containers supplied by the laboratory were used to store groundwater samples:		
	One, amber glass, acid-washed and solvent-rinsed bottle;		
	 Two, 40 ml amber glass vials, pre-preserved with dilute hydrochloric acid, Teflon-sealed; and 		

Table 5-6	Summary of Groundwater	Investigation Methodology
-----------	------------------------	---------------------------

Activity/Item	Details
	• One, 250 mL, HDPE bottle, pre-preserved with dilute nitric acid (1 mL). Samples collected for heavy metal analysis were field-filtered using 0.45 µm pore-size filters. All containers were filled with sample to the brim then capped and stored in ice-filled chests, until completion of the fieldwork and during sample transit to the laboratory.
Quality Control & Laboratory Analysis	All groundwater samples were submitted for analysis of previously-identified chemicals of concern by SGS Laboratories (SGS). QA/QC testing comprised testing of rinsate blank and trip blank samples. All samples were transported under strict Chain-of-Custody (COC) conditions. COC certificates and laboratory sample receipt documentation were provided to EI for confirmation purposes.
Sample Transport	After sampling, refrigerated sample chests were transported to SGS Australia Pty Ltd using strict Chain-of-Custody (COC) procedures. A Sample Receipt Advice (SRA) was provided by the laboratory to document sample condition upon receipt. Copies of SRA and COC certificates are presented in Appendix H .

6. DATA QUALITY ASSESSMENT

The assessment of data quality is defined as the scientific and statistical evaluation of environmental data to determine if these data meet the objectives of the project (Ref. US EPA, 2006). Data quality assessment includes an evaluation of the compliance of the field sampling and laboratory analytical procedures and an assessment of the accuracy and precision of these data from the laboratory quality control measurements obtained.

The data quality assessment process for this assessment included a review of analytical procedures to confirm compliance with established laboratory protocols and an assessment of the accuracy and precision of analytical data from a range of quality control measurements. The QC measures generated from the field sampling and analytical program were as follows:

- Suitable records of fieldwork observations including borehole logs;
- Relevant and appropriate sampling plan (density, type, and location);
- Use of approved and appropriate sampling methods;
- Preservation and storage of samples upon collection and during transport to the laboratory;
- Complete field and analytical laboratory sample COC procedures and documentation;
- Sample holding times within acceptable limits;
- Use of appropriate analytical procedures and NATA-accredited laboratories; and
- Required LOR (to allow for comparison with adopted IL);
- Frequency of conducting quality control measurements;
- Laboratory blanks;
- Field duplicates;
- Laboratory duplicates;
- Matrix spike/matrix spike duplicates (MS/MSDs);
- Surrogates (or System Monitoring Compounds);
- Analytical results for replicated samples, including field and laboratory duplicates and inter-laboratory duplicates, expressed as Relative Percentage Difference (RPD); and
- Checking for the occurrence of apparently unusual or anomalous results, e.g. laboratory results that appear to be inconsistent with field observations or measurements.

The findings of the data quality assessment in relation to the soil investigations at the site are discussed in detail in **Appendix J**. QA/QC policies and DQOs are presented in **Appendix K**.

On the basis of the analytical data validation procedure employed the overall quality of the soil analytical data produced for the site were considered to be of an acceptable standard for interpretive use.

7. **RESULTS**

7.1 SOIL INVESTIGATION RESULTS

7.1.1 Site Geology and Subsurface Conditions

The general site geology encountered during the drilling of the soil investigation boreholes, installation of monitoring wells may be described as a layer of anthropogenic filling overlying residual soils. The geological information obtained during the investigation is summarised in Table 7-1 to Table 7-3 and borehole logs from these works are presented in Appendix C.

Table 7-1	Generalised Subsurface Profile Site 1

Layer	er Description		Depth to top & bottom of layer (m BGL)		
		Тор	Bottom		
-	CONCRETE	0	0.08		
Fill	Sandy CLAY; low plasticity, with gravel, dark brown, gravel is angular, subangular, moist, no odour.	0.08	0.6		
	Silty CLAY; low to medium plasticity, dark grey, moist, no odour.	0.08	0.8		
Residual	Silty CLAY; low to medium plasticity, brown / dark grey	0.6 - 0.8	1.0 - 1.1		

Notes: + Termination depth of borehole

Table 7-2 Generalised Subsurface Profile Site 2

Layer	Description	Depth to top & bottom of layer (m BGL)		
		Тор	Bottom	
-	CONCRETE	0	0.03 - 0.12	
Fill	Silty SAND; fine grained, brown to light brown, moist no odour.	0.03 – 0.12	0.4 – 1.89	
	Gravelly CLAY; low plasticity, brown mottled dark grey	0.4	1.0	
	Silty Clay; low plasticity, dark brown, moist	0.5 – 1.0	1.3 - 1.89	
Residual	Silty Clay medium to high plasticity brown mottled red moist	1.89	2.1	
SHALE	Inferred distinctly weathered, grey / brown	0.12 - 2.1	6 - 16	

Notes: + Termination depth of borehole

Layer	Description	Depth to top a BGL)	& bottom of layer (m
		Тор	Bottom
-	CONCRETE/ TOPSOIL	0	0.05 - 0.08
Fill	Gravelly SAND; fine to medium grained, dark brown to brown, no odour, trace of subangular to angular gravel, with rootlets present.	0.05 – 0.1	0.05 – 0.5
	Sandy CLAY low to medium plasticity, dark brown / dark grey with fine to medium grained sand and fine to medium gravel.	0.05 - 0.5	0.75 - 1.5
	Gravelly CLAY, low plasticity, dark grey / dark brown, with fine to medium grained sand	0.08	0.5
	Silty CLAY; low plasticity, dark grey / dark brown / red – brown, with fine to medium grained sand and fine to medium gravel.	0.5	1.5
Residual	Silty CLAY; medium to high plasticity, grey mottled red / brown, dark grey mottled red,	1.5 – 2.3	2.2 - 3.4
SHALE	Inferred extremely weathered, extremely low strength, red / brown / grey,	2.2 - 3.4	15.3 – 17+

Table 7-3 Generalised Subsurface Profile Site 3

Notes: + Termination depth of borehole

7.1.2 Field Observations and PID Results

Soil samples were obtained from the test bores at various depths ranging between 0.1 m to 3.4 m BGL. All examined soil samples were evaluated on a qualitative basis for odour and visual signs of contamination (e.g. hydrocarbon odours, oil staining, petrochemical filming, asbestos fragments, ash, charcoal) and the following observations were noted:

- Visual or olfactory evidence of hydrocarbon impacts were not noted at borehole locations investigated during this assessment. A strong hydrocarbon odour was detected on the sourrounding area of the above ground Diesel storage tank situated at the basement of the RSL entry via Regent Street;
- Some minor brick and plastic fragments were observed to be present in the fill material at test bore BH20, BH22 and BH24 sampling locations situated at Site 3;
- Potential asbestos containing material was not noted in examined fill soils; and
- Elevated VOC concentrations field-screened using a portable PID fitted with a 10.9 eV lamp were reported between 41.2 ppm and 80 pmm at BH16 and BH17 (basement Site 1), BH21 (adjacent to USTs at Site 3) and BH23 (parking at north eastern side of Site 3). Readings from the other collected soil samples were reported between 0.0 ppm and 28 ppm. The PID results are shown in the borehole logs (Appendix F).

7.2 GROUNDWATER INVESTIGATION RESULTS

7.2.1 Monitoring Well Construction

Seven groundwater monitoring well was installed at BH1M, BH4M, BH6M, BH9M, BH10M, BH11M and BH15M upon completion of drilling at that location. Construction details are discussed in Table 7-4 whilst graphical representation of each monitoring well is shown in the borehole logs included as **Appendix F**.

Well ID	Site	Well Depth (mBGL)	Screen Interval (mBGL)	Lithology Screened
BH1M	3	13.9	7.9 - 13.9	Shale
BH4M	3	15.3	9.3 - 15.3	Shale
BH6M	3	9	6 - 9	Shale
BH9M	2	9	6 - 9	Shale
BH10M	2	6	3 - 6	Shale
BH11M	2	9	6 - 9	Shale
BH15M	3	12.4	6.4 - 12.4	Shale

Table 7-4	Monitoring Well Construction Details
-----------	--------------------------------------

Notes:

mBGL - Metres below ground level.

7.2.2 Field Observations and Water Test Results

A GME was conducted on 25 March 2016. Standing water levels (SWL) were measured within each groundwater monitoring wells prior to well purging. SWL, well purge volumes prior to sample collection, and field test results of groundwater quality parameters at each monitoring well location were recorded onto field data sheet. A summary of the recorded field data is presented in **Table 7-5** with copies of completed field data sheets included in **Appendix G**.

	0.00.000							
Well ID	SWL (mBTOC)	SWL (mAHD)	DO* (ppm)	Field pH	Field EC (µS/cm)	Temp (ºC)	Redox (mV)	Odours / Turbidity
BH1M	1.8	31.2	2.79	6.82	549	22.88	336.9	No turbidity, no sheen no odour.
BH4M	3.7	30.8	3.28	6.21	627	24.48	349.3	No turbidity, no sheen no odour.

Table 7-5 Groundwater Field Data

Well ID	SWL (mBTOC)	SWL (mAHD)	DO* (ppm)	Field pH	Field EC (µS/cm)	Temp (°C)	Redox (mV)	Odours / Turbidity
BH6M	3.2	33.3	4.10	5.51	1481	22.13	352.1	Light brown, low turbidity, no sheen, no odour.
BH9M	3.2	36.2	1.68	6.29	804	24.96	313.3	Dark brown, high turbidity, no sheen no odour.
BH10M	2.0	41	2.42	5.39	2004	23.30	287.5	Light brown, low turbidity, no sheen, no odour.
BH11M	4.0	39.5	2.87	6.33	641	23.15	323.6	Light yellow, low turbidity, no sheen, no odour.
BH15M	2.1	29.4	2.73	6.30	1169	22.67	365.6	No turbidity, no sheen no odour.

Notes:

SWL – Standing Water Levels reduced to metres above the Australian Height Datum. WLs were calculated as WL = Reduce Ground Level – (SWL + Stickup). DO – Dissolved Oxygen in units of parts per million.

EC - Groundwater electrical conductivity as measured onsite using portable EC meter.

 μ S/cm – Micro Siemens per centimetre (EC units).

Redox – Oxidation and reduction potential. Redox has been adjusted relative to standard hydrogen electrode (by adding 205 mV to field reading, as advised by the test equipment manufacturer). Refer to **Appendix G** for field redox readings pre-adjustment. mV – Millivolts.

All groundwater parameters (pH, Redox, EC and DO) were tested on site.

The field pH data indicated that the groundwater pH between slightly acidic and neutral. Using a conversation factor of 0.64 the average Electrical Conductivity (EC) measurements indicated that in terms of potable quality groundwater is fair, and in terms of water salinity groundwater is brackish. (NHMRC, NRMMC 2011). Redox measurement was reported at 288 to 367 mV, suggesting groundwater encountered in the GME was an oxidising environment.

7.3 LABORATORY ANALYTICAL RESULTS

7.3.1 Soil Analytical Results

A summary of laboratory results showing test sample quantities, minimum/maximum analyte concentrations and samples found to exceed the SILs, is presented in **Table 7-6**. More detailed tabulations of results showing the tested concentrations for individual samples alongside the adopted soil criteria are presented in **Table T1** at the end of this report. Completed documentation used to track soil sample movements and laboratory receipt (i.e. COC and SRA forms) are copied in **Appendix H** and all laboratory analytical reports for tested soil samples are presented in **Appendix I**.

No. of Primary Samples	Analyte	Min. Conc. (mg/kg)	Max. Conc. (mg/kg)	Sample Locations Exceeding Investigation Levels *
Heavy Metals				
33	Arsenic	<3	18	None
33	Cadmium	<0.3	1.3	None
33	Chromium (Total)	0.7	39	None
33	Copper	0.7	180	None
33	Lead	1	830	None
33	Nickel	<0.5	41	Samples exceeding EILs: BH9M_0.2-0.4 (41 mg/kg) (Site 3)
33	Zinc	<0.5	690	Samples exceeding EILs: BH11M_0.1-0.2 (260 mg/kg) (Site 2), BH12_0.2- 0.4 (440 mg/kg) (Site 2)
33	Mercury	<0.01	0.59	None
TRHs (including B)	ſEX)			
33	TRH C ₆ -C ₁₀ minus BTEX (F1)	<25	120	None
33	TRH >C10-C16 (F2) minus Naphthalene	<25	120	None
33	TRH >C ₁₆ -C ₃₄ (F3)	<90	3000	None
33	TRH >C ₃₄ -C ₄₀ (F4)	<120	650	None
33	Benzene	<0.1	<0.1	None
33	Toluene	<0.1	<0.1	None
33	Ethylbenzene	<0.1	<0.1	None
33	Total Xylenes	<0.3	<0.3	None
PAHs				
33	Benzo(a)pyrene	<0.1	40	Samples exceeding ESLs: BH11M_0.1-0.2 (1.9 mg/kg) (Site 2), BH12_0.2- 0.4(7.5 mg/kg) (Site 2) and BH25 0.3-0.4 (2.4 mg/kg) (Site 2)
33	Carcinogenic PAHs	<0.3	110	Samples exceeding HIL B: BH15M_0.2-0.4 (58 mg/kg) (Site 3), BH3_0.2- 0.4 (110 mg/kg) (Site 3), BH3_0.8-1.0 (10 mg/kg) (Site 3), BH12_0.2-0.4 (11 mg/kg) (Site

Table 7-6 Summary of Soil Analytical Results

No. of Primary Samples	Analyte	Min. Conc. (mg/kg)	Max. Conc. (mg/kg)	Sample Locations Exceeding Investigation Levels *
				2)
33	Naphthalene	<0.1	7.1	Samples exceeding HIL B: BH3_0.2-0.4 (7.1 mg/kg) (Site 3)
33	Total PAHs	<0.8	1200	Samples exceeding HIL B: BH15M_0.2-0.4 (470 mg/kg) (Site 3), BH3_0.2- 0.4 (1200 mg/kg) (Site 3)
Asbestos				
33	Asbestos	ND	ND	Asbestos detected at BH3_0.2-0.4 (<0.01%) (Site 3)
OCPs				
17	Total OCPs	ND	ND	None
OPPs				
17	Total OPPs	ND	ND	None
PCBs				
17	Total PCBs	ND	ND	None

7.3.2 Groundwater Analytical Results

A summary of laboratory results showing test sample quantities and samples found to exceed the GILs, is presented in **Table 7-7**. Laboratory analytical results for groundwater samples are summarised in **Tables T4**, which also include the adopted GILs. Completed documentation used to track groundwater sample movements and laboratory receipt (COC and SRA forms) are copied in **Appendix H**. Copies of the laboratory analytical reports are attached in **Appendix I**.

No. of primary samples	Analyte	Min. Conc. (µg/L)	Max. Conc. (µg/L)	Sample location exceeding GIL and reported concentration
Heavy Metal				
7	Arsenic	<1	3	None
7	Cadmium	<0.1	0.5	None
7	Chromium (Total)	<1	<1	None
7	Copper	<1	5	Samples exceeding GILs: BH1M (3 ug/L) (Site 3), BH4M (5 ug/L) (Site 3), BH6M(2 ug/L) (Site 3), BH11M (4 ug/L) (Site 2), BH15m(2 ug/L) (Site 3).
7	Lead	<1	<1	None
7	Mercury	<0.0001	<0.0001	None

Table 7-7 Summary of Groundwater Analytical Results

No. of primary samples	Analyte	Min. Conc. (µg/L)	Max. Conc. (µg/L)	Sample location exceeding GIL and reported concentration
7	Nickel	2	13	Samples exceeding GILs: BH1M (9 ug/L) (Site 3), BH6M (13 ug/L) (Site 3), BH11M (9 ug/L) (Site 2).
7	Zinc	12	330	Samples exceeding GILs: BH1M (230 ug/L) (Site 3), BH4M (190 ug/L) (Site 3), BH6M (68 ug/L) (Site 3), BH9M (12ug/L) (Site 2), BH10M (12 ug/L) (Site 2), BH11M (35 ug/L) (Site 2), BH15M (330 ug/L) (Site 3).
Hydrocarbons				
7	F1 TRH (C ₆ -C ₁₀ minus BTEX)	<50	150	Samples exceeding GILs: BH10M (150 ug/L) (Site 2),
7	F2 TRH (>C10- C16 minus naphthalene)	<60	140	Samples exceeding GILs: BH9M (140 ug/L) (Site 2) and BH10M (110 ug/L) (Site 2)
7	F3 TRH (>C ₁₆ - C ₃₄)	<500	<500	None
7	F4 TRH (> ₃₄ - C ₄₀)	<500	<500	None
7	Benzene	<0.5	<0.5	None
7	Toluene	<0.5	<0.5	None
7	Ethyl benzene	<0.5	<0.5	None
7	Xylenes	<1.5	5.5	None
7	Naphthalene	<0.5	<0.5	None
VOCs				
7	Cloroform	<0.5	42	Samples exceeding Region 9 SSLs: BH1M (42 ug/L) (Site 3) and BH15M (29 ug/L) (Site 3)
7	Other VOCs	<0.5	8.5	None

¹ Zinc value derived form duplicate sample GWQD1.

8. SITE CHARACTERISATION

8.1 SOIL

HEAVY METALS

Analytical results for heavy metals in excess of the adopted health-based criterion (HIL-B) were not reported in any of the tested samples.

Elevated concentration of nickel in excess of the EILs of 35 mg/kg was reported in location BH9M_0.2-0.3 (41 mg/kg), and of Zinc in excess of the EILs of 255 mg/kg in sample locations BH11M_0.1-0.2 (260 mg/kg) and BH12_0.2-0.4 (440 mg/kg). On review of development plans for the site, deep soils area will be retained and utilised for landscaping purposes. vertical and horizontal delineation of contamination requires verification.

TOTAL PAHS IN SOIL

Elevated concentration of total PAHs in excess of the adopted health-based criterion (HIL-B) of 470 mg/kg were reported in samples BH15M_0.2-0.4 (470 mg/kg) to the east of the identified USTs and BH3_0.2-0.4 (1200 mg/kg) situated at the south western boundary of the carpark at Site 3. Results of the tested natural material underlying total PAHs impacted soils at these locations were reported below the adopted criteria indicating that PAHs contamination had not leached to the natural material.

CARCINOGENIC PAHS IN SOIL

Elevated concentration of Carcinogenic PAHs in excess of the adopted health-based criterion (HIL-B) of 4 mg/kg were reported in samples BH15M_0.2-0.4 (58 mg/kg), BH3_0.2-0.4 (110 mg/kg), BH3_0.8-1.0 (10 mg/kg), BH12_0.2-0.4 (11 mg/kg). As discussed above BH15 is situated in close proximity to the identified USTs and BH3 on the south western boundary of the carpark of Site 3. BH12 is situated at the north eastern boundary of the carpark at site 2.

Results of the tested natural material underlying carcinogenic PAHs impacted soils at location BH15M_1.8-2 (58 mg/kg). And BH12_1.3-1.5 (11 mg/kg) were reported below the adopted criteria indicating that Carcinogenic PAHs had not leached to the natural material at these locations.

NAPHTHALENE

Elevated concentration of Naphthalene in excess of the adopted health-based criterion (HIL-B) of 5 mg/kg was reported in sample BH3_0.2-0.4 (7.1 mg/kg). Results of the tested natural material underlying naphthalene impacted soils at this location was reported below the adopted criteria indicating that naphthalene had not leached to the natural material.

BENZO(A)PYRENE

Elevated concentration of benzo(a)pyrene in excess of the ESL of 0.7 mg/kg was reported in sampling locations BH11M_0.1-0.2 (1.9 mg/kg), BH12 0.2-0.4 (7.5 mg/kg) and BH25 0.3-0.4 (2.4 mg/kg).

ASBESTOS RISKS

Asbestos was identified in laboratory examined fill soil sample BH3_0.2-0.4 collected during the field investigation at a concentration less than 0.01%. Asbestos was not identified in any of the other collected samples. As this DSI findings have showed no evidence of significant asbestos contamination, at Site 2 and and Site 3, an Unexpected Finds Protocol is considered relevant to detail an approach and methodology for the management of any unexpected asbestos contaminated soils encountered during demolition and construction works. Further asbestos testing is required for Site 1 following demolition of site structures.

8.2 GROUNDWATER CHARACTERISATION

Groundwater results reported concentration below the detection limit for PAHs and BTEX. The majority of the heavy metals were screened below the adopted criteria with the exception of zinc in all sampling locations, nickel for sampling locations BH1M and BH6M (Site 3) and BH 11 M (Site 2) and Copper in BH1M, BH4M, BH6M (Site 3), BH11M (Site 2) and BH15M (Site 3).

TRH concentrations were reported either below or slightly above LOR, expect F1 TRH and F2 TRH at sampling location BH10M and F2 TRH at sampling location BH9M situated at Site 2 which occur at concentrations exceeding the adopted GIL.

Background groundwater quality entering site 2, as inferred from monitoring well BH10M and BH11M is characterised by concentrations of TRH F1 and TRH F2 at BH10M. Concentrations of and TRH F2 were reported as well at the downgradient well BH9M situated at the north western side of the carpark.

Background groundwater quality entering site 3, as inferred from monitoring well BH6M is characterised by concentrations of copper, nickel and zinc above the GILs. Concentrations of copper, nickel and zinc above the GILs were reported in BH1M and BH15M inferred to be down-gradient.

A low concentration of chloroform was recorded in BH1M (Site 3) likely to be associated with leaking reticulated water supply infrastructure.

We note that elevated heavy metal concentrations are comparable to those present in background groundwater entering the sites, and are inferred to be representative of the regional groundwater quality. Current available data at the time of report preparation suggested groundwater flow direction to be towards the north-west see inferred contours in Figure 3. Standing water levels at the site were measured between approximately 1.8 m to 4 mBGL during the DSI. The main aquifer encountered in this DSI was located within fractured Ashfield Shale, the top of which was estimated at between 4.5 mBGL to 6 mBGL. The aquifer was considered to be a semiconfined to confined aquifer. Groundwater flow through the Ashfield Shale is documented to be influenced by the bedrock fracture system with hydraulic conductivities estimated to range between 8.6 x10-9 and 1.7x10-4 m/day (Domenico and Schwartz, 1990).

Due to onsite restrictions monitoring wells at Site 1 could not be installed therefore, the water quality has not been assessed.

8.3 UPDATED CONCEPTUAL SITE MODEL

On the basis of investigation findings the preliminary CSM discussed in **Section 4** was considered to appropriately identify contamination sources, migration mechanisms and exposure pathways, as well as potential onsite and offsite receptors. Previously known data gaps, as outlined in **Section 4.6** have largely been addressed; however, the following remaining data gaps need to be addressed in subsequent investigation works:

- The quality of site soils beneath the RSL structures (Site 1), requires further investigation. It is recommended that sampling in this area is performed following demolition of site structures and following the decommissioning of the known above ground Diesel storage tank, to minimise the potential for further contamination from this primary source.
- Delineation of the vertical and horizontal extent of zinc, carcinogenic PAHs, and benzo(a)pyrene soils, at Site 2, requires confirmation.
- The spatial extent of asbestos contamination in fill soils for Site 1 requires verification;
- Asbestos was identified in laboratory examined fill soil sample BH3_0.2-0.4 collected during the field investigation at a concentration less than 0.01%. Asbestos was not identified in any of the other collected samples. As this DSI findings have showed no evidence of significant asbestos contamination, at Site 2 and and Site 3, an Unexpected Finds Protocol is considered relevant to detail an approach and methodology for the management of any unexpected asbestos contaminated soils encountered during demolition and construction works. Further asbestos testing is required for Site 1 following demolition of site structures.
- Due to onsite restrictions monitoring wells at Site 1 could not be installed therefore, it is recommended further groundwater investigation be undertaken, including installation of an up-gradient well at Site 1 to provide data on groundwater quality. These works should be performed following demolition of site structures to allow drill rig access and following the decommissioning of the known above ground Diesel storage tank, to minimise the potential for further contamination from this primary source;
- One additional GME to be performed for all wells at site 2 and site 3 and newly installed wells at Site 1 after demolition of site structures, and decommissioning of the known underground and above ground storage tanks, to minimise the potential for further contamination from this primary source; and
- Potential presence of hazardous materials present within the existing structures requires verification.

ASBESTOS RISK

No asbestos was reported in fill or deeper soil from intrusive sampling at the two locations at Site 1 and the six locations at Site 2. Non respirable asbestos was reported in fill soils at one location (BH3_0.2-0.4) at Site 3 during assessment by intrusive sampling. No asbestos was reported in any other fill or deeper soil sampling locations at Site 3.

Due to access restictions further sampling is recommended to characterise contamination in soils at Site 1 after demolition of Site Structures, should asbestos contamination be identified, delineation of the vertical and horizontal extent of asbestos contamination if any will require confirmation.

As this DSI findings have showed no evidence of significant asbestos contamination, at Site 2 and and Site 3, an Unexpected Finds Protocol is considered relevant to detail an approach and methodology for the management of any unexpected asbestos contaminated soils encountered during demolition and construction works. Further asbestos testing is required for Site 1 following demolition of site structures.

HEAVY METALS

Results of soil samples collected at BH9M, BH11 and BH12 (Site 2) indicated concentrations of heavy metals (nickel and zinc) in excess of the adopted EILs. On review of development plans for the site, deep soils area will be retained and utilised for landscaping purposes. Vertical and horizontal delineation of contamination following stripping of the asphalt hardstand is required to determine the risk associated with Heavy Metals.

RESIDUAL PETROLEUM HYDROCARBONS

As described in **Section 2**, two underground tank areas were identified within Site 3 and one above Diesel storage tank within Site 1:

- one tank filling point was identified at 305-309 Trafalgar Street, Petersham (Site 3) within the northern part of the building, adjacent to the loading dock entry via Trafalgar Street. The area was scanned with Ground-Penetrating Radar (GPR) and the location of one large or two medium sized USTs was confirmed, with an estimated tank size of 3 m x 2.5 m each.
- an above ground storage Diesel tank and associated infrastructure was situated on the southern side of the basement at 3-7 Regent Street (Site 1).

Assessment of these UST Areas has included the following:

- Intrusive assessment 17 March 2016 at locations BH16 and BH17 situated in proximity to the tank did not report significant TRH impact in soil;
- Instrusive assessment 17 March 2016 at locations BH20 and BH21 did not report significant TRH impact in soil;
- Instrusive assessment 4 March 2016 at location BH15M did not report significant TRH impact in soil;
 - BH16: Maximum reported PID was 68 ppm (at 0.5 mbgl). No significant TRH or BTEX impact reported to a depth of 3.5mbgl.
 - BH17: Maximum reported PID was 54 ppm (at 0.6 mbgl), with No significant TRH or BTEX impact reported to a depth of 0.6mbgl.
 - BH20: Maximum reported PID was 20.1 ppm (at 1.5 mbgl), with No significant TRH or BTEX impact reported to a depth of 1.5mbgl.
 - BH21: Maximum reported PID was 55 ppm (at 1.5 mbgl), with No significant TRH or BTEX impact reported to a depth of 1.5mbgl.
 - BH15M: Maximum reported PID was 1.5 ppm (at 1.5 mbgl), with No significant TRH or BTEX impact reported to a depth of 1.5mbgl.

In order to determine the risk associated with TRHs contamination further soil sampling sampling of UST pits following decommissioning of USTs at Site 3 and decommissioning of above ground Diesel tank at Site 1 requires verification.

TRH concentrations reported in groundwater were either below or slightly above LOR, expect F1 TRH (150 μ g/L) and F2 TRH (110 μ g/L) at sampling location BH10M and F2 TRH (140 μ g/L) at sampling location BH9M situated at Site 2 which occur at concentrations exceeding the adopted GIL.

Background groundwater quality entering site 2, as inferred from monitoring well BH10M characterised by concentrations of TRH F1 and TRH F2. Concentrations of TRH F2 were reported at the downgradient well BH9M situated at the north western side of the carpark indicating a potential source of offsite contamination. An additional GME after stripping of asphalt hardstand is necessary to minimise the potential for contamination from this source in order to determine the risk associated with TRHs.

TOTAL PAHS IN SOIL

Results of soil samples collected at BH15M and BH3 (Site 3) indicated concentrations of PAHs in excess of the adopted HILB criteria. Results of the tested natural material underlying total PAHs impacted soils at these locations were reported below the adopted criteria indicating that PAHs had not leached to the natural material. Given that soils from these parts of the site will be excavated and removed for offsite disposal to licensed landfill facilities, this concentration was not considered to pose any threat to human receptors, provided appropriate waste management measures are implemented during the basement excavation process.

CARCINOGENIC PAHS IN SOIL

Fill within sampling locations at BH15M and BH3 at Site 3 and BH12 at Site 2 was reported to be impacted with carcinogenic PAHs at concentrations that exceeded the health based investigation level (HIL-B) of 4mg/kg. The concentrations range was 58mg/kg to 110mg/kg for Site 3 and of 11 for Site 2. Following observations were made;

- Results of the tested natural material underlying carcinogenic PAHs impacted soils at location BH15M and BH3 at Site 3 and BH12 at Site 2 were reported below the adopted criteria indicating that Carcinogenic PAHs had not leached to the natural material at these locations.
- Observations during field inspection and intrusive sampling did not report any occurrence of phase-separated material, coal tar, or significantly odorous soil (tar-like) and there was no history of use of the site as a gas works.
- The vegetative cover (grass) across Site 3 and Site 2 was observed to be well established, in good condition with no evidence of die off, worn areas or exposed soil. Trees (Fig Trees, Deciduous Trees) appeared in good condition with no evidence of stress. The base of trees was covered with garden mulch.

In order to determine the risk associated with PAHs contamination horizontal delineation at BH15M after demolition of site structures, horizontal delineation at BH3 and BH12 following stripping of asphalt hardstand cover requires verification.

NAPHTHALENE

Elevated concentration of Naphthalene in excess of the adopted health-based criterion (HIL-B) of 5 mg/kg was reported in sample BH3_0.2-0.4 (7.1 mg/kg).

Given that soils from these parts of the site will be excavated and removed for offsite disposal to licensed landfill facilities, this concentration was not considered to pose any threat to human receptors, provided appropriate waste management measures are implemented during the basement excavation process.

BENZO (A) PYRENE

Elevated concentration of benzo(a)pyrene in excess of the ESL was reported in sampling locations BH11, BH12 and BH25. On review of development plans for the site, deep soils area will be retained and utilised for landscaping purposes at this location. In order to determine the risk associated with PAHs contamination vertical and horizontal delineation of contamination following stripping of the asphalt hardstand requires verification

9. CONCLUSIONS

The property located at 3-7 Regent Street, 13-17 Regent Street and 287-309 Trafalgar Street, Petersham, NSW was the subject of a Detailed site Investigation Report in order to assess the potential for on-site contamination associated with the identified current and former land uses. Based on the findings of this assessment it was concluded that:

- It is understood that the sites are situated on the southern side of Petersham Rail Corridor, covering an area of approximately 9,800 m². At the time of this DSI Site 1 was occupied by Petersham RSL Club covering the entire footprint of the site, Site 2 by a 1,936 m² car park bound by Regent Street west and New Canterbury Road south and Site 3 by three vacant warehouse structures and two car parks situated on the easten side of the site bound by Trafalgar Street north and Regent street east. The site layout is presented in **Figure 2**.
- Review of historical records suggested the following:
 - Use of Site 1 was primarily residential until the 1960s when it was redeveloped for commercial uses as Petersham RSL. The building structure appeared to have undergone multiple refurbishment works and additions throughout the years.
 - Use of **Site 2** was primarily residential until the 1970s when residential structures on site were demolished for the construction of an open car park.
 - Lot 10 of Site 3 was mainly residential until the 1960s when it was redeveloped for commercial use and then as an open carpark. Lot 1 of Site 3 has remained commercial / industrial since the 1930's. Mc Callum Holdings Pty Ltd – Sintered Alloys Pty Ltd appear to have occupied part of the site (305-309 Trafalgar Street) since the 1950's until 2015 a company specialised in the use of granulated metals of iron, steel, stainless steel, brass, bronze and copper for the manufacture of metal miscellaneous metal products such as hardware. Nature of the historical commercial / industrial activities on site 3 appeared to be limited to wood, coal, lime, cement and home appliances commercial activities and furniture and ball and roller bearing manufacture.
- The Dangerous Goods Licensing Section did not identify any records relating dangerous good storage or underground tanks at the site.
- The site is free of statutory notices issued by the NSW EPA, and were not identified on the lisst of nominated contaminated sites, or the POEO public register. One property within 1 km was identified on the registers, but not considered potential off-site contamination sources;
- Site walkover inspection identified the presence of an underground petroleum storage system (UPSS) at Site 3 (305-309 Trafalgar Street, Petersham). One tank filling point was identified within the northern part of the building, adjacent to the loading dock entry via Trafalgar Street. The area was scanned with Ground-Penetrating Radar (GPR) and the location of one large or two medium sized USTs was confirmed with an estimated tank size of 3 m x 2.5 m each. An above ground Diesel storage Tank and associated infrastructure was identified at Site 1 on the southern side of the RSL basement car park.

- Soil investigation works included drilling of 21 boreholes. 2 boreholes were drilled at Site 1 (BH16 and BH17) 6 boreholes were drilled at Site 2 (BH9, BH10, BH11, BH12, BH25 and BH27) and 13 boreholes were drilled at Site 3 (BH1 to BH4, BH6, BH7, BH15, BH18, BH20 to BH24).
- The general site geology encountered during the soil investigation is described as a layer of anthropogenic filling in depths raging from 0.03 mBGL to 1.89 mBGL overlying clayey soils in depths raging from 0.6 mBGL to 3.4 and shale at depths raging from 2.2 mBGL to 17+mBGL.
- Laboratory analytical results of tested soil samples were assessed against the health-based investigation level for residential sites with minimalminimal access to soil (HIL-B) and Ecological Investigation Levels (EILs) based on the proposed site configuration. The analytical results suggested the following:
 - Elevated concentration of nickel in excess of the EILs of 35 mg/kg was reported in location BH9M_0.2-0.3 (41 mg/kg), and of Zinc in excess of the EILs of 255 mg/kg in sample locations BH11M_0.1-0.2 (260 mg/kg) and BH12_0.2-0.4 (440 mg/kg).
 - Results of soil samples collected at BH15M and BH3 (Site 3) indicated concentrations of PAHs in excess of the adopted HILB criteria. Results of the tested natural material underlying total PAHs impacted soils at these locations were reported below the adopted criteria indicating that PAHs had not leached to the natural material. Given that soils from these parts of the site will be excavated and removed for offsite disposal to licensed landfill facilities, this concentration was not considered to pose any threat to human receptors, provided appropriate waste management measures are implemented during the basement excavation process;
 - Elevated concentration of Naphthalene in excess of the adopted health-based criterion (HIL-B) of 5 mg/kg was reported in sample BH3_0.2-0.4 (7.1 mg/kg). Results of the tested natural material underlying naphthalene impacted soils at this location was reported below the adopted criteria indicating that Naphthalene had not leached to the natural material. Elevated concentration of Naphthalene in excess of the adopted health-based criterion (HIL-B) of 5 mg/kg was reported in sample BH3_0.2-0.4 (7.1 mg/kg). Given that soils from these parts of the site will be excavated and removed for offsite disposal to licensed landfill facilities, this concentration was not considered to pose any threat to human receptors, provided appropriate waste management measures are implemented during the basement excavation process.
 - Elevated concentration of benzo(a)pyrene in excess of the ESL of 0.7 mg/kg was reported in sampling locations BH11M_0.1-0.2 (1.9 mg/kg), BH12 0.2-0.4 (7.5 mg/kg) and BH25 0.3-0.4 (2.4 mg/kg). On review of development plans for the site, deep soils area will be retained and utilised for landscaping purposes at this location. In order to determine the risk associated with benzo(a)pyrene contamination vertical and horizontal delineation of contamination following stripping of the asphalt hardstand requires verification.
 - Asbestos was identified in laboratory examined fill soil sample BH3_0.2-0.4 collected during the field investigation at a concentration less than 0.01%. Asbestos was not identified in any of the other collected samples. As this DSI findings have showed no evidence of significant asbestos contamination, at Site 2 and and Site 3, an Unexpected Finds Protocol is considered relevant to detail an approach and methodology for the management of any unexpected asbestos contaminated soils encountered during

demolition and construction works. Further asbestos testing is required for Site 1 following demolition of site structures.

- Groundwater investigation conducted indicated the following:
 - Groundwater results reported concentration below the detection limit for PAHs and BTEX. The majority of the heavy metals were screened below the adopted criteria with the exception of zinc in all sampling locations, nickel for sampling locations BH1M (9 ug/L), BH6M (13 ug/L) and BH 11 M (9 ug/L) and Copper in BH1M (3 ug/L), BH4M (5 ug/L), BH6M (2 ug/L), BH11M (4 ug/L) and BH15M (2 ug/L).
 - TRH concentrations were reported either below or slightly above LOR, expect F1 TRH (150 μg/L) and F2 TRH (110 ug/L) at sampling location BH10M and F2 TRH (140 μg/L) at sampling location BH9M which occur at concentrations exceeding the adopted GIL.
 - Background groundwater quality entering site 2, as inferred from monitoring well BH10M and BH11M is characterised by concentrations of TRH F1 and TRH F2 at BH10M. Concentrations of TRH F2 were reported as well at the downgradient well BH9M situated at the north western side of the carpark.
 - Background groundwater quality entering site 3, as inferred from monitoring well BH6M is characterised by concentrations of copper, nickel and zinc above the GILs. Concentrations of copper, nickel and zinc above the GILs were reported in BH1M and BH15M inferred to be down-gradient.
 - A low concentration of chloroform was recorded in BH1M (Site 3) likely to be associated with leaking reticulated water supply infrastructure.
 - We note that elevated heavy metal concentrations are comparable to those present in background groundwater entering the sites, and are inferred to be representative of the regional groundwater quality. Current available data at the time of report preparation suggested groundwater flow direction to be towards the north-west see inferred contours in Figure 3. Standing water levels at the site were measured between approximately 1.8 m to 4 mBGL during the DSI. The main aquifer encountered in this DSI was located within fractured Ashfield Shale, the top of which was estimated at between 4.5 mBGL to 6 mBGL. The aquifer was considered to be a semiconfined to confined aquifer.
 - Due to onsite restrictions monitoring wells at Site 1 could not be installed therefore, the water quality has not been assessed.
- The following data gaps identified in this DSI will require closure by further investigations:
 - The quality of site soils beneath the RSL structures (Site 1), requires further investigation. It is recommended that sampling in this area is performed following demolition of site structures and following the decommissioning of the known above ground Diesel storage tank, to minimise the potential for further contamination from this primary source.
 - Delineation of the vertical and horizontal extent of zinc, carcinogenic PAHs, and benzo(a)pyrene soils, at Site 2, requires confirmation.

- Due to onsite restrictions monitoring wells at Site 1 could not be installed therefore, it is recommended further groundwater investigation be undertaken, including installation of an up-gradient well at Site 1 to provide data on groundwater quality. These works should be performed following demolition of site structures to allow drill rig access and following the decommissioning of the known above ground Diesel storage tank, to minimise the potential for further contamination from this primary source;
- One additional GME to be performed for all wells at site 2 and site 3 and newly installed wells at Site 1 after demolition of site structures, and decommissioning of the known underground and above ground storage tanks, to minimise the potential for further contamination from this primary source; and
- Potential presence of hazardous materials present within the existing structures requires verification.

Based on the findings of this report and with consideration of the Statement of Limitations (Section 11), EI concludes that widespread contamination was not identified at the sites. Concentrations exceeding human health based SILs were identified within hotspots at the northern and south eastern areas of Site 3 and northern and southern boundaries of Site 2. In view of the proposed development, and currently available information, EI consider that the contamination identified can be remediated following demolition of the buildings and in accordance with recommendations detailed in Section 10 to address the contamination hotspots, remaining USTs and any unknown or unexpected contamination identified during the demolition and construction process to render the site suitable for proposed mixed commercial - residential use.

10. **RECOMMENDATIONS**

Based on the findings of this investigation, the following recommendations are provided to outline the additional works required to render the site suitable for its proposed residential use:

Based on the findings of this investigation, the following recommendations are provided:

- Prior to site demolition, carry out a Hazardous Materials Survey on existing site structures to identify potentially hazardous building products that may be released to the environment during demolition;
- Preparation and implementation of a Remedial Action Plan (RAP), which should:
 - Design supplementary investigations to close the data gaps identified during this investigation;
 - Outline the remediation requirements for contamination identified during this DSI and other contamination that may be identified during data gap closure investigations;
 - Provide the requirements and procedure for waste classification assessment, in order to enable classification of site soils to be excavated and disposed off-site or re-used (on-site or off-ste) during the proposed remediation works and basement excavation, in accordance with the *Waste Classification Guidelines* (EPA, 2014); and
 - Provide a SAQP for the validation of remediation activities performed on-site.
- Undertake supplementary investigations, and subsequent remediation and validation works for the site, as outlined in the RAP. EI note that due to current site constrains, the additional investigations and remediation works may need to be conducted after site demolition when access is made available.

11. STATEMENT OF LIMITATIONS

The findings presented in this report are the result of discrete and specific sampling methodologies used in accordance with best industry practices and standards. Due to the site-specific nature of soil sampling from point locations, it is considered likely that all variations in subsurface conditions across a site cannot be fully defined, no matter how comprehensive the field investigation program.

While normal assessments of data reliability have been made, EI assumes no responsibility or liability for errors in any data obtained from previous assessments conducted on site, regulatory agencies (e.g. Council, EPA), statements from sources outside of EI, or developments resulting from situations outside the scope of works of this project.

Despite all reasonable care and diligence, the ground conditions encountered and concentrations of contaminants measured may not be representative of conditions between the locations sampled and investigated. In addition, site characteristics may change at any time in response to variations in natural conditions, chemical reactions and other events, e.g. groundwater movement and or spillages of contaminating substances. These changes may occur subsequent to El's investigations and assessment.

EI's assessment is necessarily based upon the result of the site investigation and the restricted program of surface and subsurface sampling, screening and chemical testing which was set out in the proposal. Neither EI, nor any other reputable consultant, can provide unqualified warranties nor does EI assume any liability for site conditions not observed or accessible during the time of the investigations.

This report was prepared for the above named client and no responsibility is accepted for use of any part of this report in any other context or for any other purpose or by other third parties. This report does not purport to provide legal advice.

This report and associated documents remain the property of EI subject to payment of all fees due for this assessment. The report shall not be reproduced except in full and with prior written permission by EI.

REFERENCES

- ANZECC/ARMCANZ (2000) Australian and New Zealand Guidelines for Fresh and Marine Water Quality, Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand, October 2000.
- Australian Standard (2005) Table E1 *Minimum sampling points required for site characterisation*, in Guide to the investigation and sampling of sites with potentially contaminated soil Part 1: Non-volatile and semi-volatile compounds, Standards Australia, AS 4482.1-2005, p45.
- Chapman, G.A. and Murphy, C.L. (1989) Soil Landscapes of the Sydney 1:100 000 sheet, Soil Conservation Service of NSW, Sydney, September 1989.
- DEC (2006) Guidelines for the NSW Site Auditor Scheme, 2nd Edn., NSW Dept. of Environment and Conservation, DEC 2006/121, April 2006.
- DEC (2007) *Guidelines for the Assessment and Management of Groundwater Contamination*, Dept. of Environment and Conservation, New South Wales, DEC 2007/144, June 2007.
- DMR (1983) Sydney 1:100,000 Geological Series Sheet 9130 (Edition 1) *Geological Survey of New South Wales*, Department of Mineral Resources.
- EPA (1995) Sampling Design Guidelines Environment Protection Authority of New South Wales, Contaminated Sites Unit, EPA 95/59, September 1995.
- Murphy CL (1997) Acid Sulfate Soil Risk of the Prospect/Parramatta River Sheet Department of Land and Water Conservation, Sydney, Second Edition. Supplied by the Sydney South Coast, Geographical Information Systems Unit.
- NEPM (2013) Schedule B1 Guideline on Investigation Levels for Soil and Groundwater, Schedule B2 Guideline on Site Characterisation and Schedule B4 Guideline on site-specific health risk assessments, National Environmental Protection (Assessment of Site Contamination) Measure 1999, National Environmental Protection Council, December 1999, Amendment 2013.
- OEH (2011) Guidelines for Consultants Reporting on Contaminated Sites, NSW Office of Environment and Heritage (OEH), OEH 2011/0650, 23 p
- USEPA (2006) Data Quality Assessment: A Reviewers Guide EPA QA/G-9R. USEPA Office of Environmental Information, EPA/240/B-06/002, February 2006.
- USEPA (2014), Regional Screening Levels (RSL) Summary Table, May 2014.
- WHO (1996) Guidelines for Drinking Water Quality, World Health Organisation, 1996.

ABBREVIATIONS

ACM	Asbestos-containing materials		
ASS	Acid sulfate soils		
B(a)P	Benzo(a)pyrene (a PAH compound)		
BH	Borehole		
BTEX	Benzene, Toluene, Ethylbenzene, Xylene		
CEC	Cation Exchange Capacity		
COC	Chain of Custody		
CSM	Conceptual Site Model		
DA	Development Application		
DEC	Department of Environment and Conservation, NSW (see OEH)		
DECC	Department of Environment and Climate Change, NSW (see OEH)		
DECCW	Department of Environment, Climate Change and Water, NSW (see OEH)		
DNAPL	Dense, non-aqueous phase liquid		
DP	Deposited Plan		
DQI	Data Quality Indicators		
DQO	Data Quality Objectives		
DSI	Detailed Site Investigation		
EIL	Ecological Investigation Levels		
EPA	Environment Protection Authority		
ESL	Ecological Screening Levels		
F1	TRH $C_6 - C_{10}$ less the sum of BTEX concentrations (Ref. NEPM 2013, Schedule B1)		
F2	TRH >C ₁₀ – C ₁₆ less the concentration of naphthalene (Ref. NEPM 2013, Schedule B1)		
HIL	Health-based Investigation Level		
HSL	Health-based Screening Level		
km	Kilometres		
LNAPL	Light, non-aqueous phase liquid (also referred to as PSH)		
m	Metres		
MAH	Monocyclic Aromatic Hydrocarbons		
m AHD	Metres Australian Height Datum		
m BGL	Metres Below Ground Level		
mg/L	Milligrams per litre		
µg/L	Micrograms per litre		
NATA	National Association of Testing Authorities, Australia		
NEPC	National Environmental Protection Council		
NEPM	Nation Environmental Protection Measure		
OCP	Organochlorine Pesticides		
OEH	Office of Environment and Heritage, NSW (formerly DEC, DECC, DECCW)		
OPP	Organophosphorous Pesticides		
PAHs	Polycyclic Aromatic Hydrocarbons		
PCB	Polychlorinated Biphenyls		
рН	Measure of the acidity or basicity of an aqueous solution		

PQL PSH	Practical Quantitation Limit (limit of detection for respective laboratory instruments) Phase-separated hydrocarbons (also referred to as LNAPL)	
PSI	Preliminary Site Investigation	
QA/QC	Quality Assurance / Quality Control	
QRA	Qualitative Risk Assessment	
RAP	Remediation Action Plan	
SRA	Sample receipt advice (document confirming laboratory receipt of samples)	
TRH	Total Recoverable Hydrocarbons (non-specific analysis of organic compounds)	
UCL	Upper Confidence Limit of the mean	
US EPA	United States Environmental Protection Agency	
UPSS	Underground Petroleum Storage System	
UST	Underground Storage Tank	
VOCs	Volatile Organic Compounds (specific organic compounds which are volatile)	
VOCCs	Volatile Organic Chlorinated Compounds (a sub-set of the VOC analysis suite)	

FIGURES

LEGEND

 \bigcirc

_ _

— – Approximate site boundary

- Sampling locations
- Groundwater monitoring well locations
- Approximate location of USTs

Drawn:	М.Т.	
Approved:	N.F	Deta 3-7 & 2
Date:	26-04-16	287-309 Traf
Approx Scale:	1:750 @ A3 or as shown	Sa

Deicorp Pty Ltd tailed Site Investigation 13-17 Regent Street and afalgar Street, Petersham NSW

ampling Location Plan

Figure:

2

Project: E22913 AA_Rev0

LEGEND

 \bigcirc

Approximate site boundary

Sampling locations

Approximate location of USTs – – – Approximate location of Diesel tank

Drawn:	M.T.	
Approved:	N.F	Deta 3-7 &
Date:	27-04-16	287-309 Tra
Approx Scale:	1:750 @ A3 or as shown	Grou

Deicorp Pty Ltd tailed Site Investigation 13-17 Regent Street and afalgar Street, Petersham NSW Figure:

undwater Flow Direction

Project: E22913 AA_Rev0

3

TABLES

Table T1 – Summary of Soil Investigation Results for Heavy Metals

Sample ID	Sampling Date	Arsenic	Cadmium	Chromium (VI)	Copper	Lead	Mercury	Nickel	Zinc
BH1M_0.5-0.6	4/03/2016	3	<0.3	12	17	26	0.02	2.9	8.2
BH4M_0.2-0.4	4/03/2016	4	<0.3	7.4	24	260	0.47	4.3	110
BH4M_1.5-1.95	4/03/2016	10	0.4	6.9	31	21	<0.01	<0.5	5.7
BH15M_0.2-0.4	4/03/2016	5	0.6	10	29	100	0.1	12	340
BH15M_1.8-2.0	4/03/2016	6	0.5	21	13	24	0.02	2.9	6.5
BH2_0.2-0.4	9/03/2016	5	0.4	18	19	99	0.15	4.5	53
BH2_1.2-1.5	9/03/2016	<3	<0.3	5.7	15	21	<0.01	<0.5	3.2
BH3_0.2-0.4	9/03/2016	8	1.3	24	180	830	0.3	15	690
BH3_0.8-1.0	9/03/2016	4	0.6	16	35	100	0.07	3.9	120
BH9M_0.2-0.3	9/03/2016	<3	0.3	39	14	27	0.02	41	40
BH9M_2.0-2.1	9/03/2016	4	0.4	9.8	36	29	<0.01	1.1	12
BH11M_0.1-0.2	9/03/2016	4	0.5	12	29	260	0.59	5.4	260
BH11M_1.0-1.1	9/03/2016	3	<0.3	6.4	6.1	12	0.02	<0.5	7.9
BH6M 0.2-0.4	11/03/2016	5	<0.3	14	13	25	<0.01	2.7	21
BH6M 1.3-1.5	11/03/2016	5	< 0.3	15	19	41	0.02	4.7	41
BH7 0.2-0.4	11/03/2016	6	<0.3	15	18	26	0.01	2.6	18
BH7 2.3-2.5	11/03/2016	7	0.4	18	21	27	<0.01	1.9	18
BH12 0.2-0.4	11/03/2016	7	0.9	15	46	360	0.11	5.9	440
BH12 1.3-1.5	11/03/2016	7	0.7	29	3.2	22	0.02	1.2	11
BH16 0.4-0.5	17/03/2016	<3	0.4	4.8	58	16	0.01	0.5	7.8
BH17 0.9-1.0	17/03/2016	<3	0.3	5.1	25	21	0.03	2.6	12
BH18 0.4-0.5	17/03/2016	4	<0.3	2.1	19	7	< 0.01	< 0.5	3.5
BH20 3.3-3.4	17/03/2016	<3	<0.3	1.3	9.8	11	<0.01	< 0.5	2.3
BH21 0.4-0.5	17/03/2016	<3	<0.3	4.2	24	44	0.18	5.4	35
BH21 1.4-1.5	17/03/2016	7	0.7	22	16	30	0.02	4.4	29
BH22 0.4-0.5	17/03/2016	<3	<0.3	0.7	0.7	1	0.06	< 0.5	< 0.5
BH22 1.1-1.2	17/03/2016	10	0.9	23	16	27	<0.01	2.4	12
BH23 0.4-0.5	17/03/2016	5	0.5	13	21	150	0.1	3.6	84
BH23 1.4-1.5	17/03/2016	3	1.1	18	38	32	<0.01	0.6	12
BH24 0.4-0.5	17/03/2016	8	0.6	15	27	130	0.08	7.9	220
BH24 2.4-2.5	17/03/2016	5	0.3	13	18	23	<0.01	1.3	15
BH25 0.3-0.4	17/03/2016	4	0.4	17	20	150	0.19	12	120
BH27 2.3-2.4	17/03/2016	18	<0.3	4.6	13	16	<0.01	0.6	5.7
				SILs					
HIL B ¹	Residential with minimal access to soil	500 ²	150	500 Cr(VI)	30,000	1,200 ³	120 ⁴	1,200	60,000
EILs ⁵	Urban Residential and public open space	100	NR	205 ⁶	160 ⁷	1,260	NR	35 ⁸	195 ⁹

indicates concentration exceeds HSL.

indicates concentration exceeds ESL.

- Notes: All results are reported in mg/kg unless stated otherwise
- SIL Soil investigation Levels.
- HIL Health-based investigation levels (mg/kg) as per NEPM 1999 Schedule B1 2013 Amendment.
- EILEcological Investigation Levels (mg/kg) as per NEPM. As physiochemical properties were not analysed, the most conservative value applicable to the site was applieN.R.No Recommended soil assessment criteria are currently available for the indicated parameter(s).
- N.A. Not analysed.
- ¹ HIL A residential sites with garden/ accessible soil
- Arsenic HIL assumes 70% oral bioavailability. Site-specific bioavailability may be important and should be considered where appropriate (refer to NEPM 1999 Scher
 Lead HIL is based on blood lead models (IEUBK for HILs A, B and C and adult lead model for HIL D where 50% oral bioavailability has been considered. Site-speci
 bioavailability may be important and should be considered where appropriate.
- ⁴ Value shown is representative of inorganic mercury as provided in Table 1A(1) (refer to NEPM 1999 Schedule B1 2013 Amendment).
- ⁵ EIL values are for urban residential and public open space. Assumes an old NSW high traffic suburb.
- 6 Assumes clay content >10%
- 7 Assumesassumes pH 5.5
- ⁸ Aassumes CEC 5
- ⁹ Assumes pH5.5 & CEC 5

Sample	Sampling	PID Reading	Total F	Petroleum H	lydrocarbons	(mg/kg)	Benzene	(malka) (malka) (malka) (malka)		Carcinogenic PAHs	Total PAHs	Benzo(a)pyrene	Aldrin and	Other	OPPs	PCBs			
ID	Date	(PPM)	F1 ¹	F2 ²	F3 ³	F4 ⁴	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(as BaP TEQ)**			dieldrin	OCPs			
BH1M_0.5-0.6	4/03/2016	0.5	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	<0.1	<0.3	<0.8	<0.1	N.D.	N.D.	N.D.	N.D.	
BH4M_0.2-0.4	4/03/2016	0.7	<25	<25	100	<120	<0.1	<0.1	<0.1	<0.3	<0.1	3.4	29	2.4	N.D.	N.D.	N.D.	N.D.	
BH4M_1.5-1.95	4/03/2016	0.5	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	<0.1	<0.3	<0.8	<0.1	N.A.	N.A.	N.A.	N.A.	
BH15M_0.2-0.4	4/03/2016	1.5	<25	42	1500	280	<0.1	<0.1	<0.1	<0.3	0.1	58	470	40	N.D.	N.D.	N.D.	N.D.	
BH15M_1.8-2.0	4/03/2016	0.6	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	<0.1	<0.3	<0.8	<0.1	N.A.	N.A.	N.A.	N.A.	
BH2_0.2-0.4	9/03/2016	0.3	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	<0.1	1.9	16	1.3	0.4	N.D.	N.D.	N.D.	
BH2_1.2-1.5	9/03/2016	0.5	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	<0.1	<0.3	<0.8	<0.1	N.A.	N.A.	N.A.	N.A.	
BH3_0.2-0.4	9/03/2016	0.5	<25	120	3000	650	<0.1	<0.1	<0.1	<0.3	7.1	110	1200	78	1.6	N.D.	N.D.	N.D.	
BH3_0.8-1.0	9/03/2016	0.5	<25	<25	250	<120	<0.1	<0.1	<0.1	<0.3	0.3	10	100	7	N.A.	N.A.	N.A.	N.A.	
BH9M_0.2-0.3	9/03/2016	N.T.	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	<0.1	<0.3	0.9	<0.1	N.D.	N.D.	N.D.	N.D.	
BH9M_2.0-2.1	9/03/2016	N.T.	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	<0.1	0.3	2.5	0.2	N.A.	N.A.	N.A.	N.A	
BH11M_0.1-0.2	9/03/2016	N.T.	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	<0.1	2.8	21	1.9	N.D.	N.D.	N.D.	N.D	
BH11M_1.0-1.1	9/03/2016	N.T.	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	<0.1	<0.3	<0.8	<0.1	N.A.	N.A.	N.A.	N.A	
BH6M 0.2-0.4	11/03/2016	0	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	<0.1	1.2	10	0.8	N.D.	N.D.	N.D.	N.D	
BH6M 1.3-1.5	11/03/2016	0.1	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	<0.1	1.6	12	1.1	N.A.	N.A.	N.A.	N.A	
BH7 0.2-0.4	11/03/2016	0.1	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	<0.1	0.6	3	0.4	N.D.	N.D.	N.D.	N.D	
BH7 2.3-2.5	11/03/2016	0.1	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	<0.1	<0.3	<0.8	<0.1	N.A.	N.A.	N.A.	N.A	
BH12 0.2-0.4	11/03/2016	0	<25	<25	280	<120	<0.1	<0.1	<0.1	<0.3	0.2	11	95	7.5	N.D.	N.D.	N.D.	N.D	
BH12 1.3-1.5	11/03/2016	N.T.	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	<0.1	0.4	3	0.2	N.A.	N.A.	N.A.	N.A	
BH16 0.4-0.5	17/03/2016	68	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	<0.1	<0.3	<0.8	<0.1	N.D.	N.D.	N.D.	N.D	
BH17 0.9-1.0	17/03/2016	28	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	<0.1	<0.3	<0.8	<0.1	N.A.	N.A.	N.A.	N.A	
BH18 0.4-0.5	17/03/2016	0	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	<0.1	<0.3	<0.8	<0.1	N.D.	N.D.	N.D.	N.D	
BH20 3.3-3.4	17/03/2016	0	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	<0.1	<0.3	<0.8	<0.1	N.A.	N.A.	N.A.	N.A	
BH21 0.4-0.5	17/03/2016	25	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	<0.1	1.3	9.8	0.9	N.D.	N.D.	N.D.	N.D	
BH21 1.4-1.5	17/03/2016	55	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	<0.1	0.4	3.4	0.2	N.A.	N.A.	N.A.	N.A	
BH22 0.4-0.5	17/03/2016	0.5	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	<0.1	0.8	6.8	0.5	N.D.	N.D.	N.D.	N.D	
BH22 1.1-1.2	17/03/2016	0.6	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	<0.1	<0.3	<0.8	<0.1	N.A.	N.A.	N.A.	N.A	
BH23 0.4-0.5	17/03/2016	26.1	<25	<25	250	<120	<0.1	<0.1	<0.1	<0.3	<0.1	12	120	8.3	0.9	N.D.	N.D.	N.D	
BH23 1.4-1.5	17/03/2016	5.6	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	<0.1	<0.3	<0.8	<0.1	N.D.	N.A.	N.A.	N.A	
BH24 0.4-0.5	17/03/2016	0.6	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	<0.1	1.3	10	0.9	N.A.	N.D.	N.D.	N.D	
BH24 2.4-2.5	17/03/2016	0.1	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	<0.1	<0.3	<0.8	<0.1	N.D.	N.A.	N.A.	N.A	
BH25 0.3-0.4	17/03/2016	0.5	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	<0.1	3.5	27	2.4	N.A.	N.D.	N.D.	N.D	
BH27 2.3-2.4	17/03/2016	0.6	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	<0.1	<0.3	<0.8	<0.1	N.D.	N.A.	N.A.	N.A	

Table T2 – Summary of Soil Investigation Results for TPH, BTEX, PAH, Naphthalene, VOC, OCPs, OPPs and PCBs

Sample	Sampling	PID Reading	Total Petroleum Hydrocarbons (mg/kg)				Benzene		-	Total Xylenes		Carcinogenic PAHs	Total PAHs	Benzo(a)pyrene	Aldrin and	Other	OPPs	PCBs
ID	Date	(PPM)	F1 ¹	F2 ²	F3 ³	$F4^4$	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(as BaP TEQ)**			dieldrin	OCPs		
	0 m to <1 m		50	280	NL	NL	0.7	480	NL	110	5	N.R.	N.R.	N.R.	N.R.	N.R.	N.R.	N.R.
HSL A & B (Clay)	1 m to < 2 m		90	NL	NL	NL	1	NL	NL	310	NL	N.R.	N.R.	N.R.	N.R.	N.R.	N.R.	N.R.
ISL A & D (Clay)	2 m to <4 m		150	NL	NL	NL	2	NL	NL	NL	NL	N.R.	N.R.	N.R.	N.R.	N.R.	N.R.	N.R.
	4 m +		290	NL	NL	NL	3	NL	NL	NL	NL	N.R.	N.R.	N.R.	N.R.	N.R.	N.R.	N.R.
HII B	Residential w access to soil		N.R.	N.R.	N.R.	N.R.	N.R.	N.R.	N.R.	N.R.	N.R.	4	400	N.R.	10	N.R.	N.R.	1
ESLs ⁵	Fine grained		180*	120 [*]	1,300	5,600	65	105	125	45	N.R.	N.R.	N.R.	0.7	N.R.	N.R.	N.R.	N.R.
	Generic EIL L Residential al open space										170							

Notes: All results are reported in mg/kg unless stated otherwise

All soil assessment criteria are sourced from National Environment Protection (Assessment of Site Contamination) Measure 1999 – Amendment 2013, Schedule (B1) - Guideline on Investigation Levels for Soil and Groundwater (NEPM 2013).

SIL Soil investigation Level.

HSL Health screening levels (w/w) based on Low-high density residential (clay).

ESL Ecological screening level for urban residential / public open sapce sites, as per Table 1B(6) of NEPM 2013 Schedule B1

N.R. No Recommended soil assessment criteria are currently available for the indicated parameter(s).

NL Not Limiting" i.e. the derived soil HSL exceeds the maximim the soil saturation concentration.

N.A. Not analysed.

N.D. Not detected

Results reported are volatile Naphthalene.

** Carcinogenic PAHs (as BaP TEQ)-assume results <LOR=LOR

¹ F1 = TRH C6-C10 less BTEX

F2 = TRH > C10 - C16 less Naphthalene

³ F3 = TRH > C16 - C34

4 F4 = TRH > C34 - C40

5 ESLs are of low reliability except where indicated by * which indicates that the ESL is of moderate reliability. (Ref: Table 1B(6) NEPM 2013)

Table T3 – Summary o	of Soil Investigation	Results for Asbestos
----------------------	-----------------------	-----------------------------

Sample ID	Asbestos	Asbestos (% w/w)
Samples taken on 04/03/2016		
BH1M_0.5-0.6	No	<0.01
BH4_0.2-0.4	No	<0.01
BH4_1.5-1.95	NA	NA
BH15_0.2-0.4	No	<0.01
BH15_1.8-2.0	NA	NA
Samples taken on 09/03/2016		•
BH2_0.2-0.4	No	<0.01
BH2_1.2-1.5	No	<0.01
BH3_0.2-0.4	Yes	<0.01
BH3_0.8-1.0	No	<0.01
BH9M_0.2-0.3	No	<0.01
BH9M_2.0-2.1	No	<0.01
BH11M_0.1-0.2	No	<0.01
BH11M_1.0-1.1	No	<0.01
Samples taken on 11/03/2016		
BH6 0.2-0.4	No	<0.01%
BH6 1.3-1.5	NA	NA
BH7 0.2-0.4	No	<0.01%
BH7 2.3-2.5	NA	NA
BH12 0.2-0.4	No	<0.01%
BH12 1.3-1.5	NA	NA
Samples taken on 17/03/2016		
BH16 0.4-0.5	No	<0.01%
BH17 0.9-1.0	NA	NA
BH18 0.4-0.5	No	<0.01%
BH20 3.3-3.4	NA	NA
BH21 0.4-0.5	No	<0.01%
BH21 1.4-1.5	NA	NA
BH22 0.4-0.5	No	<0.01%
BH22 1.1-1.2	NA	NA
BH23 0.4-0.5	No	<0.01%
BH23 1.4-1.5	NA	NA
BH24 0.4-0.5	No	<0.01%
BH24 2.4-2.5	NA	NA
BH25 0.3-0.4	No	<0.01%
BH27 2.3-2.4	NA	NA
	HSL	
Residential B ¹		0.04%

Notes:

All soil assessment criteria are sourced from National Environment Protection (Assessment of Site Contamination) Measure 1999 – Amendment 2013, Schedule (B1) - Guideline on Investigation Levels for Soil and Groundwater (NEPM 2013).

HSL Health screening levels (w/w)

1 Residential B: Residential with minimal access to soil.

Heavy Metals BTEXN TRH												PAHs									
Sample ID	9	Arsenic	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Zinc	Benzene	Toluene	Ethylbenzene	Total Xylene	Naphthalene	F1*	F2**	F3***	F4****	Total PAHs	Benzo(α)pyrene	Naphthalene
BH1M		<1	0.5	<1	3	<1	< 0.0001	9	230	<0.5	<0.5	<0.5	<1.5	<0.5	<50	<60	<500	<500	<1	<0.1	<0.1
BH4M		1	<0.1	<1	5	<1	< 0.0001	2	190	<0.5	<0.5	<0.5	<1.5	<0.5	<50	<60	<500	<500	<1	<0.1	<0.1
BH6M		<1	<0.1	<1	2	<1	< 0.0001	13	68	<0.5	<0.5	<0.5	<1.5	<0.5	<50	<60	<500	<500	<1	<0.1	<0.1
BH9M		<1	<0.1	<1	<1	<1	< 0.0001	3	12	<0.5	<0.5	<0.5	2.3	<0.5	<50	140	<500	<500	<1	<0.1	<0.1
BH10N	Λ	<1	<0.1	<1	<1	<1	< 0.0001	3	12	<0.5	<0.5	<0.5	5.5	<0.5	150	110	<500	<500	<1	<0.1	<0.3
BH11N	Λ	1	<0.1	<1	4	<1	< 0.0001	9	35	<0.5	<0.5	<0.5	<1.5	<0.5	<50	<60	<500	<500	<1	<0.1	<0.1
BH15N	Λ	3	<0.1	<1	2	<1	< 0.0001	3	330	<0.5	<0.5	<0.5	<1.5	<0.5	<50	<60	<500	<500	<1	<0.1	<0.1
									GIL												
GIL (Marine Wa	iters)	NR	0.7 ²	27 (Cr III) 4.4 (Cr VI)	1.3	4.4	0.1 ²	7 ²	15 ³	500 ³	180 ⁴	5 ⁴	75 ⁴	50	50 ¹	60 ¹	500 ¹	500 ¹	NR	NR	NR
HSL A & B (Clay)	2 m to < 4 m				NR					5,000	NL	NL	NL	NL	NL	NL			NR		
ΠΟL Α α D (Clay)	4 m to < 8 m				NR					5,000	NL	NL	NL	NL	NL	NL]		NK		

Notes: All results and criteria are in µg/L, unless otherwise noted.

Highlighted values indicate concentrations exceed the adopted GIL.

GIL (Marine Waters) NEPM 2013 Schedule B1 . Groundwater investigation level for marine waters ecosystem

HSL A & B Health screening level for residential sites, as per Table 1A(4) of NEPM 2013 Schedule B1. As soils encountered during field investigation comprised primarily clayey materials, HSL for clay was adopted. HSL are applied based on the estimated source depth of groundwater at each monitoring well.

NL Not Limited (Ref. NEPM 2013, Schedule B1, Table 1(A)4)

NR No recommended assessment criteria are currently available for the indicated parameter(s).

PQL (Laboratory's) Practical Quantitation Limit

NT Not tested.

* F1 = TRH C6-C10 less BTEX

- ** F2 = TRH > C10-C16 less Naphthalene
- *** F3 = TRH > C16-C34
- **** F4 = TRH > C34 C40
- 1 ANZECC (2000) provides 7 µg/L as an assessment guideline for total petroleum hydrocarbons. Since the laboratory practical quantitation limits (PQL) is higher than the ANZECC guideline, the PQL has been adopted as the

2 The 99% Trigger Values were adopted for this assessment. Ref. ANZECC & ARMCANZ (2000).

- 3 Indicated threshold value may not protect key species from chronic toxicity. Ref. ANZECC & ARMCANZ (2000).
- 4 Low reliability 95% trigger values were adopted. Ref. Section 8.3.7, ANZECC & ARMCANZ (2000).

			VOCs				
Sample ID	Chloroform	Bromodichloromethane	Dibromochloromethane	1,3,5-trimethylbenzene	1,2,4-trimethylbenzene		
BH1M	42	15	4	<0.5	<0.5		
BH4M	<0.5	<0.5	<0.5	<0.5	<0.5		
BH6M	<0.5	<0.5	<0.5	<0.5	<0.5		
BH9M	11	0.8	<0.5	0.6	<0.5		
BH10M	10	0.7	<0.5	6.7	2.8		
BH11M	21	6.4	1.2	<0.5	<0.5		
BH15M	29	8.5	1.6	<0.5	<0.5		
			GIL				
GIL (Marine Waters)1	NR	NR	NR	NR	NR		
Region 9 SSL ²	29	19	14				

Notes:

1= GIL (Marine Waters) Groundwater investigation level for marine waters ecosystem. All GIL values were sourced from Table 1C of NEPM 2013 Schedule B1 unless otherwise noted. (Laboratory's) Practical Quantitation Limit

PQL

Environmental Investigations Australia Contamination | Remediation | Geotechnical

Appendix A Proposed Development Plans

01 SOUTH ELEVATION (FISHER STREET) SCALE 1: 400 @ A3

PROJECT: 3-7 REGENT STREET, 13-17 REGENT STREET, 287 TRAFALGAR STREET CLENT: DEICORP PROJECTS (PETERSHAM) P/L SCALE: 1:200@A1 0 Im 2m 5m

DATE: 20 NOV 2015 CHECKED 1: ET CHECKED 2: -DRAWN BY: ET/LF/IG

DRAWING: ELEVATIONS 9923 ISSUE P5

drawing no. SK – 1302

GROUND FLOOR

PRELIMINARY HE NORMATINI CONTINUES IN THE GOOMENT IS TO THE CARE OF A LEW HALL MAKE TIS OWN FOUNDERS AN USE AND CALLARDS AND FORM TIS OWN HE'RS IN REALTON OF LOCAL BOOMENT AND STATUTORY CONTROLS. IT IS AS AND THAT HE'RS IN THE THE OWNER AND STATUTORY CONTROLS. IT IS AS AND THAT THE CALIFF WILL REV ON TIS OWNER AND STATUTORY CONTROLS. IT IS AS AND THAT

RESIDENTIAL + STORE CIRCULAT**I**ON

TOTAL LEVEL GFA

LEVEL 1 PLAN

RESIDENTIAL CIRCULATION

TOTAL LEVEL GFA

AREA

688 m[°] l 165 m[°] l

688 m[°]

758 m[°] I 159 m[°] I

758 m

RESIDENTIAL CIRCULATION

TOTAL LEVEL GFA

LEVEL 4 PLAN
RESIDENTIAL CIRCULATION
TOTAL LEVEL GFA

LAND	SCAPE	AREA	% OF SITE AREA	
	DEEP SOIL NOT DEEP SOIL		8.4%	
	TOTAL LANDSCAPED AREA	l 663 m [°]	39%	

AREA

562 m² 82 m²

562 m |

LEVEL	AREA	
	RESIDENTIAL	281 m
	CIRCULATION	118 m
	COMMON OPEN SPACE	l 239 m
	TOTAL LEVEL GEA	ا 281 س

PERMISSIBLE			
SITE AREA			1 960 m
PERMISSIBLE FSR			1.8 : 1
PERMISSIBLE GFA			3 528 m
NO. OF STOREYS			6
LEP HEIGHT PLANE			17 m
PROPOSED			
GFA		(76	3 604 m SQM OVER
FSR			1.84 :
NO. OF UNITS (SITE 2)			44
TARGET (3 SITES)			350
UNIT MIX			
	NO.	%	TARGET
STUDIO	1	2	0 %
1 BED	4	9	15 %
1 BED + STUDY	13	29	15 %
2 BED 1 BATH	2	5	10 %
2 BED 2 BATH	16	36	45 %
2 BED 2 BA STUDY	6	14	10 %

AREA	
657 m² 153 m²	
657 m	-

Sketch Scheme			
Rev	Description	Date	
А	First Issue	21.09.15	
В	Draft Planning	07.10.15	
С	Intermediate Issue	13.11.15	
D	Progress Issue	25.11.15	

CNR PARRAMATTA RD & JOHNSTON ST - PO BOX 254 - ANNANDALE - NSW 2038 - T.02 9564 8800 F.02 9517 2833 STEPHEN J. NORDON REGISTRATION No. NSW - 4704 GRAHAM P. JAGO REGISTRATION No. NSW - 4926

PROPOSED REDEVELO

TITLE

OPMENT - RSL	. SITE 3 TRAFAL	GAR STREET	PETERSHAM
--------------	-----------------	------------	-----------

	C:\0. Local Files\DEI00614\DEI00614_DN Model_Local_Site 3_KL.rvt	JOB No.	DEI00614
			21.09.2015
South Aeria	South Aerial View	SCALE	A1 @
		DWG No.	
			DN.014 D

Appendix B Registered Groundwater Bores Search

bookmark this page

All Groundwater All Groundwater Map

All data times are Eastern Standard Time

> Appendix C Site Photographs

Photograph 1: Site 3, 305-309 Trafalgar Street, warehouse interior, oil staining on concrete surfaces, metal and wood scrap materials noted throughout.

Photograph 2: : Site 3, 305-309 Trafalgar Street, redundant oven with ammonium chloride and magnesium stearate APS chemical distributors labels identified.

Photograph 3: Site 3, 305-309 Trafalgar Street, furnace.

Photograph 4: Site 3, 305-309 Underground Storage Tanks identified adjacent to roller door.

Photograph 5: Site 3, 301-303 Trafalgar Street, plastic wood and metal scrap material throughout, no hardstand cover noted throughout the footprint of the warehouse.

Photograph 6: Site 1, Underground car park, Diesel above ground storage tank.

Photograph 7: Site 2, Oper carpark entry via Regent Street.

Appendix D Historical Property Titles Search

Req:R273925 /Doc:CT 12271-093 CT /Rev:10-Jan-2011 /Sts:OK.OK /Pgs:ALL /Prt:01-Mar-2016 18:54 /Seq:1 of 2 Ref:petersham /Src:T. ATE OF TITLE CE NEW SOUTH WALLES PERTY ACT, 1900 1227Appln. No.3050 Prior Title Vol.6496 Fol.218 Edition issued 14-11-1973 50 N492346 6 CAM - Lor) certify that the person described in the First Schedule is the registered proprietor of the undermentioned estate in the land within described subject nevertheless to such exceptions encumbrances and interests as are shown in the Second Schedule. 122 Registrar General. WARNING THIS DOCUMENT MUST NOT PLAN SHOWING LOCATION OF LAND LENGTHS ARE IN METRES PERSONS ARE CAUTIONED AGAINST ALTERING OR ADDING TO THIS CERTIFICATE OR ANY NOTIFICATION HEREON (Page 1) Vol. 32751 CENTRE OIIS BRICK PARTY ENTRE 0:29 BRID D.P. ò 366.7 m² S B 780 Ż. REGENT հ ρ. D. BE REMOVED FROM THE LAND TITLES OFFICE 1:500 RATIO REDUCTION N492346 W.J. 455 ESTATE AND LAND REFERRED TO Estate in Fee Simple in Lot B in Deposited Plan 376510 in the Municipality of Marrickville Parish of Patersham and County of Cumberland being part of 16.19 hectares granted to Meil EcKellar on 11-12-1794. FIRST SCHEDULE SECOND SCHEDULE contained in the Crown Grant above referred to. Reservations and conditions, if any, 1. Registrar General NOTE: ENTRIES RULED THROUGH AND AUTHENTICATED BY THE SEAL OF THE REGISTRAR GENERAL ARE CANCELLED

Req:R273923 /Doc:CT 14949-176 CT /Rev:19-Jan-2011 /Sts:OK.SC /Pgs:ALL /Prt:01-Mar-2016 18:53 /Seq:1 of 2 Ref:petersham /Src:T FICATE OF TITLE 149491 NEW SOUTH WALES L PROPERTY ACT, 1900 14949 Fol 176 Prior Title : Old System Vol. 6496 Fol.217 Vol.12271 Fol. 93 Vol.13562 Fol. 3 176 Prior litles : EDITION ISSUED 1982 I certify that the person named in the First Schedule is the registered proprietor of an estate in fee simple (or such other estate or interest as is set out below) in the land described subject to the recordings appearing in the Second Schedule and Ъ. 14949 to the provisions of the Real Property Act, 1900. SEE AUTO FOLIO Registrar General. PLAN SHOWING LOCATION OF LAND NOTE: ENTRIES RULED THROUGH AND AUTHENTICATED BY THE SEAL OF THE REGISTRAR GENERAL ARE CANCELLED PERSONS ARE CAUTIONED AGAINST ALTERING OR ADDING TO THIS CERTIFICATE OR ANY NOTIFICATION HEREON LENGTHS ARE IN METRES (Page 1) Vol S 1=) 15765 50 235 135 (3.05. Ð ø 32751 D.P.58785 - Q 38046. (A) 5 11 ŀŀ-1 CARRIAGEWAY CARRIAGEWAY REGENT itt 3028 m² ņ 14 17.925 đŀ റി 15 50 壮 RIGHT RIGHT Ū. đļi Q ሬሬ BENEFITED ጉ ነ 30 50.795 و ک F ISHER ST (2.54-10-16-2.54) S C LAND REFERRED TO Lot 1 in Deposited Plan 629058 at Petersham in the Municipality of Marrickville Parish of Petersham. and County of Cumberland. FIRST SCHEDULE PETERSHAM R.S.L. CLUB LIMITED SECOND SCHEDULE GRY 1. Reservations and conditions, if any, contained in the Crown Grant. Lease to Sydney Councy Council of Substation premises No.3522 as shown in plan with 2: P279243 Lease to Sydney Councy Council of Substation-premises No.3522 as shown in plan with P279243, together with a right of way and segment for electricity purposes over another-part of the land above described. Expire 22 2 1992, X144929 Right of carriageway appurtenant to the part of the land above described shown so benefited affecting the part of Lot 1 shown so burdened in Deposited Plan 507859. Right of carriageway appurtenant to the part of the land above described shown so benefited affecting the part of Lot 1 shown so burdened in Deposited Plan 507859. RCP 3. 038046/ 4. DP587859 RCf RG 2/64

L

Req:R278917 /Doc:CT 10898-074 CT /Rev:28-Jan-2011 /Sts:OK.SC /Pgs:ALL /Prt:02-Mar-2016 13:03 /Seq:1 of 2 Ref:petersham /Src:T RTIFICATE OF TITLE 1089807 NEW SOUTH WALES ROPERTY ACT, 1900, as amend 74 898 Fol Appln. No. 3222 Prior Title Vol. 3134 Fol. 163 Ŧ Edition issued 4-10-1968 MF К955351 Fol I certify that the person described in the First Schedule is the registered proprietor of the undermentioned estate in the land within 00 0898 described subject nevertheless to such exceptions encumbrances and interests as are shown in the Second Schedule. Witness L. balliner tor Registrar General. WARNING THIS DOCUMENT MUST NOT BE REMOVED FROM THE LAND TITLES OFFICE PLAN SHOWING LOCATION OF LAND Vol. (Page 1) B Plan in Tsfr A 832070 134 £ 03/4 in PERSONS ARE CAUTIONED AGAINST ALTERING OR ADDING TO THIS CERTIFICATE OR ANY NOTIFICATION HEREON 5 163/4per 147R.24 Canterbury Rd. CANCELLED K9553510/604 Scale: 30feet to one inch. SEE AUTO FOLIO S ESTATE AND LAND REFERRED TO Estate in Fee Simple in Lot 5 in the plan lodged with Transfer No. A605656 (filed as F.P. 110490) in the Municipality of Marrickville, Parish of Petersham and County of Cumberland being part of 40 acres granted to Neil McKellar on 11-12-1794. FIRST SCHEDULE PHYLLIS MARY ALLWOOD etersham, Fenme Sole. SECOND SCHEDULE 4KY1. Reservations and conditions, if any, contained in the Crown Grant above referred to. Hortgago - 1k perative Building Society No. 11 Lim Entored DR 0 na M642803 Registrar General. NOTE: ENTRIES RULED THROUGH AND AUTHENTICATED BY THE SEAL OF THE REGISTRAR GENERAL ARE CANCELLED

Req:R279646 /Doc:DP 1208130 P /Rev:23-Jul-2015 /Sts:SC.OK /Pgs:ALL /Prt:02-Mar-2016 14:05 /Seq:1 of 3 Ref:pet /Src:T

DP1208130

WARNING: OREASING OR FOLDING WILL LEAD TO REJECTION

Sheet 1 of 1 sheets

Req:R279646 /Doc:DP 1208130 P /Rev:23-Jul-2015 /Sts:SC.OK /Pgs:ALL /Prt:02-Mar-20* Ref:pet /Src:T

PLAN FORM 6 (2013) WARNING: Creasing or	folding will lead to rejection ePlan
DEPOSITED PLAN A	DMINISTRATION SHEET Sheet 1 of 2 sheet(s)
Office Use Only Registered: 23.7.2015 Title System: TORRENS Purpose: CONSOLIDATION	Office Use Only DP1208130
PLAN OF CONSOLIDATION OF LOTS 1 IN DP62688, 1 IN DP735751, 4 IN DP1105379 & 1 IN DP68697	LGA:MARRICKVILLELocality:PETERSHAMParish:PETERSHAMCounty:CUMBERLAND
Crown Lands NSW/Western Lands Office Approval I	Survey Certificate IJOHN WALTON OfDAW & WALTON PTY LTD PO Box 3222, REDFERN NSW 2016
Signatures, Seals and Section 88B Statements should appear on PLAN FORM 6A	DP1105379 DP448280 DP809479 If space is insufficient continue on PLAN FORM 6A Surveyor's Reference: 2471-14DP

Req:R279646 /Doc:DP 1208130 P /Rev:23-Jul-2015 /Sts:SC.OK /Pgs:ALL /Prt:02-Mar-20[°] Ref:pet /Src:T

ePlan **PLAN FORM 6A (2012)** WARNING: Creasing or folding will lead to rejection DEPOSITED PLAN ADMINISTRATION SHEET Sheet 2 of 2 sheet(s) Office Use Only Office Use Only Registered: 23.7.2015 DP1208130 PLAN OF CONSOLIDATION OF LOTS 1 IN DP62688, 1 IN DP735751, 4 IN DP1105379 This sheet is for the provision of the following information as required: & 1 IN DP68697 • A schedule of lots and addresses - See 60(c) SSI Regulation 2012 Statements of intention to create and release affecting interests in accordance with section 88B Conveyancing Act 1919 Subdivision Certificate number: Signatures and seals- see 195D Conveyancing Act 1919 • Any information which cannot fit in the appropriate panel of sheet 1 of Date of Endorsement: the administration sheets. Street Number Lot Street Name Street Type Locality 1 297-309 Trafalgar Street Petersham FOUAD DEIRI SULE DIRECTOR / SECRETARY DELCORP PRUJERTS PETERSHAM PTYLTO (ACN: 602 239 789) Bank of Sydney Ltd ACN 093 488 629 by its Attorneys who have No notice of revocation of the power of attorney dated $\frac{1}{24}$ $\frac{1}{24}$ A certified copy of which is filed in Registration/ Book No $\frac{1}{4}$ (-6) - 440 in the presence of: 10 Analia Kyrican. FORES ATTORNEY WITNESS DOLALS SHAREN of 219 Castlereagh street Sydney NSW 2000 If space is insufficient use additional annexure sheet Surveyor's Reference: 2471-14DP

Legal Liaison Services

Legal Liaison Services hereby certifies that the information contained in this document has been provided electronically by the Registrar General.

Information provided through Tri-Search an approved LPINSW Information Broker

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - HISTORICAL SEARCH

SEARCH DATE 2/3/2016 1:33PM

FOLIO: 1/68697

First Title(s): SEE PRIOR TITLE(S) Prior Title(s): VOL 2467 FOL 185

Recorded	Number	Type of Instrument	C.T. Issue
21/8/1988		TITLE AUTOMATION PROJECT	LOT RECORDED FOLIO NOT CREATED
11/9/1990		CONVERTED TO COMPUTER FOLIO	FOLIO CREATED CT NOT ISSUED
5/9/2014	AI870563	DISCHARGE OF MORTGAGE	EDITION 1
28/2/2015	AJ294894	CAVEAT	
31/3/2015	AJ366510	WITHDRAWAL OF CAVEAT	
15/7/2015	AJ627440	TRANSFER	
15/7/2015	AJ627441	MORTGAGE	
22/7/2015	AJ674303	DEPARTMENTAL DEALING	
23/7/2015	DP1208130	DEPOSITED PLAN	FOLIO CANCELLED

*** END OF SEARCH ***

petersham

PRINTED ON 2/3/2016

*ANY ENTRIES PRECEDED BY AN ASTERISK DO NOT APPEAR ON THE CURRENT EDITION OF THE CERTIFICATE OF TITLE. WARNING: THE INFORMATION APPEARING UNDER NOTATIONS HAS NOT BEEN FORMALLY RECORDED IN THE REGISTER. Legal Liaison Services

Legal Liaison Services hereby certifies that the information contained in this document has been provided electronically by the Registrar General.

Information provided through Tri-Search an approved LPINSW Information Broker

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - HISTORICAL SEARCH

SEARCH DATE 2/3/2016 1:44PM

FOLIO: 4/1105379

First Title(s): OLD SYSTEM

		BK 3224 NO 219	
Recorded	Number	Type of Instrument	C.T. Issue
7/11/2006	DP1105379	DEPOSITED PLAN	FOLIO CREATED CT NOT ISSUED
7/11/2006	CA102606	CONVERSION ACTION	CI NOI ISSUED
16/11/2006	AC747324	DEPARTMENTAL DEALING	EDITION 1
28/2/2015	AJ294894	CAVEAT	
31/3/2015	AJ366510	WITHDRAWAL OF CAVEAT	
15/7/2015 15/7/2015		TRANSFER MORTGAGE	
22/7/2015	AJ674303	DEPARTMENTAL DEALING	
23/7/2015	DP1208130	DEPOSITED PLAN	FOLIO CANCELLED

*** END OF SEARCH ***

petersham

PRINTED ON 2/3/2016

*ANY ENTRIES PRECEDED BY AN ASTERISK DO NOT APPEAR ON THE CURRENT EDITION OF THE CERTIFICATE OF TITLE. WARNING: THE INFORMATION APPEARING UNDER NOTATIONS HAS NOT BEEN FORMALLY RECORDED IN THE REGISTER.
Legal Liaison Services

Legal Liaison Services hereby certifies that the information contained in this document has been provided electronically by the Registrar General.

Information provided through Tri-Search an approved LPINSW Information Broker

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - HISTORICAL SEARCH

SEARCH DATE 2/3/2016 1:54PM

FOLIO: 1/735751

First Title(s): OLD SYSTEM
Prior Title(s): CAll975

Recorded	Number	Type of Instrument	C.T. Issue
27/8/1986	CA11975	CONVERSION ACTION	FOLIO CREATED EDITION 1
30/9/1986	W542551	DEPARTMENTAL DEALING	EDITION 2
3/11/1988	X947624	TRANSFER	EDITION 3
<mark>28/2/2015</mark>	AJ294894	CAVEAT	
31/3/2015	AJ366510	WITHDRAWAL OF CAVEAT	
15/7/2015	AJ627440	TRANSFER	
15/7/2015	AJ627441	MORTGAGE	
22/7/2015	AJ674303	DEPARTMENTAL DEALING	
23/7/2015	DP1208130	DEPOSITED PLAN	FOLIO CANCELLED

*** END OF SEARCH ***

petersham

PRINTED ON 2/3/2016

*ANY ENTRIES PRECEDED BY AN ASTERISK DO NOT APPEAR ON THE CURRENT EDITION OF THE CERTIFICATE OF TITLE. WARNING: THE INFORMATION APPEARING UNDER NOTATIONS HAS NOT BEEN FORMALLY RECORDED IN THE REGISTER.

Req:R279532 /Doc Ref:petersham /Sr	CT STAMP DUTY	::ALL /Prt:02-Mar-2016 13:5	56 /Seq:1 of 1	FICE USE ONLY	т!
		C			Y047624
	÷				
JOUIN WEST	The second se	TRANSFER			
		REAL PROPERTY ACT. I	900 T	<u>CG</u>	-A RILL
			•	\$ 42	
DESCRIPTION	Torrens Title Reference	If Part Only, Delete Whole and	Give Details	Locati	on
OF LAND Note (a)		WHOLE	_		
	Volume 11493 Folio 81 Folio Identifier 1/735751			Petersham	
2	An and the second s	 A Contension (in terms of 20.0) 			-
TRANSFEROR Note (b)	FOZZARD NOMINEES PTY LIMITED				
	FUZZARD NORINEES FIT LIMITED				
	1				×.
ESTATE Note (c)	(the abovenamed TRANSFEROR) hereby acknowledges rece and transfers an estate in fee simple	ipt of the consideration of \$ 350	,000.00		
TRANSFEREE	in the land above described to the TRANSFEREE			<i>8</i> .	OFFICE USE ONLY
Note (d)	E. S. McCALLUM HOLDINGS PTY LIMIT	ED			
			3	л.	.S I
TENANCY Note (c)	25 joint tenents/tenants-in-common			3	
PRIOR	subject to the following PRIOR ENCUMBRANCES 1. X	266854 (Lease)			
ENCUMBRANCES	2. X 358935 (Lease)	Э.	e e e e e e e	29. C. 1.22. See -	9.18: W 1.28.185 1.5498
	DATE 21 OCTOBER 1988		5 4	FOZZARD	
	We hereby certify this dealing to be correct for the purpos	es of the neal Property Act, 1900.		0	201
EXECUTION Note (g)	Signed in my presence by the transferor who is personally k	÷	(New Second	× Smm	MIN
14662 (8)	THE COMMON SEAL of FOZZARD NOMINEES			A Caron	ES S
	was hereunto affixed by authority of	the		TIMITED	
	Nume of Winner (BLOCK LEFFLAS) Directors in the presence of:	in the second	"399720 ⁰ /	BILLA	-
	Meren and any manga	net to Joggov HOLDI	NRO	allon V. J.	Sport
12	Secretary	13/	-)=1	Direct	or
Note (g)	Signed in my presence by the transferee who is personally he THE COMMON SEAL of E. S. McCALLUM HO	LDINCS		~ .	2
	PTY LIMITED was hereunto afflxed by	60 3 8.7		۵.	
	Nama at Wisness (BLOCK-LETTERS)	*	<i></i>		
e.	authority of the Directors in the		V	6.16.46	aclum
	presence of: X			Directo	r. r
TO BE COMPLETED	LODGED BY REV AND MERCAL	3			
BY LODGING PARTY Notes (h)	SOLICITORS		OTHER	Harmith	
and (1) 542	60 MARCARET STREET Tel: 10850 SAMAGEY	Ca		Herewich.	
Sall	1950			In L.T.O, with	
	Delivery Box Number L/X CCC ANAPALY Checked Passed REGISTERED	Secondar		Produced by	
OFFICE USE ONLY	Checked Passed REGISTERED	Direction		······	
Dave	Signed Extra Fee 3 NO	Denvery			
MI		Direction	" (/ j	1795	ν
	Leans by start-outy 12/10/00	/ / /	<u>.</u>		
CANA	1/ Mahual Endt. Co	mplete 1/11/	88		

Req:R27	9546 /Doc:DL A.	J627440 /Rev	r:21-Jul-2015 /Sts:	NO.OK /Pgs:ALL /Prt:0)2-Mar-2016 13:	57 /Seq:1 of 1	
Ref:peter	rsham /Src:T	3	-				
	Form: 01T	G	ł		r	A CINA DELLA LIDEL ILLES DIGUESTA	
	Release: 6-1				Δ	J62744	10\4/
	PRIVACY NOTE:	Section 31B of	the Real Property Ac		the Ru		
	by this form for	r the establish	ment and mainten	ance of the Real Proper	Act Renister.	SERER 358 BY AC	T requires that
	the Register is ma	ade available to	o any person for sear	ch upon payment of a fee,			07
	STAWP DOTT	Unice of Sta	te Revenue use only			Trans No: 8042	648-001
	Release: 61 Normality Rel Toperty Act 1300 AJ PRIVACY NOTE: Section 318 of the Real Property Act 1300 AJ the Register is made available to any person for search upon payment of a least the register is made available to any person for search upon payment of a least the register is made available to any person for search upon payment of a least the register is made available to any person for search upon payment of a least the register is made available to any person for search upon payment of a least the register is made available to any person for search upon payment of a least the register is made available to any person for search upon payment of a least the register is made available to any person for search upon payment of a least the register is made available to any person for search upon payment of a least the register is made available to any person for search upon payment of a least the register is made available to any person for search upon payment of a least the register is made available to any person for search upon payment of a least the register is made available to any person for search upon payment of a least the register is made available to any person for search upon payment of a least the register is made the register is made the register is made available to any person for search upon payment of a least the register is made available to any person for search upon payment of a least the register is made the register is made available to any person for search upon payment of a least the register is made register is made		1/3/16 NO.				
	360 360				Asst detaile:		
	TOBRAS AND				(ma)/		
	CIER O LE	1/62688,	AND A ANY ANY	1105379 and 1/686	97		
		Decument	the spectrum desired as	X Telephone and Custo	A goount Nur	abor i Canu	
Ψ.	ALT 2034	4				foer it any	
	<u>e</u>	Box		MONS CC	WWAY		∦∎ ∤
		42G			3164E		
		QU8K	Reference:	RES 15	569/3		
(C)	TRANSFEROR	E S McCal	llum Holdings	Pty Limited ACN	000 253 403		
(D)							and as regards
(E)		the abovemen	tioned land transfers	to the transferee an es	state in fee	simple	
(F)	SHARE TRANSFERRED						
(G)		Encumbrance	s (if applicable):				
(H)	TRANSFEREE	Deicorp H	Projects Peter	sham Pty Ltd ACN	602 239 789		
	8		2				
(1)		TENANCY:					
	DATE						
(L)							
	pursuant to the au	athority specifi	ed.				
	A						
	Signature of suth	orised person:	× DOILY ID		re of authorised p	erson:	
	Signature of dutil		· noverteen		as or autioniscu p	× Valene	2 IM. Terry
	Name of authoris Office held:	ed person:	RONALD B. M.C.	Name of Name o	of authorised personal persona personal personal person	»: XVALERIE (NEFERRY
		アク	RECTOR SECRE	TARY	inena.	X DIRECTO	IR.
		-	7				
							n whose
				Signat	ure:	115	1.
				-		245	
				N=			
						Leon Sakaris	
				Signat	ory o enhancy.	solicitor	
(K)	The transfer	ee	certifies t	hat the eNOS data relevan	nt to this dealing h	as been submitted a	nd stored under
()			7		_	ignature:	
		uires that you	to ite inclusion and	signatory for more than			documentation.
	ALL HANDWRITING !	MUST BE IN BLOC	CAPITALS	Page 1 of 1			1303
	PCF	(L)×2	66354 4100	האל			
	* • •	(i) x?	5c 3935)"	- 07	•		

•

Req:R279610 /Doc:CT 11493-081 CT /Rev:16-Dec-2010 /Sts:OK.SC /Pgs:ALL /Prt:02-Mar-2016 14:03 /Seq:1 of 2 Ref:petersham /Src:T CATE OF TITLE NEW SOUTH WALLES PROPERTY ACT, 1900. 11493 Fol. Vol. Appln. No.12688 Edition issued 5-1-1971 Prior Title Vol. 1490 Fol. 230 8 M55327 1765 I certify that the person described in the First Schedule is the registered proprietor of the undermentioned estate in the land within described subject nevertheless to such exceptions encumbrances and interests as are shown in the Second Schedule. Fol 9 6 7 WARNING: PLAN SHOWING LOCATION OF LAND SEE AUTO FOLIO I) Vol. THIS DOCUMENT (Page St. PERSONS ARE CAUTIONED AGAINST ALTERING OR ADDING TO THIS CERTIFICATE OR ANY NOTIFICATION HEREON Trafalgar Δ MUST NOT BE **REMOVED FROM THE** THE LAND WITHIN LANE IOF. WIDE DESCRIBED IS LOTI DP6268B Sec. 15 Scale: 50 feet to M 55327 one ESTATE AND LAND REFERRED TO Estate in Fee Simple in the land shown in plan lodged with Primary Application No.12688 (filed as F.P.62688) in the Municipality of Marrickville Parish of Petersham and County of Cumberland LAND TITLES OFFICE S being part of 40 acres granted to Neil McKellar on 11-12-1794. FIRST SCHEDULE Prummoyne, Company-Manager-and DAVID-TERENGE-PANGKHURST-of Blakehurst LEONARD-CRAIG-FOZZARD -Solicitor-as-Joint-T SECOND SCHEDULE GRY 1. Reservations and conditions, if any, contained in the Crown Grant above referred to. Registrar General

rinst writbult (continued) Registered 21-3-1996 Registered 1-11-1988 Registered 21-3-1986 Registered 1-11-1988 Registered 1-100rS		OATE ENTERED Signature of Reparts - General		CANCELLATION	uma		20-1-1983	9-2-1988	
REGISTERED PROPRIETOR REGISTERED PROPRIETOR Indetection 1 - 11 - 1988 by Transfer 70947624, Registered 1-11-1 Indetection 1 - 11 - 1988 by Transfer 70947624, Registered 1-11-1 Indetection 1 - 11 - 1988 by Transfer 70947624, Registered 1-11-1 RECOND SCHEDULE (continued) RECOND SCHEDULE (continued) R				Signature of Registrar-General	Junction Withdrawn	Junion Forguid	Expired	Expired	
REGISTERED PROPRIETOR REGISTERED PROPRIETOR Mafers H193555 and H193555. Registered 21-3-1986 Hegistered 1-11-1988 by Transfer X947624. Registered Registered 1-11-1988 by Transfer X947624. Registered Registered 1-11-1988 by Transfer X947624. Registered Registered 1-11-1988 by Transfer X947654. Registered 24 Registered 1-11-1988 by Transfer X947654 Registered 1-11-1988 by Transfer X94644 Registered 1-11-1984 by Transfer X9444 Registered 1-11-11-11-11-11-11-11-11-11-11-11-11-1			All States	ENTERED	Life Carl	2-11-1976.	tered	rloor nd fic	
	FIRST SCHEDULE (continued)	13555. Registered 21-3-1986 by Transfer X947624. Registered	EDULE		Malgar Street,	1979. 2 Anna ar Da 291-299 Tagalar 10 an ghan gi nu nu Dh	ound-flou	orporation Limited of premises being the first and see gress and egress over the corridor and stairway on the falgar Street, Petersham Expires 31-3-1989 Option of	of premises being ground floor of the premises he stainwell and entrance to second and third fl

Reg:R279767 /Doc:	DL W193553 /Rev:02-Nov-2010 /Sts:OK.SC /Pgs:ALL /Prt:02-	-Mar-2016 14:13 /Seg:1 of 5		
Ref:petersham /Src			93553	
	REAL PROPERTY	ion on back of form	A 1 or y \$ 33	X
DESCRIPTION OF LAND Note (a)	Torrens Title Reference COMMISSIONER If Part Only,	Delete Whole and Give Details WHOLE	Locatio	JR.
TRANSFEROR Note (b)	LEONARD CRAIG FOZZARD of 48/84 St.G Company Manager, and DAVID TERENCE Sydney, Solicitor,	Seorges Crescent, 1 PANCKHURST of 280		OFFICE USE ONLY
ESTATE Note (c) TRANSFEREE	(the abovenamed TRANSFEROR) hereby acknowledges receipt of the consider and transfers an estate in fee simple in the land above described to the TRANSFEREE	leration of \$ See annexu:	re hereto	OFFICE USE ONLY
Note (b)	See annexure hereto			UIST
TENANCY Note (d)	as joint tenants/tenants in common	xure hereto		
PRIOR PRIOR ENCUMBRANCES	DATE OF TRANSFER 174- DUTOGEA 1905	3		
M Some EXECUTION Note (1) Note (1)	DATE OF TRANSFER MADDUTY 1905 We hereby certify this dealing to be correct for the purposes of the Real P Signed in my presence by the transferor who is personally known to me	roperty Act, 1900.	D. T Foulland Signature of Tra	
9 1 Note (I) 7	Signed in my presence by the transferee who is personally known to me		2	
2	Name of Witness (BLOCK LETTERS)			
505,9	Address and occupation of Witness		DT. Partit (Signature of Tra Solider for	D.T. P. AN CHAUNSTS notaree
TO BE COMPLETED BY LODGING PARTY Notes (g) and (h)	LODGED BY E.D. PANCKHURST & SON SOLICITORS 280 PITT STREET, SYDNEY. 2000 DX 494 SYDNEY PHONE 264 6726 665S Delivery Box Number		CATION OF DOCUMENTS Herewith. In R.G.O. with Produced by	
OFFICE USE ONLY	Extra Fee Checked By REGISTERED 21 -3 -1986		Over	
		cent	17/2 17/2	606203

INSTRUCTIONS FOR COMPLETION

This dealing should be marked by the Commissioner of Stamp Duties before lodgment at the Registrar General's Office.

Typewriting and handwriting should be clear, legible and in permanent black non-copying ink.

Alterations are not to be made by erasure; the words rejected are to be ruled through and initialled by the parties to the dealing.

If the space provided is insufficient, additional sheets of the same size and quality of paper and having the same margins as this form should be used. Each additional sheet must be Identified as an annexure and signed by the parties and the attesting witnesses.

If It is intended to create easements, covonants, &c., use forms RPI3A, RPI3B, RPI3C as appropriate.

Rule up all blanks.

The following instructions relate to the SIDE NOTES on the form,

(a) Description of land:

(i) TORRENS TITLE REFERENCE: —Insert the current Folio Identifier or Volume and Folio of the Certificate of Title/Crown Grant for the land being transferred, e.g., 135/5P12345 or Vol. 8514 Fol. 126. (ii) PART/WHOLE.—If part only of the land in the folio of the Register is being transferred, delete the word "WHOLE" and insert the lot and plan number, portion, &c. See also sections 327 and 327AA of the Local Government Act, 1919.

(iii) LGCATION .- Insert the locality shown on the Certificate of Title/Crown Grant, e.g., at Chullora. If the locality is not shown, insert the Parish and County, e.g., Ph. Lismore Co. Rous.

(b) Show the full name, address and occupation or description.

(c) If the estate being transferred is a lesser estate than an estate in fee simple, delete "fee simple" and insert appropriate estate.

(d) Delete if only one transferee. If more than one transferee, delete either "joint tenants" or "tenants in common", and, if the transferees hold as tenants in common, state the shares in which they hold.

(e) In the memorandum of prior encumbrances, state only the registered number of any mortgage, lease, charge or writ to which this dealing is subject,

(f) Execution: GENERALLY

(i) Should there be insufficient space for execution of this dealing, use an annexure sheet.
 (ii) The certificate of correctness under the Real Property Act, 1900, must be signed by all parties to the transfer, each party to execute the dealing in the presence of an adult witness, not being a party to the dealing, to whom he is personally known. The solicitor for the transferre may sign the certificate on behalf of the transferce, the solicitor's name (not that of his firm), to be typewritten or printed adjacent to his signature. Any person faitely or negligently certifying is liable to the penalies provided by section 117 of the Real Property Act, 1900.
 (iii) If the transfer is executed by an attorney for the transfereorizantine ground to a registered power of attorney, the form of accession must set out the full name of the attorney, and the form of execution must indicate the source of his authority, e.g., "AB by his attorney (or receiver or delegate, at the case may be) XY pursuant to power of attorney, the remoter of attorney."
 (iv) If the transfer is executed by an under teal, the form of execution must indicate the source of the notice of the revocation of the ransfer of attorney. Judicial or other authority pursuant to which the transfer his been executed.

ATTORNEY

AUTHORITY Une stanter may prevented. CORPORATION (v) If the transfer is executed by a corporation under seal, the form of execution should include a statement that the seal has been properly affixed, e.g., in accordance with the Articles of Association of the corporation. Each person attesting the affixing of the seal must state his position (e.g., director, secretary) in the corporation.

(g) Insert the name, postal address, Document Exchange reference, telephone number and delivery box number of the lodging party.

(h) The lodging party is to complete the LOCATION OF DOCUMENTS panel. Place a tick in the appropriate box to indicate the whereabouts of the Certificate of Title. List, in an abbreviated form, other documents lodged, e.g., stat. dec. for statutory declaration, pbte for probate, L/A. for letters of administration, &c.

OFFICE USE ONLY

DIRECTION: PROP	Г.,		FIRST SCHEDU	JLE DIRECTIONS	1
(A) FOLIO IDENTIFIER	(B) (C) No. SHAI	(D)	(E)		
	i i	i i	a second		
ger a stranger a	i i -	i			
	1.1	. Èst		1	
승규는 영상에 가지 않는		i i			
	1	i	li V	1. I I I I I I I I I I I I I I I I I I I	
	- 11 - F	i —			
	î î -	1	1		
	1/11	1			
	E F	÷.		5 g - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	
사람이 물건하다 한 것이 없다.					
		I I	F		
A. 이번에는 이야지 않는		<u>1</u> =	1	Sec. 2	
		1			
No wie er? :	l I	1			
g as a second a second as	1	14.			-
1. 19. 중점에서 10 Million 10 Mi Million 10 Million 10 Mil	i ii	1		6	
8	1 A T	1	- · · · · · · · · · · · · · · · · · · ·		
	1.1	. I			
		-1			
전상 가장 전에 가 있는 것이 없다.		1		in a a grin i di geli	
		- 1 -			
205 - 000 ^{- 0}	1	1		af the second	
	l "]	4			
	E T	1 t.	V 2 0		
	È È e -	1	È i gr	a	
ತನ್ನನ ಗಿಂತ ಗಿಂತ ಗಡೆಗಳು		1		3° 1	
		1		a and a second	
and the second			the second se	& OTHER DIRECTIONS	
F) FOLIO IDENTIFIER	(G) DIRECTION	(H)NOTI TYPE	N (I) DEALING NUMBER	(K) DETAILS	
2480-173 7180-110 7534-182 11493-81					
2000110	21-10	01.	MSS328-		
7021-182	OFF	LV0			
111.02 - 01		-	1 - A J		
11475 81)			1		
			 (a) a (b) 		
	-		1	Src:T) medereham

	W193553 /Rev:02-Nov-2010 /Sts:OK.SC /Pgs:/	LL /Prt:02-Mar-2016 14:13 /Seq:3 of 5	28 M & M & M & M & M & M & M & M & M & M
Ref:petersham /Src:T			
A	Annexure		and the second se
Se 1 1	This is the annexure to Trans		985 between
2 M I I I I I	LEONARD CRAIG FOZZARD and D and LEONARD CRAIG FOZZARD, R	AVID TERENCE PANCKHURST, as	Transferors
	LAMBERT and FOZZARD NOMINEE	S PTY. LIMITED, as Transfere	es
			생기에 가 가 가 있는 것을 통했
		그 것은 도망질을 가 것	제 다양과 제 나온 것 다운 것
	Torrens Title If	Part Only, Délete Whole and Give Details	Location
DESCRIPTION OF LAND	•••••••••••••••••••••••••••••		
OI MIND	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		
1 A M 1 1	Volume 2241 Folio 141	Whole	Ph. Petersham
Ô0	Volume 1346 Folio 82 - par	being Lots 2 6-3	Co. Cumberland Ph. Petersham
	sho	pherds Bitate	Co. Cumberland
89	Volume 1346 Folio 82 par		
	She	sherds Estat e	Ph. Petersham Co. Cumberland
ਭਾਂ ਗੁਰ	Volumo 11493 Folio 81	124-1-	
	AOTHUG TT452 LOTTO PT	Whole	Ph. Petersham Co. Cumberland
1 E E	Volume 7180 Folio 110	Whole	Ph. Petersham
			Co. Cumberland
8 6 6 8	Volume 2480 Folio 173	Whole	Ph. Petersham
Sec. 1.	a second a second a		Co. Cumberland
	Volume 7534 Folio 182	Whole	Ph. Hunters Hill
ESTATE			Co. Cumberland
LOTATE,	Allan Manning Fozzard decea	pursuant to the provisions of used and pursuant to the Deed	of Assignment/
M 5.8	transfers an estate in fee	simple dated 18th De	
	in the land above described	l to the TRANSFEREES	
TRANSFEREE	LEONARD CRAIG FOZZARD of 4	8/84 St. Georges Crescent, I	rummoyne,
an 12	Company Manager, ROBERT ALE	XANDER FOZZARD of 9 Prince ingineer, and VALERIE IRENE	Edward
	130 Earrier Reef Drive, Rob	ina, Queensland, and FOZZARD	NOMINEES PTY.
	in equal shares as tenants-	in-common	the the Local of Bridgen and Ar
			한 것 이상 한 집 집 것 같아요.
PRIOR ENCUMBRANCES	Subject to the following PR		
а п	1. Lease No. V480167	as to whole of land in Cert Volume 2241 Folio 141	ificate of Title
16 ·	2. Lease No. V291044	as to part of the land in C	ertificate of
·	2 LODGO NA 1400167	Title Volume 1346 Folio 82	fiento of Miklo
	3. Lease No. V480167	as to part of land in Certi Volume 1346 Folio 82	LICATE OF TITLE
	4. Lease No. T379185	as to whole of land in Cert	ificate of Title
50 V	5. Lease No.5 71590	Volume 11493 Folio 81 as to whole of land in Cert	ificate of Title
		Volume 7180 Folio 110	
1 2	6. Lease No.R 521500	as to part of land in Certi Volume 2480 Folio 173	ficate of Title
- 10 C	7. Lease No. 5948146	as to part of land in Certi	ficate of Title
5.0		Volume 2480 Part 173	ificate of Title
	S. Lease No. S841615 11 mr. Lease No WISP635	as to whole of land in Cert Volume 7534 Folio 182	TICALE OF ITCLE
	"arclarke	XII-	
EXECUTION	Signature of Witness	Sout	지는 이번 가지만 않았다.
54 III.	ANNA CLAR IdE	Ċ	
		Q.T. An	Mr.
- 14 - X - 11 - 1	Name of Witness	Signature of '	Fransferors
	280 Pill St. Spy See	et Cup	
	Address and occupation of w		
		AT /	Alt COT. PAJULANNES
		Signature of	* * * * * * * * * * * * * * * * * * * *
			for Tray foros
			7 7

5

19 A.

学を大学を

E. D. PANCKHURST & SON SOLICITORS 280 PITT STREET, SYDNEY. 2000 DX 494 SYDNEY PHONE 264 6726 6659

5000 J

Annexure

This is the annexure to Transfer dated '14 ocresca 1985 between LEONARD CRAIG FOZZARD and DAVID TERENCE PANCKHURST, as Transferors, and LEONARD CRAIG FOZZARD, ROBERT ALEXANDER FOZZARD, VALERIE IRENE LAMBERT and FOZZARD NOMINEES PTY. LIMITED, as Transferees

EXECUTION

We hereby certify this dealing to be correct for the purposes of the Real Property Act, 1900.

Signed in my presence by the transferor wh is personally known to me

a. H. Clarke

Signature of Witness ANN MARIE CLARKE

Name of Witness

280 P.11 ST., SYDNEY. JUCKETARY Address and occupation of Witness

Q.T. Rullant.

Signature of Transferors 1)-10-19-5

Signature of Witness

Name of Witness

Address and occupation of Witness

THE COMMON SEAL of FOZZARD NOMINEES PTY. LIMITED was hereunto affixed in the presence of :

Q.T. Poullet [D.T. PANCILHUNST] 'Signature' of Transfereet

Soluitor for Taspous

E. D. PANCKHURST & SON SOLICITORS 280 PITT STREET, SYDNEY. 2000 DX 494 SYDNEY. <u>PHONE 264 6726</u> 665S

-

L& Renekhurrer. Sy 60620 B Legal Liaison Services

Legal Liaison Services hereby certifies that the information contained in this document has been provided electronically by the Registrar General.

Information provided through Tri-Search an approved LPINSW Information Broker

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - HISTORICAL SEARCH

SEARCH DATE 2/3/2016 2:03PM

FOLIO: 1/62688

First Title(s): SEE PRIOR TITLE(S)
Prior Title(s): VOL 11493 FOL 81

Recorded 29/7/1989	Number	Type of Instrument TITLE AUTOMATION PROJECT	C.T. Issue LOT RECORDED FOLIO NOT CREATED
26/8/1991		CONVERTED TO COMPUTER FOLIO	FOLIO CREATED CT NOT ISSUED
28/2/2015	AJ294894	CAVEAT	
31/3/2015	AJ366510	WITHDRAWAL OF CAVEAT	
15/7/2015 15/7/2015 22/7/2015	AJ627440 AJ627441 AJ674303	TRANSFER MORTGAGE DEPARTMENTAL DEALING	
23/7/2015	DP1208130	DEPOSITED PLAN	FOLIO CANCELLED

*** END OF SEARCH ***

petersham

PRINTED ON 2/3/2016

*ANY ENTRIES PRECEDED BY AN ASTERISK DO NOT APPEAR ON THE CURRENT EDITION OF THE CERTIFICATE OF TITLE. WARNING: THE INFORMATION APPEARING UNDER NOTATIONS HAS NOT BEEN FORMALLY RECORDED IN THE REGISTER.

Legal Liaison Services hereby certifies that the information contained in this document has been provided electronically by the Registrar General in accordance with Section 96B(2) of the Real Property Act.

Information provided through Tri-Search an approved LPINSW Information Broker

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - TITLE SEARCH

FOLIO: 1/1208130

 SEARCH DATE
 TIME
 EDITION

 2/3/2016
 2:01 PM
 1

FION NO	DATE
1	23/7/2015

LAND

LOT 1 IN DEPOSITED PLAN 1208130 AT PETERSHAM LOCAL GOVERNMENT AREA MARRICKVILLE PARISH OF PETERSHAM COUNTY OF CUMBERLAND TITLE DIAGRAM DP1208130

FIRST SCHEDULE

DEICORP PROJECTS PETERSHAM PTY LTD

SECOND SCHEDULE (3 NOTIFICATIONS)

- 1 RESERVATIONS AND CONDITIONS IN THE CROWN GRANT(S)
- 2 QUALIFIED TITLE. CAUTION PURSUANT TO SECTION 28J OF THE REAL PROPERTY ACT, 1900. ENTERED 7-11-2006 AS REGARDS THE PART IN BK 3224 NO 219
- 3 AJ627441 MORTGAGE TO BANK OF SYDNEY LTD

NOTATIONS

UNREGISTERED DEALINGS: NIL

*** END OF SEARCH ***

petersham

PRINTED ON 2/3/2016

*ANY ENTRIES PRECEDED BY AN ASTERISK DO NOT APPEAR ON THE CURRENT EDITION OF THE CERTIFICATE OF TITLE, WARNING: THE INFORMATION APPEARING UNDER NOTATIONS HAS NOT BEEN FORMALLY RECORDED IN THE REGISTER.

Req:R279647 /Doc:DP 1004198 P /Rev:03-Aug-1999 /Sts:OK.OK /Pgs:ALL /Prt:02-Mar-2016 14:05 /Seq:1 of 1

Req:R280483 /Doc:PA 040483 PA /Rev:23-Jun-2015 /Sts:OK.SC /Pgs:ALL /Prt:02-Mar-2016 14:59 /Seq:1 of 8 1-10-0 MAY 21 11 53 1958 R.I Ref:petersham /Src:T New South Bales. APPLICATION TO BRING LANDS UNDER THE PROVISION THE REAL PROPERTY ACT, 1900. ONE POUND SHILLING FEE SIMPLE.ª that by vicine of the provisions of the Crimer along any matter or procedure under the Act, and the is a filled and by an Attenue's every particular at GEN IT the 8 5 5 DAlee Copy B It is further provided by Socilon 123 of the Real Property Act, 1000, that any traud, error, quission, minejersentation, or initedescription will, notwitistand 6.10. Lee. now light Commentary Resth LLOYD CHARLES THORNTON the Sydney Manager for Electrolux Pty. Limited **WAX** do solemnly and sincerely declare, that Electrolux Pty. / 15 seized for an Estate in fee simple of 4 e cash uny Tuil. ALL THAT piece of land situate in the Municipality of Marrickville Parish of Petersham and County of Cumberland being an area of 182 perches more particularly described in the plan of Survey by Messrs. P. W. Rygate & West aplante lodged herewith or the Real gistrar-Gene Tights of the per for description which land (including all improvements) is of the value of . Six thousand five hundred pounds herr. the whole forty acres / and no more, and isf part ofs originally granted part." art allstanced with refer-a to number and section plan, if any, or if not, allor of acres grauge. by Grown grant, under the hand of the Governor of the Colony, dated the Neil McKellar toh 18- 1794 , Ser 1402 P. 149(2) Kel 4/6/158. eleventh / day of December And I further declare, that I verily believe there does not exist any lease or agreement for lease of the said land, for any term exceeding ar, or from year to year," Also, that there does not exist any mortgage, lien, writ of execution, charge or encumbrance, will or settlement, or any deed or writing, contract, or dealing (other than such lease or tonancy as aforesaid), giving any right, claim, or interest in or to the said land, or any part If there he any configage, lien, etc., add the words "except as follows " and inact particulars thereof, thereof, to any other person than myself i ert " na wennled," or i the orenjution of " ling invoce and addre mante in full. sture of lenser. t semicicaso and in further declare, that there is no person in possession or occupation of the said land or any part thereof adversely to my Estate or applicant is not occupiation. But taker or manager lion, the name of laker or mana of Interest therein, and that the said land is now" vacant and unoccupied. Hated, together hated of his f adjacent and that the owners and occupiers of adjacent lands are as follows " :---State whethe on North, South, East, or West. State whether Address Name ner or occupier 3 MURANCKYILLE Trafalgar-Street- 160 of Man North 2 Regent Street, Petersham. South Miss E. West Owner & occupier 54. Regent-Street Tast West Estate late W. H. Everitt/ Owner ... c/- 8 Spring Street, Sydney. Occupier 215 Trafalgar Street, Petersham. Mr. W. S. Evans Ceres of T., issued Vol.840 Fol239 it destines as above 2 FEB 1960 50 116T

Req:R280483 /Doc:PA 040483 PA /Rev:23-Jun-2015 /Sts:OK.SC /Pgs:ALL /Prt:02-Mar-2016 14:59 /Seq:4 of 8 Ref:petersham /Src:T And I/we further declare, that the annexed Schedule, to which my/our signature is/are affixed, and which is to be taken as part of lectatation only he ed to the extent to Applicant's tille and preciously by the Resistant al by functing the Commission will this Declaration, contains a full and correct list ° from the 22nd May 1899. of all settlements, deeds, documents, or instruments, maps, plans and papers relating to the land comprised in this application, so far as L/we have any means of ascertaining the same, distinguishing such as being in my/our possession or alutcal the cuse may ha wise all document the Grown Gran under my/our control, are berewith lodged and indicating where or with whom, so far as known to mo/us, any others thereof are deposited. Also, that there does not exist any fact or circumstance whatever material to the title, which is not hereby fully and fairly disclosed to the utmost extent of my/our knowledge, information, and belief; and that there is not, to my/our knowledge the words "excep-the words "excep-wa" and forest wary particulart. and belief, any action or suit pending affecting the said land, nor any person who has or claims any estate, right, title or interest therein, or in any part thereof, otherwise than by virtue and to the extent of some lease or tenancy hereby fully disclosed " And I/we make this solemn Declaration, conscientionaly believing the same to be true. If multic in New South Wates this Acclustions must he attested by the hegistrar Greenral or Deputy, or by a Justice of the Percy, or Commissioned for Altilative, if made outside the State is should be made averating to the made, before a presen-ande, before a presen-ande, before a presen-mation test by that have to indee declarations. The mast state flat the Becument was read ever be the declaration that the Becument was read ever to the declaration that the Becument was read ever to the declarate, and that becument was read ever the the signal and that becument was read ever the the signal and that the the signal ever the signal the content. This nde in New South DATED at 194 19 37. Sydney ' this day of (RULE UP ALL DLANKS DEFORE SIGNING.) Made and subscribed by the abovenamed ALFRED LACHLAN POOLE Signature of 19th day of March 1959 Applicant this in the presence of " appeared tony and the contents, plics also to the m To the Registrar-General,-I/WO-ALFRED LACHLAN POOLE the above declarant, do hereby apply to have the land described in the above declaration brought under the provisions of the Real Property Act, and request you to issue the Certificate of Title in the name of . Electrolux "ty.Limited. / to Applicant, any "mysciff"; to other person write ame at full length, with ostal address mid IGA day of DATED at this Sydney joint tenant infan Witness to Signature d woman, Insband bis posta (Signature of Applicant) "N.B -The Schedule below and Certifi tate indersed on fourth page should be also signed. In no case can any alterations, however triffing, be allowed to be made after the application has been once declared, unless all the parties re-sign and re-declare the same. If it is discovered that any alterations are necessary, the application may make a statutory declaration etting out in what manner he desites the application to be altered, which declaration will then (unless the Registrar General considers that a fresh application ought to be made) be read as one with the application. (RULE UP ALL BLANKS BEFORE SIGNING.) SCHEDULE REFERRED TO.* (TO BE SIGNED BY APPLICANT IMMEDIATELY BELOW THE LAST DOCUMENT SCHEDULED.) To include not only Title Deeds, Probates, Letters of Administration, etc., but also the Surveyor's Plan or Statement in lieu thereof. * For the particulars with which this Schedule must comprise, see concluding part of Declaration, to which particular attention is directed, as any omission or mis-statement will render applicant liable to the penalties of false declaration. Registration. For Office use only. Nature of Instrument. Partics No. Date. Book. | Na. By whom Produced. 22/5/1899 Conveyance, C. O. Grill to J. S. Darton 642 793 1. 22/5/1899 Mortgage, J. S. Darton to Bank of Australasia 642 794 2. 6/2/1900 Discharge of above Mortgage endorsed thereon dated 6/2/1900659 261 lodged 3. herewith. 758 266 9/5/1904 Conveyance, J. S. Darton to C. Chapman 4. 18/5/1904 Contract, C. Chapman to L. A. Ritchie (Stamp duty 1/- and 5. fine paid). 19/8/1908 Probate of Will of C. Chapman, No.43502. 6. 1. 9/5/1913 Contract, L. A. Ritchie to Samuel Ritchie (Stanp duty 1/and fine paid). Should any transaction affecting the land in this application be entered into or any alterations in the buildings or fences be made subsequent to the date of the application, but prior to the issue of the Certificate of Title, the Registrar General should be informed immediately, and all documents evidencing such transaction should be lodged.

SCHEDULE REFERRED TO-(continued).*

1.15

4

(TO BE SICNED BY APPLICANT, IF UTILISED, IMMEDIATELY BELOW THE LAST DOCUMENT SCHEDULED.)

No.	Date.	Nature of Instrument.	Pariles	Regist Book,	ration. No.	For Office was suly. Dy whom Ventreel
8.	24/1/1	918 Co	weyance, S. Ritchie, 1st part, L.A. Ritchie, 2nd pa W. Russell, 3rd Part, S. Ritchie, 4th part	rt,1121	358	
9.	10/3/3	930 Mor 941	gage, S. Ritchie to F. R. Rooke discharged endorsed thereon	1594 1892	525 123	
10.	8/3/19	33 Agre	ment for Variation of Mortgage	1594	525	
11.	16/8/1	940 Dec	ee of Supreme Court of New South Wales in Equity in Suit No.804 of 1940,	2427	223	
12.	18/4/1	941 Mor	gage, Samuel Ritchie to J.S.C. Johnston and emothe discharge endorsed dated 18th December 1957,	e. 812	18-4	
13.	24/6/1	944 Agr	registration copy of discharge. ement for Extension of Mortgage, E. S. Ritchie with J.S.C. Johnston and another	1056 5401	074))) lodged
14.	5/9/19	47 Agre	ment for Extension of Mortgage, E.S. & H. C. Ritch: with J. S. C. Johnston and another		A 2011	herewit
15.0	31/8/1	956 Agr	ement for Extension and Reduction of Mortgage, H.S. Ritchie & Others with J.S.C. Johnston,			
16.	18/12/	1957 Con	veyance, H. C. Ritchie & others to Electrolux Pty.	2380		
17."	5/12/1	957 Sta	Limited. utory Declaration of H. C. Ritchie with Certificate	2442	156	
L8-		Surves	of Death of E. S. Ritchie annexed Plan of Survey by Messrs. P. W. Rygate & West	$\hat{e}^{18} \hat{z}_{1}, \hat{x}_{1}$		
.9.		Abst	성격 수황 전성을 관계하는 것이 가지 않는 것 같아. 이가 잘 못 들었다. 영화	54		
20.		Abst	ract			dağ
1.	2/2/19	9 Stat	story Declaration by K. J. Thurlow	معلود (۵۰ مست) مه ا	*******	adardaran da walan da Ali
2.	5/12/19	57 Stat	atory Declaration by H. G. Ritchie and annexure "A"	an Margare	39) - C	Letter
3.	28/1/19	59 Stat	tory Declaration by H. G. Ritchie			6/2/1959
4.	20/7/19	56 Арро	ntment of Additional Trustee. H. C. Ritchie with P.W. Ritchie	2378	51	Letter 59/6819
5.	13/4/19	45 Appo	ntment of New Trustee E. S. Ritchie with H.C.Ritchi	e 1962	9	6/2/1959
	8 8758 2 1		MAS	-		in the
	1	shed	a of ingral R. P. appen	à a		
	, ac	t de la			×.	
		R)e.	, 1-16, 11 - 26, 28 - 31 hereweld	-	1	A VAL
	的复数动		New 6, 11, 109 20 200 are avail	idie to	Real	Arnotty Pero
		-461. ·	and the state	he	ter	4 John
			Decs 24 - 25 one aventance		1	a faire
1			Other does to remain .			
. [Alanta (1995) Alanta (1997) Alanta (1997) Alanta (1997)	Revenued documents 2110.25	6/2/60		and the same
			Received documents 249 25	i is Il	3/60	
			EST See indorsement overleaf.			
			V see incorsement overlear,		 	2\ msdarafe
1823	9 10	c:bacia	:4: 310S-nuL-SC:hq، SC /Pgs:ALL /Ptt:010S-nuL-SC:v9A/ A	00000		5 7 5 1175 V 4

「四人の生人」とないの人のはあると

1.47

SCHEDULE REFERRED TO-(continued).*

2

1997 5

No.	Date.	Neture of Instrument.		Parties.	Registral Book.	ion. For Office use on No. By whom Lodge
1	24/1/1	18 Conve	yance, S. Ritchie, 1st W. Russell, 3nd	part, L. A. Ritchie, 2r Part, S. Ritchie, 4th p	d part, 1121 3 art.	58
1	10/3/1	30 Morte	age, S. Ritchie to F. R discharge endorsed		1594 5 1892 1	25
K	8/3/19	3 Agreen	ent for Variation of Mo	rtgage	1594 5	25
K	16/8/1	40 Decre	e of Supreme Court of N Suit No.804 of 194	ew South Wales in Equit 0,	y in 2427 2	23
2.4	18/4/14	41 Morte	age, Samuel Ritchie to discharge endorsed registration copy	dated 18th December 19	ther 57, and 1892 1	24) lodge
	24/6/19	44 Agree	ment for Extension of M J.S.C. Johnston an	ortgage, E. S. Ritchie	with 1948 9) herewi
	1201	0.00044 (2004) - 10	ent for Extension of Mo with J.S. C. Johns	ton and another.	2030 4	46
Y				ith J.S.C. Johnston,	2380 5	89
			eyance, H. C. Ritchie & Limited.		2442 1	56
	5/12/19	57 Statu	tory Declaration of R. (of Death of E. S. I	Ritchie annexed.		
	aga gan Malaka sa	Survey	Plan of Survey by N	Mesars. P. W. Rygate & 1	West	1
1	C.B.S.	teet	n an	warnam		
0-		<u>^</u>	د. دوما و روز محمد شومیدید	دي منظمة المحمد المريام المرياة المريان المحمد	بها يسبه المستبعية	د. ۵ هارچ هر اندا مطولیه ا
				an an an an tao an t		
2				State and State	lecel Loco ,	#19
				لمر	ر الموج مار ر	1
21. 2	2.59	ditat . Que	In by H. J. Shurley.	P I	Na 19 00 23/1	} letter 57
22.5	. 12.5?		- A. G. Ritched	e annesser A		ت لا
1	20-1-59	• 1)
34,0	20.2.02	promen	int of new additional o	Invatie. H. C. Ritchie .	with 2378 5	1 letter sy
			- new Inusle 5.		c. Ritcher 962 9	1
			rche. by the of the			daluo. 2
2.1	84-3-51			How detached	Inin 18 (2)	1 aure
S. 132			- a.e.			letter 59/2.
			Homey Electroluse Pr		6 egg 5979	(
lo.		copy of	P.P.A. HOURS.	, rua		
4	3-2-59	nut	P.P.A. HOUBS			
1. 20	1. 60	Stat lect	of a.d. Poole.	Received alogy. 6. 11		
양국		1		Acquiel dogs 6", ", ", ", ", ", ", ", ", ", ", ", ", "	\$ 24. A	1 2 2

Req:R280607 /Doc:PA 045543 PA /Rev:22-Jun-2015 /Sts:OK.SC /Pgs:ALL /Prt:02-Mar-2016 15:08 /Seq:1 of 4 D.c.C. FEES: R.P. 2 Ref:petersham /Src:T Rein South Blales. No.45543 APPLICATION TO BRING LANDS UNDER THE PROVISIONS OF THE REAL PROPERTY ACT 1900. 3 care of a lesso-D FEE SIMPLE. =(), 3, (), () Certific ARIGEA CAUTION Advertising ent herein. 1801 1106 and 111 100 or mildeservillon will person thereby pictud or is privy to the for our, and liable to a pean pa vided by Section 120 of the Real Property Act by any fund, error, omission, minrepresentation, 5 Certificate remain liable for damages to any ulterity procures, anists in fraudulently procuring tificate of Tille, is declared guilty of a mindemoan connect and exceeding these warts and any Car It is furth Office Flan Copy Certificate Total Christie Chrurana an ' names) fo .address and PETER WILLIAM O'NEILL of 9-11 Hunter Street; Sydney foll " or if the declaration de by an attuney "C.D. do solemnly and sincerely declare, that Electrolux Pty. Ltd. seized for an Estate in fee simple of made by an account of the results of an account of the results of the application of the results of the application of the application of the d is shown on a plan, if yill described in a d, it will be sufficient in art a reference to the a town, perifer, and any and words indicating the is shown on plan or drambed in dord in question. all the piece or parcel of land situate in the Municipality of Marrickville Parish of Petersham and County of Cumberland containing an area of 144 perches more particularly described in the Plan of Survey prepared by Frank M. Mason & Co., and lodged herewith. the land is plan or drambed is deed in question. application may the an apportenant application may who as apportenant anext respirately treated an instrumment not ritered under the Baat work Act, 1900 (nes ion 14A), set the Registrar-General previously dispensed a plon of survey, an rate plan, surveys restlind by a surveys inset ounder the Surveyso fund under the Surveyso hund succempany SER. 1 PAGE M3(2) AC 30/3/67 1 24-381. and under the aurvey must accompany application, the be any rights of or other right or case articulars thould be space for description ted by annexure must however be ad as part of the tion, by memurat by the declarant testing officer. which land (including all improvements) IXCORNER AND XOLD "the whole and no more, is ! part forty acres of # originally granted ant." t allotment with refer-to number and section ion, if any, or if not, orr of ucrus granted, t of Grantes. to » NEIL MCKELLAR by Crown grant, under the hand of the Governor of the Colony, dated the eleventh _____ day of ___ December, _____ 1794 be any Lease, add rds "except as and insert are thereof. And 1/2 further declare, that 1/25 verily believe there does not exist any lease or agreement for lease of the said land for any term exceeding a tenancy for one year, or from year to year,k Also, that there does not exist any mortgage, lien, writ of execution, charge or encumbrance, will or settlement, or any deed or writing, contract, or dealing LOURS INFITURE LAND AN ANTIFAT IN MERSING, giving any right, claim, or interest in or to the said land, or any part thereof, to any other person than myself/Europhilian ocupation of mos and addresses in full. Insture of tenaory, der some lease minond. mplicant is not occupation, but ha and I/##further declare, that there is no person in possession or occupation of the said land or any part thereof adversely to the manager name of my SIKEstate or Interest therein, and that the said land is now Vacant and unoccupied. toge f adjacant and that the owners and occupiers of adjacent lands are as follows ":--State whethe on North, South, East, or West. State whether Address Carly occupic mer or Trafelgar Street North East. Electrolux-Pty-Ltd. owner-and -Cnr.-Regent-and-Trafalgar-Sts. occupier Petersham ... 2 Torlec Pty. Ltd. South owner 33 Dorset Road, Northbridge West forlec Ptys-Ltd. owner 33-Dorset-Road, Northbridge-Cart. of T., issued Vol. 10658 Fol. 92 Dated , 9 OCA 1967 P16680 Se 7257

Req:R280607 /Doc:PA 045543 PA /Rev:22-Jun-2015 /Sts:OK.SC /Pgs:ALL /Prt:02-Mar-2016 15:08 /Seq:2 of 4 Ref:petersham /Src:T

a sella

1.111

• The declaration may be, qualified to the extent to which Applicant's tille has been previously passed by the Registrar. General by inserting the conversance marks registered and or as the case may be. Otherwise all documents from the Cover Grast onwards must be externed

If there be any exception add the words "except at follows" and intert uncettally thericalized.

I made in Niew South Wales this declaration must be attested by the legitars General or Deputy, or by a Notary. Vallo, or by a Jostee of he Peace, or Commissioner or Affidovits. If made musica the State is sheald on under according to the aw of the State where made, helorin a jonann unboliced by that law to de declarations. I the signature by the declaration, the declaration, the signature by the second by the law of the State where must stort that the accument was read over o ind declarant, and that o appeared fully to underland the contents. This pplies also the the subjoined incretion, perfectively if a (ferent person he And I/Matfurther declare, that the annexed Schedule, to which my/SW signature is/Matfurther declare, that the annexed Schedule, to which my/SW signature is/Matfurther, and which is to be taken as part of this Declaration, contains a full and correct list ofrom the sixteenth of February, 1900

of all settlements, deeds, documents, or instruments, maps, plans and papers relating to the land comprised in this application, so far as 1/282 have any means of ascertaining the same, distinguishing such as being in my/262 possession or under my/262 control, are berewith lodged and indicating where or with whom, so far as known to me/26, any others thereof are deposited. Also, that there does not exist any fact or circumstance whatever material to the title, which is not hereby fully and fairly disclosed to the utmost extent of my/2622 knowledge, information, and belief: and that there is not, to my/26222 knowledge and belief, any action or suit pending affecting the said land, nor any person who has or claims any estate, right, title or interest therein, or in any part thereof, otherwise than by virtue and to the extent of some lease or tenancy hereby fully disclosed v And 1/262 make this solemn Declaration, conscientiously believing the same to be true.

DATED at Sydney

(RULE UP ALL BLANKS BEFORE SIGNING.)

Signature of

Applicant

this

ノフズ

day of

Made and subscribed by the abovengenee PETER WILLIAM O'NBILL 17th day of March 1967 this in the presence of "

P.A. Petchell J.P.

To the Registrar-General,-

INX PETER WILLIAM O'NEILL

the above declarant, do hereby apply to have the land described in the above declaration brought under the provisions of the Real Property Act, and request you to issue the Certificate of Title in the name of • <u>Electrolux Pty. Limited</u>

If to Applicant, say "myself", If to other person write name at full length, with postal address and

to the or more, state DATED at the source of the tensor of the tensor of the common state tensors in common state nares. If it on follow, the end of the content of the tensor of the tensor of the end of the content of the tensor of the tensor of the title of the Statutory

to a married woman, ina ame of the heaband gedner with his postal kitess and occupation, nonld be stated.

St 7257-2

DATED at Sydney

1712 day of

1967

19 67.

(Signature of Applicant).

this

•N.B.—The Schedule below and Certificate indored on fourth page should be also signed. In no cuse can any alterations, however triffing, be allowed to be made after the application has been once declared, unless all the parties resign and redeclare the same. If it is discovered that any alterations are necessary, the applicant may make a statutory declaration setting out in what monner he desires the application to be altered, which declaration will then (unless the Registrar General considers that a fresh application ought to he maile) be read as one with the application.

(RULE UP ALL BLANKS BEFORE SIGNING.)

SCHEDULE REFERRED TO.*

(TO BE SIGNED BY APPLICANT IMMEDIATELY BELOW THE LAST DOCUMENT SCHEDULED.)

To include not only Title Deeds, Probates, Letters of Administration, etc., but also the Surveyor's Plan or Statement in lieu thereof.

• For the particulars with which this Schedule must comprise, we concluding part of Declaration, to which particular attention is directed, as any omission or min-statement will render applicant liable to the penalties of false declaration.

as!	Name of	a second a second a second a second a	Regist	ration.	For Office use only.
No.	Dair, Instrument	Parties.	Book.	No.	By whom Produced.
1/	16/2/1900 Convey and	CATHERINE OATES GRILL and HENRY MAUGHAN	658	258	10.D.7 99
2.	9/12/1925 Indenture (2:2.J.)	EARNEST JOHNS PAYNE, ISABEL MOORE, HENRY MAUGH MOORE, VIDA ISABEL JORDAN, EILY BESSIE INGLE WINIFRED FRANCES JACKSON, ELIZA CORAL OLESEN NELLIE KATHLEEN KING. & Posta Journa (New Jusc.)	1429	664	J- 3.D - 7998
3/	10/4/1909 Mortgage	PUBLIC TRUSTEE and ARIGEXETAX PANIER FLORENCE GEORGINA COLE	1553	786	D.D.7.99
÷.	3/10/1929 Mortgage	PUBLIC TRUSTEE and ALICE EVA DANIEL	1577	876	1 \$3.7.6.6-
?	24/6/192 Mortgage	PUBLIC TRUSTEE and FLORENCE GEORGINA COLE	a farme a	281	4
	or fences be made	affecting the land in this application be entered into or any alterat aubsequent to the date of the application, but prior to the issue of the eral should be informed immediately, and all documents evidenci	e Certifi	cate of	Title,

Req:R280492 /Doc:CT 10658-092 CT /Rev:23-Feb-2011 /Sts:OK.SC /Pgs:ALL /Prt:02-Mar-2016 14:59 /Seq:1 of 2 Ref:petersham /Src:T ICATE OF TITLE 1065885 NEW SOUTH WALES Y ACT, 1900, as amended. Application No. 45543 658 Vol Fol ID G 1967 0 5 I certify that the person described in the First Schedule is the registered proprietor of the undermentioned estate in the land within described subject nevertheless to such exceptions encumbrances and interests as are shown in the Second S 80 hedule. 5 G C Witness WARNING THIS DOCUMENT MUST NOT BE REMOVED FROM THE Registrar General PLAN SHOWING LOCATION OF LAND Vol. (Page 1) PERSONS ARE CAUTIONED AGAINST ALTERING OR ADDING TO THIS CERTIFICATE OR ANY NOTIFICATION HEREON 17 あ 121206 died S. LAND Road Canterbury TITLES OFFICE ESTATE AND LAND REFERRED TO Estate in Fee Simple in Lot 1 in Deposited Plan 232716 at Petersham in the Municipality of Marrickville Parish of Petersham and County of Cumberland being part of 40 acres granted to Neil McKellar on 11-12-1794 FIRST SCHEDULE (continued overleaf) PTY. LIMITED. -ELECTROLUX SECOND SCHEDULE (continued overleaf) GPU1. Reservations and conditions, if any, contained in the Crown Grant above referred to Registrar General NOTE: ENTRIES RULED THROUGH AND AUTHENTICATED BY THE SEAL OF THE REGISTRAR GENERAL ARE CANCELLED

14 No	s:CT 10658-092 CT /Rev:23-Feb-201 c:ΤΕ΄ 5 5 7 7	/Sts:OK.SC /Pgs:ALL /Prt:02-Mar-2016 14:	59/Seq:2 of 2
V.C.N. Blight, Gerenment Printer Signature of Regutare-General			
"	24-10-A79	CANCELLATION	
0.1.17 37AG		Discharged	
INSTRUMENT NUMBER	1468068	Signature of Regultrar-General	
NATURE	transfer	ЕМТЕКЕD Ree 34 /0 /070 6 1987	
FIRST SCHEDULE (continued) REGISTERED PROPRIETOR	CANCELLED SEE AUTO FOLIO	SECOND SCHEDULE (continued) SECOND SCHEDULE (continued) to hush utic and the Zeadand Cantony Grad	
	Kachic and Ceneral Agencies Ru	Mortgage Rt60069 Onte XITS649 Mortgage to Comm	

Req:R280625 /Doc:PA 04	42592 PA /Rev:23-Jun-2015 /S	Sts:OK.SC /Pg:	s:ALL /Prt:02-Mar-2		
Ref:petersham /Src:T	7/10/-	1416	. R.P. 2.	A.s Fust_21	A JZ alad
No. 47)		Rew South 80	A 4 4	H & 1 - 22.3	will per
and the Contract of the	APPLICATION TO BRI	ING LANDS UNI	ER THE PR S C C	Lodathen -	1 bal' dath by
a This form may be modified to suit the case of a junio- hold thie.	THE R	EAL PROPERTY FEE SIMPLE.		OUND DAMA 318	gV'
TAR AR	그는 말 그 같은 말 같다.		2 MP	Dirte Centificato	$M + \pi$
SISTRANCENE	CAUTION,-Applicants are reminded that perjury are attached to a false the simost care is therefore nece	at by virtue of the provisi declaration concerning as		Advertising	
14/2000	every particular statement here	vin.			1 13 19 19
	- Contificate through any fraud, - the taxes of such Certificate ree	error, omistion, mitreprete	station, or subdescription will,	notwithstanding Office Cop	The second second second
1 Alexandre	It is further provided by Sectio Carificate through any fraud, - the issue of runc Derificate rea person who fraudulenily processe meet of any Cerificates of Tille, 2500, or imprisonment not any as between all parties or privi-	is declared guilty of a mis	demeanout, and liable to a penalt ay Certificate thereby procured is	y not exceeding Total	17-110:
SOUTH	as between all parties or privi		U U U O 10 200 100		<u>e 10-</u>
b Horn state Christian and aurnama (or names) in full with postal address and	THEIMA INCHE WILSON	of 293 Tra	falgar Street P	tershaa	21.) 10
neoupation,	Wile of Edward Wilso	on labourer			Anto Mary Acts
e "I am" or if the declaration is made by an attorney "C.D.	do solemnly and sincerely declare, that	 I คณ 	seize	for an Estate in fee simple o)[¢
d Here give description of the property in full. If the	that piece of land cont	tainingfifte	en & one helf p	erdisor thereabou	tts
land is above on a phan lodged with the application or is fully described in a deed, it will be sufficient to	stimete in bie Perish (of Petersham	County of Cunb	erland and Cunici	pality
	of Marrickville as show dated 8th February, 1962	wn in the pu 2 lodwed w	th this applic	tion together	-
county and words indicating	(and and free liberty a	and litesmus t	tivn og nikkert	north and octuin	
the plan or described in the plan or described in the the application may	/ Lerons or oblice enimals	e by the to	id by day bo dr	the state operate	60
indunic an appurchasi					-
by an instrument not registered under the Real Property Act, 1000 (see accion 16A). Unless the Registrar-General		પર મહે			이 같이 없는 것이
section 14A). Unless the Registrat-General	even a dada				
with a plan of survey, an		in in the second se			지금 동네 다
accurate plan, prepared and certified by a surveyor registered under the Surveyors Act, must accompany	an in the second se	- And and a second	10 A.		
if there be any rights of		-			
way or other rights or ease- ments effecting the premises the particulars should be				다가 주말한	의 사가에 가지 않는다. 1 20년 4월 16일 (194
stated. If the space for description be facultaciont, it may be completed by anorare		° e _ e z	1.8.8	t da da	
which must however be identified as part of the	and the second second		ုမ်းကို ျင်	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	날개들, 번 회 삶화
declaration, hy memorandum signed by the declarant and attesting officer.			k ng ji n		
a The full Internet status	which land (including all improvements	s) is of the value o	·Three thousand	d four hundred po	unds (\$3400)
should be stated. (State whether "the whole" or "part." g insert allotment with refer-	and no more, is f part	0	f forty a	creo 🦯 💦 or	iginally granted
on plan, if any, or if not, number of acres grapted, h Name of Grames.	to ^b Neil McKellar -		we grant under the hand	of the Governor of the Co	
resulter of acres gradent,					
It Name of Grantee	Eleventh day of	December,			496) (8)-
	And 1/we further declare, that I/we ve		IEX -1794	Ser 1. Vo. 2 p. 14	Sec. 1
k If there he any Learn, and the words "recept as follows" und insert particulars thereof.		rily believe there do	DEC 1794-	Ser 1. Vo. 2 p. 14	Sec. 1
	And 1/502 further declare, that 1/562 ve term exceeding a tenancy for one year,	rily believe there do , or from year to ye	per 1794-	Ser I. Vo. 2 P. 14 agreement for lease of the sa	ild land for any 2
	And 1/502 further declare, that 1/502 ve term exceeding a tenancy for one year, Also, that there does not exist any more	rily believe there do , or from year to ye gage, lien, writ of en	per 1794	Ser I. Vo. 2 P - 14 agreement for lease of the sa abrance, will or seitlement, o	or any deed or
k II there he suy Lease, and follow!" wind insert as follow!" will insert particulars thereof.	And 1/502 further declare, that 1/505 we term exceeding a tenancy for one year, Also, that there does not exist any morth writing, contract, or dealing (other than	rily believe there do , or from year to ye gage, lien, writ of es a such lease or tenno	DEX 1794	Ser I. Vo. 2 P - 14 agreement for lease of the sa abrance, will or seitlement, o	or any deed or
	And 1/502 further declare, that 1/502 ve term exceeding a tenancy for one year, Also, that there does not exist any more	rily believe there do , or from year to ye gage, lien, writ of es a such lease or tenno	DEX 1794	Ser I. Vo. 2 P - 14 agreement for lease of the sa abrance, will or seitlement, o	or any deed or
k If there he say Lease, and the words "recept as follows" und insert particulars thereof.	And 1/502 further declare, that 1/505 we term exceeding a tenancy for one year, Also, that there does not exist any morth writing, contract, or dealing (other than	rily believe there do , or from year to ye gage, lien, writ of es a such lease or tenno	DEX 1794	Ser I. Vo. 2 P - 14 agreement for lease of the sa abrance, will or seitlement, o	or any deed or
k If there he stry Lease, and follower wind insert porticular thereof.	And 1/502 further declare, that 1/505 we term exceeding a tenancy for one year, Also, that there does not exist any morth writing, contract, or dealing (other than	rily believe there do , or from year to ye gage, lien, writ of es a such lease or tenno	DEX 1794	Ser I. Vo. 2 P - 14 agreement for lease of the sa abrance, will or seitlement, o	or any deed or
k If there he any Lease, and follows "woods "recept as follows" and insert perifcular thereof. I IT there he any morigant lies, etc., odd the wood lies, etc., odd the wood insert perifcular thereof. Insert perifcular thereof. In least "moccupied" of "to the occupied" of "the he cocupied" of adding names and addresses of teasts in full. State also nature of teaster,	And 1/502 further declare, that 1/505 we term exceeding a tenancy for one year, Also, that there does not exist any morth writing, contract, or dealing (other than	rily believe there do , or from year to ye gage, lien, writ of es a such lease or tenno	DEX 1794	Ser I. Vo. 2 P - 14 agreement for lease of the sa abrance, will or seitlement, o	or any deed or
k If there he say Lease, and the words "recept as follows" und insert particulars thereof. I II there be any mortgage lies, etc., odd the word "recept as follows" too "incert particulars thereof "incert particulars thereof adding nonvs and addresses of teonate fail. State also nature of teonery. State also nature of teonery.	And 1/WE further declare, that 1/WE ve term exceeding a tenancy for one year, Also, that there does not exist any more writing, contract, or dealing (other than land, or any part thereof, to any other	rily believe there do , or from year to ye gage, lien, writ of ex such lease or tenan person than myself	DEC 1794- res not exist any lease or ar, ^k recution, charge or encun cy as aforesaid), giving a courselves k	Ser I. Vo. 2 P - 14 agreement for lease of the sa abrance, will or seitlement, any right, claim, or interest in	id land (or any 2
 k If there he suy Lease, and the words "czert as follow!" words "czert as follow!" words "czert as follow?" words the word in the superior terms thereof. I If there he any more and the word "except as follow?" words insert particular thereof." To the occupilion of "adding nomes and addresses of tenants in fail." State also nature of tenance, if and the supplicant is and the mentioned. 	And 1/ME further declare, that 1/ME ve term exceeding a tenancy for one year, Also, that there does not exist any mort, writing, contract, or dealing (other than land, or any part thereof, to any other and 1/ME further declare, that there is n	rily believe there do , or from year to ye gage, lien, writ of es a such lease or tenan person than myself	DEC 1794- res not exist any lease or ar, ^k recution, charge or encun cy as aforesaid), giving a courselves.	Ser I. Vo. 2 P. 14 agreement for lease of the sa abrance, will or seitlement, any right, claim, or interest in mid land or any part there	id land (or any 2
k If there he say Lease, and the words "recept as follow" und insert particulars thereof. I If there be any morigant lies, etc., odd the word "except as follow" for "meet particulars thereof. "I the occupied" or "fo the occupied" or "fo the occupied" or "dding names and addresses of treasts for full. State also nature of texany, there met and When the applicant is not the actual occupied in the a cavetaker or manager shadly be stated, joggether	And 1/WE further declare, that 1/WE ve term exceeding a tenancy for one year, Also, that there does not exist any more writing, contract, or dealing (other than land, or any part thereof, to any other	rily believe there do , or from year to ye gage, lien, writ of es a such lease or tenan person than myself	DEC 1794- res not exist any lease or ar, ^k recution, charge or encun cy as aforesaid), giving a courselves.	Ser I. Vo. 2 P. 14 agreement for lease of the sa abrance, will or seitlement, any right, claim, or interest in mid land or any part there	id land (or any 2
 k If there he suy Lease, and the words "recent and inner" particulars thereof. I If there be any mortgam interparticulars thereof. I Interparticular thereof. I Interparticular thereof. I Interparticular interparticulars interparticular interpart interparticular interpartinter	And 1/502 further declare, that 1/502 we term exceeding a tenancy for one year, Also, that there does not exist any morth writing, contract, or dealing (other than land, or any part thereof, to any other and 1/505 further declare, that there is a my/full Estate or Interest therein, and the	rily believe there do , or from year to ye gage, lien, writ of es a such lease or tenan person than myself	DEC 1794- res not exist any lease or ar, ^k recution, charge or encun cy as aforesaid), giving a courselves.	Ser I. Vo. 2 P. 14 agreement for lease of the sa abrance, will or seitlement, any right, claim, or interest in mid land or any part there	id land (or any 2
 k If there he suy Lease, and the words "recept as follow!" with insert particulars thereof. I If there he any morigant insert particulars thereof. I If there he any morigant insert particulars thereof. I If there he any morigant insert particulars thereof. I If there he any morigant insert particulars thereof. I If there he any morigant insert particulars thereof. I Insert "monecupied" of additional additex additional additional additional additionadditionaddita add	And 1/502 further declare, that 1/502 we term exceeding a tenancy for one year, Also, that there does not exist any morth writing, contract, or dealing (other than land, or any part thereof, to any other and 1/505 further declare, that there is a my/full Estate or Interest therein, and the	rily believe there do , or from year to ye gage, lien, writ of ex such lease or tenan person than myself o person in possession at the said land is no	PEC 1794- res not exist any lease or ar, ^k recution, charge or encun cy as aforesaid), giving a yourselvesk on or occupation of the a w m in the occup	Ser I. Vo. 2 P. 14 agreement for lease of the sa abrance, will or seitlement, any right, claim, or interest in mid land or any part there	id land (or any 2
 If there he suy Lease, the words "czeret as followi" words "czeret as followi" words "czeret as followi" words the words "czeret as followi" words as followi" words as followit words as followit as	And 1/562 further declare, that 1/662 we term exceeding a tenancy for one year, Also, that there does not exist any morth writing, contract, or dealing (other than land, or any part thereof, to any other and 1/565 further declare, that there is a my/full Estate or Interest therein, and that this fuclacity and that the owners and occupiers of adj	rily believe there do , or from year to ye gage, lien, writ of ex such lease or tenan person than myself o person in possession at the said land is no jacent lands are as f	PEC 1794- res not exist any lease or ar, ^k recution, charge or encun cy as aforesaid), giving a yourselvesk on or occupation of the a w m in the occup	Ser I. Vo. Z P. 14 agreement for lease of the sa abrance, will or seitlement, any right, claim, or interest in maid land or any part therea pation of may	id land (or any 2
 k If there he suy Lease, and the words "corent as follows" words "corent as follows" words and the words of the superior of the s	And 1/ME further declare, that 1/ME ve term exceeding a tenancy for one year, Also, that there does not exist any more writing, contract, or dealing (other than land, or any part thereof, to any other and 1/ME further declare, that there is a my/MIT Estate or Interest therein, and the this Duclacent	rily believe there do , or from year to ye gage, lien, writ of ex such lease or tenan person than myself o person in possession at the said land is no	PEC 1794- res not exist any lease or ar, ^k recution, charge or encun cy as aforesaid), giving a yourselvesk on or occupation of the a w m in the occup	Ser I. Vo. 2 P. 14 agreement for lease of the sa abrance, will or seitlement, any right, claim, or interest in mid land or any part there	id land (or any 2
 k If there he say Lease, and the words "coord as follow" und insert particulars thereof. I If there be any morigage, line, etc., odd the words "inner particulars thereofy insert as followe" that insert particulars thereofy as follower that and addresses of transits to fail, service, if not under some lease for the particular to manager and indexes of automore and exception. a Else there insert names and readences of adjocont owners and occupation, but has a caretaker or manager in occupation, the manager of his occupation, the manager of a south of he stated, together on all elder. 	And 1/502 further declare, that 1/502 we term exceeding a tenancy for one year, Also, that there does not exist any morth writing, contract, or dealing (other than land, or any part thereof, to any other and 1/505 forther declare, that there is a my/full Estate or Interest therein, and that this Acclarant and that the owners and occupiers of adj Name.	rily believe there do , or from year to ye gage, lien, writ of es a such lease or tenan person than myself to person in possession at the said land is no jacent lands are as f State whether owner or occupier.	DEC 1794- res not exist any lease or ar, ^k recution, charge or encun cy as aforesaid), giving a rourselvesk on or occupation of the a w ^m in the occup follows n:-	Ser I. Vo. Z P. 14 agreement for lease of the sa abrance, will or seitlement, my right, claim, or interest in maid land or any part thereas failed of any part thereas	aid land (or any 2
 k If there he suy Lease, and the words "corent as follows" words "corent as follows" words and the words of the superior of the s	And 1/50% further declare, that 1/50% ve term exceeding a tenancy for one year, Also, that there does not exist any morth writing, contract, or dealing (other than land, or any part thereof, to any other and 1/50% further declare, that there is a my/full Estate or Interest therein, and the this Diclassific man. Name. Mame.	rily believe there do , or from year to ye gage, lien, writ of ex such lease or tenan person than myself to person in possession at the said land is no jacent lands are as f State whether owner or occupier. Both	PEC 1794	Ser I. Vo. Z P. 14 agreement for lease of the sa abrance, will or seitlement, any right, claim, or interest in mid land or any part therea <i>fation of Muyo</i> Address Street, Petersham	aid land (or any 2
 k If there he say Lease, and the words "coord as follow" words "coord as follow" words particulars thereof. I If there be any morigant line, etc., odd the words "tracey as follow" their interpretations thereof. In leaser "moccupied" or "for the occupieden of adding momers and addresses of traces to fall. So the source of the same the fall. So the source of the same the supplicant is not for the occupied of the same of such caretaker or manager and bid by the stated, together words adding the stated, together on all elder. State whether on North, South, Eas, or West Lines 	And 1/WE further declare, that 1/WE ve term exceeding a tenancy for one year, Also, that there does not exist any morth writing, contract, or dealing (other than land, or any part thereof, to any other and 1/ME forther declare, that there is a my/mut Estate or Interest therein, and the this fuclatant and that the owners and occupiers of adj Name. . Fhyllis Bell KacDonald	rily believe there do , or from year to ye gage, lien, writ of ex such lease or tenan person than myself to person in possessin at the said land is no jacent lands are as f State whether owner or occupier.	DEX 1794	Ser I. Vo. Z P. 14 agreement for lease of the sa abrance, will or seitlement, on my right, claim, or interest in maid land or any part therea failed and or any part therea failed for	aid land (or any 22) or any deed or n or to the said
 k II there he any Lease. any follow? words "recept as follow? and insert particulars thereof. I II there he any morigant from the second the words "recept as follow?" for the occupied of the words "recept as follow?" for the occupied of the second the second second the second second second the second sec	And 1/2022 further declare, that 1/2022 ve term exceeding a tenancy for one year, Also, that there does not exist any morth writing, contract, or dealing (other than land, or any part thereof, to any other and 1/205 forther declare, that there is a my/mit Estate or Interest therein, and that this Accle ant	rily believe there do , or from year to ye gage, lien, writ of ex- such lease or tenan person than myself o person in possession at the said land is no jacent lands are as f State whether owner or occupier. Bath Bath Occupier.	DEX 1794	Ser I. Vo. Z P. 14 agreement for lease of the sa abrance, will or seitlement, any right, claim, or interest in maid land or any part therea failed of may part thereas failed of may part thereas fail	aid land (or any 22) or any deed or n or to the said
 k II there he my Lease. and follow? words "recent as follow? words the words" for the second s	And 1/2022 further declare, that 1/2022 ve term exceeding a tenancy for one year, Also, that there does not exist any morth writing, contract, or dealing (other than land, or any part thereof, to any other and 1/2026 forther declare, that there is a my/mit Estate or Interest therein, and the this fuclatant	rily believe there do , or from year to ye gage, lien, writ of ex such lease or tenan person than myself o person in possession at the said land is no jacent lands are as f State whether owner or occupier. Bath Bath Bath Coccupier.s	PEC 1794- res not exist any lease or ar, ^k recution, charge or encun cy as aforesaid), giving a yourselvesk on or occupation of the a w ^m in the occup ollows ⁿ :	Ser I. Vo. Z. P. 14 agreement for lease of the sa abrance, will or seitlement, any right, claim, or interest in maid land or any part therea fation of may part therea fation	aid land (or any 22) or any deed or n or to the said
 k II there he any Lease. any follow? words "recent as follow? and insert particulars thereof. I II there he any morigant. If it is the set of the angle of the an	And 1/2022 further declare, that 1/2022 ve term exceeding a tenancy for one year, Also, that there does not exist any morth writing, contract, or dealing (other than land, or any part thereof, to any other and 1/2026 forther declare, that there is a my/mit Estate or Interest therein, and the this fuclatant and that the owners and occupiers of adj Name.	rily believe there do , or from year to ye gage, lien, writ of ex such lease or tenan person than myself o person in possession at the said land is no jacent lands are as f State whether owner or occupier. Bath Bath Bath Coccupier.s	PEC 1794- res not exist any lease or ar, ^k recution, charge or encum cy as aforesaid), giving a yourselvesk on or occupation of the a w ^m in the occup ollows ":	Ser I. Vo. Z. P. 14 agreement for lease of the sa abrance, will or seitlement, any right, claim, or interest in maid land or any part therea fation of may part therea fation	aid land (or any 22) or any deed or n or to the said
 k II there he my Lease. and follow? words "recent as follow? words the words" for the second s	And 1/2022 further declare, that 1/2022 ve term exceeding a tenancy for one year, Also, that there does not exist any morth writing, contract, or dealing (other than land, or any part thereof, to any other and 1/2026 forther declare, that there is a my/mit Estate or Interest therein, and the this fuclatant and that the owners and occupiers of adj Name.	rily believe there do , or from year to ye gage, lien, writ of ex such lease or tenan person than myself o person in possession at the said land is no jacent lands are as f State whether owner or occupier. Bath Bath Bath Coccupier.s	PEC 1794	Address. Street, Petersham Street, Petersham Street, Petersham 6 No. 299) et, Sygney et, Petersham	aid land (or any 22) or any deed or n or to the said
 k II there he my Lease. and follow!" words "recent as follow!" words the words insert particulars thereof. I II there he any morigant. If there here here as a follow?" words "recent as and recent as a conclusion, the manager is south the mature of his concupation, the mature of his concupation as all eider. State whether on manager on all eider. Const Hirs. Const Hirs. South a south of the south of the south as a store of the south as a south as a south as a south as a store of the south as a store of the south of the s	And 1/2022 further declare, that 1/2022 ve term exceeding a tenancy for one year, Also, that there does not exist any morth writing, contract, or dealing (other than land, or any part thereof, to any other and 1/202 forther declare, that there is a my/mit Estate or Interest therein, and the this fuclations this fuclations wave the owners and occupiers of add Name. INCLASSING COMMENTS FAITH PATRIC OF EVENT Toward Evens FAITH PATRIC OF EVENT Into Wast	rily believe there do , or from year to ye gage, lien, writ of ex such lease or tenan person than myself o person in possession at the said land is no jacent lands are as f State whether owner or occupier. State and a state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state	PEC 1794- res not exist any lease or ar, ^k recution, charge or encun- cy as aforesaid), giving a converting k on or occupation of the a w ^m in the occup ollows ⁿ : 295 Trafalgar (Ref. Book 186 291 Trafalgar (Ref. Book 186 291 Trafalgar (Ref. Book 186 291 Trafalgar (Ref. Book 186 295 Trafalgar	Address. Street, Petersham 7777 Folio 25)	id land (or any 22) or any deed or n or to the said
 k If there he any Lease. any follow? words "record as follow?" will insert particulars thereof. I II there he any motion of a series of the security insert particulars thereof. III there he any motion of a security insert particulars thereof. III there he any motion of a security insert particulars thereof. III there he any motion of a security insert particulars thereof. III there he any motion of a security insert particulars thereof. III there he any motion of a security insert particulars thereof. III the security is a security in a security of the security of a security of the security is and the security in a security of a security of the security of a s	And 1/502 further declare, that 1/502 we term exceeding a tenancy for one year, Also, that there does not exist any morth writing, contract, or dealing (other than land, or any part thereof, to any other and 1/502 further declare, that there is a my/full Estate or Interest therein, and the this Diclassific and the there is a my/full Estate or Interest therein, and the this Diclassific and the there is a my/full Estate or Interest therein, and the this Diclassific and the there is a my/full Estate or Interest therein, and the this Diclassific and the there is a my/full Estate or Interest therein, and the this Diclassific and the there is a my/full Estate or Interest therein, and the this Diclassific and the there is a my/full Estate or Interest therein, and the state of the the there is a man the the owners and occupiers of adj name. Name. Market Discussion of the there is a market Even of the the the there is a market Even of the the there is a market Even of the	rily believe there do , or from year to ye gage, lien, writ of ex such lease or tenan person than myself o person in possession at the said land is no jacent lands are as f State whether owner or occupier. Batin Batin Cocupier.s Speech Q	PEC 1794	Address. Street, Petersham 7777 Folio 25) Street, Petersham	id land (or any 22) or any deed or n or to the said
 k II there he my Lease. and follow? words "coord as follow? will insert particulars thereof. I II there be any morigater lime, etc., odd the words insert particulars thereof. III there be any morigater limet particulars thereof. IIII there be any morigater limet particulars thereof. III there be any morigater of adding momers and addresses of the absorband by the heat applicant is not in force method. III there here there there there there there mane and residences of adjecont correction. A there here there manet and completes on all elder. III there here there there and completes on all elder. III there here there t	And 1/2022 further declare, that 1/2022 ve term exceeding a tenancy for one year, Also, that there does not exist any morth writing, contract, or dealing (other than land, or any part thereof, to any other and 1/202 forther declare, that there is a my/mit Estate or Interest therein, and the this fuclations this fuclations wave the owners and occupiers of add Name. INCLASSING COMMENTS FAITH PATRIC OF EVENT Toward Evens FAITH PATRIC OF EVENT Into Wast	rily believe there do , or from year to ye gage, lien, writ of es , such lease or tenan person than myself o person in possession at the said land is no jacent lands are as f state whether owner or occupier. Both Both Both Both	PEC 1794	Address Address Street, Petersham 7777 Folio 25) Street, Petersham 7740 GRick 239(id land (or any 22) or any deed or n or to the said
 k II there he any Lease. any follow? words "recent as follow? and insert particulars thereof. I II there he any morigant. If a series of the series of t	And 1/2022 further declare, that 1/2022 ve term exceeding a tenancy for one year, Also, that there does not exist any morth writing, contract, or dealing (other than land, or any part thereof, to any other and 1/202 forther declare, that there is a my/mit Estate or Interest therein, and the this fuclations my/mit Estate or Interest therein, and the this fuclations and that the owners and occupiers of add Name. INCOMMENT Flyllis Bell MacDonald Groups CHARLE C Mund Stowers	rily believe there do , or from year to ye gage, lien, writ of ex such lease or tenan person than myself o person in possession at the said land is no jacent lands are as f State whether owner or occupier. State and a state of the state of the state of the both Both Both	DEC 1794- res not exist any lease or ar, ^k recution, charge or encun cy as aforesaid), giving a yourselvesk on or occupation of the a w ^m in the occup ollows ⁿ :	Address Address Street, Petersham 7777 Folio 25) Street, Petersham 7740 GRick 239(id land (or any 22) or any deed or n or to the said
 k II there he any Lease. any follow? words "recent as follow? and insert particulars thereof. I II there he any morigant. If a series of the series of t	And 1/2022 further declare, that 1/2022 ve term exceeding a tenancy for one year, Also, that there does not exist any morth writing, contract, or dealing (other than land, or any part thereof, to any other and 1/202 forther declare, that there is a my/mit Estate or Interest therein, and the this fuclations my/mit Estate or Interest therein, and the this fuclations and that the owners and occupiers of add Name. INCOMMENT Flyllis Bell MacDonald Groups CHARLE C Mund Stowers	rily believe there do , or from year to ye gage, lien, writ of ex such lease or tenan person than myself o person in possession at the said land is no jacent lands are as f State whether owner or occupier. State and a state of the state of the state of the both Both Both	PEC 1794	Address Address Street, Petersham 7777 Folio 25) Street, Petersham 7740 GRick 239(id land (or any 22) or any deed or n or to the said
 k II there he any Lease. any follow? words "recent as follow? and insert particulars thereof. I II there he any morigant. If a series of the series of t	And 1/2022 further declare, that 1/2022 ve term exceeding a tenancy for one year, Also, that there does not exist any morth writing, contract, or dealing (other than land, or any part thereof, to any other and 1/202 forther declare, that there is a my/mit Estate or Interest therein, and the this fuclations this fuclations wave the owners and occupiers of add Name. INCLASSING COMMENTS FAITH PATRIC OF EVENT Toward Evens FAITH PATRIC OF EVENT Into Wast	rily believe there do , or from year to ye gage, lien, writ of ex such lease or tenan person than myself o person in possession at the said land is no jacent lands are as f State whether owner or occupier. State and a state of the state of the state of the both Both Both	DEC 1794- res not exist any lease or ar, ^k recution, charge or encun cy as aforesaid), giving a yourselvesk on or occupation of the a w ^m in the occup ollows ⁿ :	Address Address Street, Petersham 7777 Folio 25) Street, Petersham 7740 GRick 239(id land (or any 22) or any deed or n or to the said
 k II there he any Lease. any follow? words "recent as follow? and insert particulars thereof. I II there he any morigant. If a series of the series of t	And 1/2022 further declare, that 1/2022 ve term exceeding a tenancy for one year, Also, that there does not exist any morth writing, contract, or dealing (other than land, or any part thereof, to any other and 1/202 forther declare, that there is a my/mit Estate or Interest therein, and the this fuclations my/mit Estate or Interest therein, and the this fuclations and that the owners and occupiers of add Name. INCOMMENT Flyllis Bell MacDonald Groups CHARLE C Mund Stowers	rily believe there do , or from year to ye gage, lien, writ of ex such lease or tenan person than myself o person in possession at the said land is no jacent lands are as f State whether owner or occupier. State and a state of the state of the state of the both Both Both	DEC 1794- res not exist any lease or ar, ^k recution, charge or encun cy as aforesaid), giving a yourselvesk on or occupation of the a w ^m in the occup ollows ⁿ :	Address Address Street, Petersham 7777 Folio 25) Street, Petersham 7740 GRick 239(id land (or any 22) or any deed or n or to the said
 k II there he any Lease. any follow? words "recent as follow? and insert particulars thereof. I II there he any morigant. If a series of the series of t	And 1/2022 further declare, that 1/2022 ve term exceeding a tenancy for one year, Also, that there does not exist any morth writing, contract, or dealing (other than land, or any part thereof, to any other and 1/202 forther declare, that there is a my/mit Estate or Interest therein, and the this fuclations my/mit Estate or Interest therein, and the this fuclations and that the owners and occupiers of add Name. INCOMMENT Flyllis Bell MacDonald Groups CHARLE C Mund Stowers	rily believe there do , or from year to ye gage, lien, writ of ex such lease or tenan person than myself o person in possession at the said land is no jacent lands are as f State whether owner or occupier. State and a state of the state of the state of the both Both Both	DEC 1794- res not exist any lease or ar, ^k recution, charge or encun cy as aforesaid), giving a yourselvesk on or occupation of the a w ^m in the occup ollows ⁿ :	Address Address Street, Petersham 7777 Folio 25) Street, Petersham 7740 GRick 239(id land (or any 22) or any deed or n or to the said

Req:R280625 /Doc:PA 042592 PA /Rev:23-Jun-2015 /Sts:OK.SC /Pgs:ALL /Prt:02-Mar-2016 15:09 /Seq:4 of 4 Ref:petersham /Src:T ¥. S 200 36 I certify that the within application is correct for the purposes of the Real Property Act, 1900. (Signature) 2. 9. Wilson (RULE UP ALL BLANKS REFORE SIGNING, EXCEPT, SPACE IN SCHEDULE BELOW APPLICANT'S SIGNATURE.) FEES. DP213001 2 10 0 $\begin{array}{c}
1 & 0 & 0 \\
1 & 0 & 0 \\
3 & 0 & 0 \\
1 & 0 & 0
\end{array}$ State to whom all correspondence relating to this Application should be sent, with address, as under, viz.:-Name 45 Cay God ve V Cefficient of 100 Occupation ENTRA FEE Post Town St 7157-4 V. C. N. Blight, Covernment Printer

Req:R281099 /Doc:DL X508803 /Rev:13-Sep-2010 /Sts:OK.SC /Pgs:ALL /Prt:02-Mar-2016 15:39 /Seq:1 of Ref:petersham /Src:T ŘР 13 🔒 STAMP DUTY TRANSFER R31+ Т REAL PROPERTY ACT, 1900 \$ **Torrens Title Reference** If Part Only, Delete Whole and Give Details Location DESCRIPTION WHOLE OF LAND Note (a) Folio Identifier 4/71843 295 Trafalgar Street 1/718453 Petersham TRANSFEROR Note (b) CHRISTOS STAVRIS and DESPINA STAVRIS (the abovenamed TRANSFEROR) hereby acknowledges receipt of the consideration of \$ 98,000.00ESTATE Note (c) and transfers an estate in fee simple in the land above described to the TRANSFEREE TRANSFEREE OFFICE USE ONLY Note (d) PAUL MILNE to be of 295 Trafalgar Street Petersham S TENANCY Note (e) as joint tenants/tenants in common subject to the following PRIOR ENCUMBRANCES 1 PRIOR ENCUMBRANCES Note (f) DATE 4 80 by certify this dealing to be correct for the purposes of the Real Property Act, 1900. We he 50 EXECUTION who is unally known to me Note (g) 8 10 10 D. Stowing ш STNE Tony acres ΣÆK 12703 Signed in my presence by the transferee who is personally known to me _ Note (g) Signature of Wilness 03/88 Name of Wilness (BLOCK LETTERS) Address and occupation of Witness s Solicitor ROWLEY KIM FIONA ****** TO BE COMPLETED BY LODGING PARTY LOCATION OF DOCUMENTS 2 LODGED BY СТ OTHER Notes (h) and (i) 304 LIV.14 Herewith. ñ In L.T.O. with Produced by **Delivery Box Number** OFFICE USE ONLY REGISTERED -19 Checked Passed Secondary Directions aris 7 Signed 2 J APR 1988 Extra Fee Delivery Directions

Detailed Site Investigation 3-7 Regent Street, 13-17 Regent Street and 287-309 Trafalgar Street, Petersham, NSW Report No. E22913 AA_Rev0

Appendix E NSW WorkCover Dangerous Goods Search

Our Ref: D16/534443 Your ref: David Pizkalla

1 March 2016

Attention: David Rizkalla Environmental Investigations Australia Pty Ltd Suite 6.01 55 Miller St Pyrmont NSW 2009

Dear Mr Rizkalla,

RE SITE: 3-7 & 13-17 Regent St & 287-309 Trafalgar St Petersham NSW

I refer to your site search request received by SafeWork NSW on 23 February 2016 requesting information on Storage of Hazardous Chemicals for the above site.

A search of the records held by SafeWork NSW has not located any records pertaining to the above mentioned premises.

For further information or if you have any questions, please call our Customer Service Centre on 13 10 50 or email <u>licensing@safework.nsw.gov.au</u>

Yours sincerely,

Brent Jones Customer Service Officer Customer Service Centre - Operations SafeWork NSW Detailed Site Investigation 3-7 Regent Street, 13-17 Regent Street and 287-309 Trafalgar Street, Petersham, NSW Report No. E22913 AA_Rev0

> Appendix F Borehole Logs

	Conta		ion Re	str	Geotechnic	Project Location Position Job No. Client	Rege Refer E229	nt & T to Fig	rafalg jure 2	Use Development jar Street, Petersham NSW contractor Rockwell Drillin Drill Rig Hanjin D&B Inclination -90°			Sheet 1 OF 2 Date Started 4/3/16 Date Completed 4/3/16 Logged JZ Date: 4/3/16 Checked NF Date: 21/3/16
F			Dril	lina		Sampling				Field Material Descr	iptic	on	
METHOD	PENETRATION	NCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL			CONSISTENCY	PIEZOMETER DETAILS
Ē	5	H		0 1 2 	0.14	BH1M_0.585 BH1M_0.5-0.6 ES 0.50-0.60 m BH1M_0.7-0.8 ES 0.70-0.80 m BH1M_0.85-0.95 BH1M_1.5-1.95			- CI- CH	CONCRETE; 140mm thick. FILL: Silty CLAY; low to medium plasticity, dark grey, with fine to medium gravel and fine grained sand. Silty CLAY; medium to high plasticity, grey mottled red-brown, with ironstone fragments. From 1.5m, grey mottled yellow brown.	- - -	- F St - VSt	 Bentonite Bentonite Bentonite
014-07-05 Prj: E.M. 1.03 2014-07-05 A.D.M.		E	\land		3.00	BH1M_3.0-3.45 BH1M_4.5-4.6				SHALE; grey mottled orange brown, extremely low strength, extremely weathered, trace of fine grained sand.			Cuttings
EA LIB 103 GLB Log IS AU BOREHOLE 3 E22913 BOREHOLE LOGS/GPJ < <dawingfile>> 04/04/2016 15:59 8:30:004 Dagel Lab and in Situ Tool - DGD LID: EIA 1:03 2014/0745 Prj: EIA 2:03 2014/0745 Prj: EIA 2:03 2:03 2:03 2:03 2:03 2:03 2:03 2:03</dawingfile>	F			5 6 - - - - - - - - - - - - - -							-	-	Bentonite
GLB Log IS AU BOREHOLE 3 E22913 BOREHOLE LOGS.GPJ < <dra< td=""><td>)</td><td></td><td>100% RETURN</td><td>8 — - 9 — - 10 —</td><td>8.50</td><td>BH1M_8.0-8.5 D 8.00-8.50 m</td><td></td><td></td><td>-</td><td>SHALE; dark grey, well developed, thinly laminated to thinly bedded, highly fractured.</td><td></td><td></td><td></td></dra<>)		100% RETURN	8 — - 9 — - 10 —	8.50	BH1M_8.0-8.5 D 8.00-8.50 m			-	SHALE; dark grey, well developed, thinly laminated to thinly bedded, highly fractured.			
EIA LIB 1.03.						I his boreh	ole log	ı snoul	a be	read in conjunction with Environmental Investigations Austral	iia's a	accor	npanying standard notes.

	eia		Str	Geotechnic	Project Location Position Job No. Client	Rege Refe E229	ent & T r to Fig	rafalo gure 2	Use Development gar Street, Petersham NSW 2 Contractor Rockwell Drilling F Drill Rig Hanjin D&B Inclination -90°		OREHOLE: BH1M Sheet 2 OF 2 Date Started 4/3/16 Date Completed 4/3/16 Logged JZ Date: 4/3/16 Checked NF Date: 21/3/16
		Dri	lling		Sampling				Field Material Descript	ion	
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	Sample or Field test	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	CONDITION CONSISTENCY DENSITY	PIEZOMETER DETAILS ID_Static Water Level BH1M
EA LIB 1.03.GLB Log IS AU BOREHOLE 3 E22913 BOREHOLE LOGG.GP1 < <drawingfile> 04/04/2016 15:59 8.30.004 DageLab and In Situ Tool - DOD Uh: EIA 1.03 2014/07-05 Prj: EIA 1.03 2014/07-05</drawingfile>		100% RETURN	10						SHALE; dark grey, well developed, thinly laminated to thinly bedded, highly fractured.		Sand 50 mm uPVC Screen
EIA LIB 1.03.GLB					This bore	hole log	g shou	ld be	read in conjunction with Environmental Investigations Australia's	s acco	mpanying standard notes.

1.03 2014-07-05 Pri: EIA 1.03 2014-07-05

μ i li li

000

ah and In Situ Tool

04/04/2016 15:59 8:30 004 Datoel

<<DrawinnFile>>

OGS GP.I

=22913 RORFHOLF

FHOLF 3

S

11B 1 03 GLB

₹

Proposed Mixed Use Development Location Regent & Trafalgar Street, Petersham NSW

Position Job No.

Client

Project

Refer to Figure 2 E22913 Deicorp Pty Ltd

Contractor Rockwell Drilling Pty Ltf Hanjin D&B Inclination -90°

Drill Rig

Sheet 1 OF 2 9/3/16 Date Started 10/3/16 Date Completed Date: 10/3/16 Logged JZ Checked NF Date: 21/3/16

BOREHOLE: BH2

Drilling Sampling **Field Material Description** PENETRATION RESISTANCE JSCS SYMBOL MOISTURE CONDITION CONSISTENCY DENSITY RECOVERED STRUCTURE AND ADDITIONAL SAMPLE OR FIELD TEST GRAPHIC LOG SOIL/ROCK MATERIAL DESCRIPTION METHOD WATER DEPTH (metres) OBSERVATIONS DEPTH RL 0 CONCRETE HARDSTAND H ASPHALT: 50mm thick. FILL BH2_0.2-0.5 ES 0.20-0.50 m FILL: Gravelly SAND; fine to medium grained, dark grey/dark brown, with clay. D 0.50 BH2_0.5-0.8 ES 0.50-0.80 m FILL: Silty CLAY; low plasticity, dark grey mottled red, trace of fine to medium gravel. 0.80 BH2_0.8-0.95 RESIDUAL SOIL CI-CH Silty CLAY; medium to high plasticity, grey mottled red-brown, with ironstone fragments. 1 M>P St -VSt BH2_1.2-1.5 ES 1.20-1.50 m Е BH2 1.5-1.8 1.80 SHALE; dark brown/grey/red-brown, extremely low strength to very low strength, extremely weathered. WEATHERED ROCK BH2_1.8-1.95 2 GWNE AD/T 3 BH2_3.0-3.45 --F 4 BH2_4.5-4.7 5 BH2_5.0-5.5 D 5.00-5.50 m 5 50 CORELOSS: 300mm thick. 5.80 $\mathsf{SHALE};$ dark grey/dark brown, highly ractured, with frequent decomposed seams and zones. 6 7 100% RETURN NMLC 7.86 SHALE; dark grey, poorly developed, thinly laminated to thinly bedded, bedding dipping 0-5°. 8 96-1 9 10 This borehole log should be read in conjunction with Environmental Investigations Australia's accompanying standard notes.

Contamination Remediation Geotechnical

04/04/2016 15:59 8:30:004 Datgel Lab and In Situ Tool - DGD | Lib: EIA 1:03 2014-07-05 Prj: EIA 1:03 2014-07-05

<CDrawinnFile>>

BOREHOLE 3 E22913 BOREHOLE LOGS.GPJ

OG IS AU

EIA LIB 1.03.GLB 1

20

 Project
 Proposed Mixed Use Development

 Location
 Regent & Trafalgar Street, Petersham NSW

LocationRegent & Trafalgar StreetPositionRefer to Figure 2

Job No. Client E22913 Deicorp Pty Ltd Contractor Rockwell Drilling Pty Ltf Drill Rig Hanjin D&B Inclination -90° Sheet 2 OF 2 Date Started 9/3/16

BOREHOLE: BH2

 Date Completed
 10/3/16

 Logged
 JZ
 Date: 10/3/16

 Checked NF
 Date: 21/3/16

		Dril	ling		Sampling				Field Material Description					
METHOD	PENETRATION RESISTANCE		DEPTH (metres)	DEPTH RL		RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONDITION CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS		
			10 — - - - 11 — -					-	SHALE; dark grey, poorly developed, thinly laminated to thinly bedded, bedding dipping 0-5°.					
NMLC		90-100% RETURN	- - 12 - -	12.00				-	SHALE; dark grey, well developed, thinly laminated to medium bedded.					
N		90-100%												
			- - - 15											
			- 16	15.53					Hole Terminated at 15.53 m					
			 17 											
			18 — - - 19 —											

₹

Proposed Mixed Use Development Regent & Trafalgar Street, Petersham NSW

Job No.

Client

Refer to Figure 2 E22913 Deicorp Pty Ltd

Contractor Rockwell Drilling Pty Ltf Hanjin D&B Inclination -90°

Drill Rig

Sheet 1 OF 2 9/3/16 Date Started Date Completed 9/3/16 Date: 9/3/16 Logged JZ Checked NF Date: 21/3/16

BOREHOLE: BH3

Drilling Sampling **Field Material Description** PENETRATION RESISTANCE MOISTURE CONDITION CONSISTENCY DENSITY JSCS SYMBOL RECOVERED STRUCTURE AND ADDITIONAL SAMPLE OR FIELD TEST GRAPHIC LOG SOIL/ROCK MATERIAL DESCRIPTION METHOD WATER DEPTH (metres) OBSERVATIONS DEPTH RL CONCRETE HARDSTAND 0 H ASPHALT: 50mm thick. BH3_0.2-0.5 ES 0.20-0.50 m FILL: Gravelly SAND; fine to medium grained, dark grey/dark brown, with clay. D 0.50 BH3_0.5-0.95 FILL: Silty CLAY; low plasticity, dark grey mottled red, trace of fine to medium gravel BH3_0.8-1.0 ES 0.80-1.00 m 1 1.50 Е BH3 1.5-1.95 RESIDUAL SOIL CI-CH Silty CLAY; medium to high plasticity, grey mottled brown. M>PL 2 GWNE St -VSt AD/T 3.00 3 WEATHERED ROCK BH3_3.0-3.45 SHALE; dark brown/grey, extremely low to very low strength, extremely weathered F --Pri: EIA 1.03 2014-07-05 4 BH3_4.0-4.5 D 4.00-4.50 m 4.50 SHALE; dark grey mottled red-brown, highly fractured, with frequent decomposed seam 04/04/2016 15:59 8.30.004 Datgel Lab and In Situ Tool - DGD | Lib: EIA 1.03 2014-07-05 5 6 6.70 CORELOSS: 100mm thick 90-100% RETURN 7 NMLC 7.37 SHALE; dark grey, well developed, thinly laminted to thinly bedded, bedding dipping 0-5°. < el <DrawingF 8 OGS GP.I F22913 RORFHOLF 9 SORFHOLE 3 9.90 S 10 11B 1 03 GLB This borehole log should be read in conjunction with Environmental Investigations Australia's accompanying standard notes.

					Project	Dua		4:	Use Development	I	BOREHOLE: BH3
	Contamin	ation R	Str	Geotechnic	Location Position Job No. Client	Reg Refe E22	ent & T er to Fig	rafal gure 2	gar Street, Petersham NSW	Ltf	Sheet2 OF 2Date Started9/3/16Date Completed9/3/16LoggedJZDate: 9/3/16Checked NFDate: 21/3/16
		Dri	lling		Sampling				Field Material Description	n	
METHOD	PENETRATION	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
EA LIB 103 GLB Log IS AU BOREHOLE 3 E22913 BOREHOLE LOGS GPJ < <drawingfiae>> 04/04/2016 15/59 8 30,004 Dage! Lab and In Situ Tool - DGD Ub: EIA 1.03 2014/07/35 Pj: EIA 1.03 2014</drawingfiae>		90-100% RETURN	10	13.00					SHALE: dark grey, well developed, thinly laminted to thinly bedded, bedding dipping 0-5°. From 9.9m, highly fractured, with frequent decomposed seams. SHALE: dark grey, well developed, thinly laminated to medium bedded. SHALE: dark grey, well developed, thinly laminated to medium bedded.		
EIA LIB 1.03.					This bore	hole lo	g shou	Id be	read in conjunction with Environmental Investigations Australia's ac	ccor	npanying standard notes.

eiaustralia Contamination Remediation Geotechnical

Project Proposed Mixed Use Development

 Location
 Regent & Trafalgar Street, Petersham NSW

 Position
 Refer to Figure 2

Position Job No. Client

E22913 Deicorp Pty Ltd Contractor Rockwell Drilling Pty Ltf Drill Rig Hanjin D&B Inclination -90°

Sheet	2 OF 2
Date Started	7/3/16
Date Completed	7/3/16
Logged JZ	Date: 7/3/16

BOREHOLE: BH4M

Checked NF Date: 21/3/16

Drilling						Sampling				Field Material Desc	on		
	METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION			PIEZOMETER DETAILS ID Static Water Level BH4M
	NMLC NMLC		90-100% RETURN		RL 15.30	This borehole				SHALE; dark grey, poorly-well developed.			Sand 50 mm uPVC Screen
EIA UB 1													

		R									B	OREHOLE:	BH6M
	Contamina	BU ation R	Str	Geotechnic	Project Location Position Job No. Client	Rege Refe	ent & Ti r to Fig	afalg ure 2	Use Development jar Street, Petersham NSW ? Contractor Terratest Pty Lt Drill Rig Hydropower Sc Inclination -90°			Sheet Date Started Date Complete Logged JZ Checked NF	1 OF 1 11/3/16 d 11/3/16 Date: 11/3/16 Date: 21/3/16
F		Dril	ling		Sampling				Field Material Desc				
METHOD		-	OEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE CONDITION	CONSISTENCY DENSITY	PIEZOMETER I D_Static Water Level BH6M j S_ G_ G_ G_ G_ G_ G_ G_ G_ G_ G	
			-	0.50	BH6M_0.2-0.4 ES 0.20-0.40 m BH6M_0.5-0.95		X) - -	ASPHALT: 50mm thick. FILL: Gravelly SAND; fine to medium grained, dark grey/dark brown, with clay.	С <u>-</u> / D			- No Surface - E8Affsfeffon -
	E		- 1 - - 2 -	0.50	BH6M_1.3-1.5 ES 1.30-1.50 m BH6M_1.5-1.95			-	FILL: Silty CLAY; low plasticity, dark brown/dark grey/red with fine to medium grained sand and fine to medium gravel, trace of sandstone fragments. SHALE; dark grey, highly weathered to distinctly weathered.	M <pi< td=""><td>-</td><td></td><td>- - - - - - - - - - - - - - -</td></pi<>	-		- - - - - - - - - - - - - - -
05				- <u>2.50</u> - 3 - - 4 -	BH6M_2.8-3.0 ES 2.80-3.00 m BH6M_3.0-3.45			-	SHALE; dark brown/grey, extremely low to very low strength, extremely weathered.				- 50 mm uPVC - Casing .
1.03 2014-07-05 Prj: EIA 1.03 2014-07-05 AD/T	F	-	4 - - 5 	4.50	BH6M_4.5-4.95				From 4.5m, dark grey mottled red.		-		- Bentonite
EA LIB 103 GLB Log IS AU BOREHOLE 3 E22913 BOREHOLE LOGS/GFJ <chawingfile>> 04/04/2016 15:59 8:30.004 Dagel Lab and in Situ Tool - DGD Lib: EA 1</chawingfile>	F	Δ	- - 6 - -	6.00	BH6M_6.0-6.45				From 6.0m, inferred very low strength.	-			
DrawingFile>> 04/04/2016 15:59 8.30			7	7.50	BH6M_7.5-7.95					_			- Sand - - - 50 mm uPVC Screen -
2913 BOREHOLE LOGS.GPJ < <d< th=""><td>H VH</td><td>-</td><td>8 - - - 9</td><td><u>8.50</u> 9.00</td><td>BH6M_8.5-9.0 D 8.50-9.00 m</td><td></td><td></td><td></td><td>From 8.5m, inferred low to medium strength.</td><td></td><td></td><td></td><td>-</td></d<>	H VH	-	8 - - - 9	<u>8.50</u> 9.00	BH6M_8.5-9.0 D 8.50-9.00 m				From 8.5m, inferred low to medium strength.				-
3 Log IS AU BOREHOLE 3 E2			- - - - 10-						Hole Terminated at 9.00 m				
EIA LIB 1.03.GLE					This boreh	nole log	g shoul	d be	read in conjunction with Environmental Investigations Austra	lia's a	accor	mpanying standard notes	

Г

<<DrawinnFile>>

IS AL 8

FIA LIR 1 03 GI B 1

BOREHOLE: BH7

Project	Proposed Mixed Use Development
Location	Regent & Trafalgar Street, Petersham NSW

Refer to Figure 2

Position Job No. Client

E22913 Deicorp Pty Ltd Contractor Terratest Pty Ltd Drill Rig Hydropower Scout Inclination -90°

2 OF 2 Sheet 10/3/16 Date Started Date Completed 10/3/16 Date: 10/3/16 Logged JZ Checked NF Date: 21/3/16

Drilling Sampling **Field Material Description** MOISTURE CONDITION CONSISTENCY DENSITY PENETRATION RESISTANCE JSCS SYMBOL RECOVERED STRUCTURE AND ADDITIONAL OBSERVATIONS SAMPLE OR FIELD TEST GRAPHIC LOG METHOD SOIL/ROCK MATERIAL DESCRIPTION WATER DEPTH (metres) DEPTH RL 10 SHALE; dark grey, highly fractured, with frequent decomposed seams and zones. 11 11.10 SHALE; dark grey, well developed, thinly laminated to thinly bedded. 12 13 90-100% RETURN NMLC 04/04/2016 16:00 8:30:004 Datgei Lab and In Situ Tool - DGD | LIb: EIA 1:03 2014-07-05 Prj: EIA 1:03 2014-07-05 14 15 16 17.00 Hole Terminated at 17.00 m 18 BOREHOLE 3 E22913 BOREHOLE LOGS.GPJ 19 20 This borehole log should be read in conjunction with Environmental Investigations Australia's accompanying standard notes.

	Cont	taminat		str	Geotechnic	Project Location Position Job No. Client	Rege Refer E229	nt & Ti to Fig	rafalg jure 2	Use Development ar Street, Petersham NSW Contractor Terratest Pty L Drill Rig Hydropower So Inclination -90°		B	S D L	heet late Started late Completed ogged SY checked NF	1 OF 2 8/3/16
F			Dri	lling		Sampling				Field Material Desc	rintic				
	MEIHOU	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION		CONSISTENCY DENSITY	PII ID Static BH9M	EZOMETER D Water Level	ETAILS
30. 8.30.004 Daigei Labrand In Situ Tool - DGD J Lib: EA 1.03 2014-07-35 Prj: EA 1.03 2014-07-35	NMLG AU/I AU/I AU/I AU/I AU/I AU/I AU/I AU/I	The must be a set of the must	85-90% RETURN GWNE GWNE	Image: 0 - 0 - 1 - 2 - 3 - 3 - 4 - 5 - 6 - 7 - 8 -	DEPTH RL 0.40 1.00 1.89 2.10 4.10 4.50 4.73 5.06 6.00	BH9M_0.2-0.3 ES 0.20-0.30 m BH9M_0.5-0.95 BH9M_1.0-1.1 ES 1.00-1.10 m BH9M_1.5-1.89 BH9M_2.0-2.1 ES 2.00-2.10 m BH9M_2.6-2.7 D 2.60-2.70 m BH9M_3.0-3.06 BH9M_3.4-3.5 D 3.40-3.50 m BH9M_3.8-3.9 D 3.80-3.90 m BH9M_4.2-4.3 D 4.20-4.30 m			·	ASPHALT: 50mm thick. FILL Silty SAND; fine grained, brown to light brown, with some rootlets and terracotta/concrete gravels. FILL Silty Gravelly CLAY; low plasticity, brown mottled dark grey, with some timber and brick fragments. FILL: Silty CLAY; low plasticity, dark brown, with some brick and timber fragments, slight organic odour. Silty CLAY; medium to high plasticity, brown wit some red mottling, with some fine to medium sub-angular ironstone gravel. SHALE; grey-brown, with some orange ironstaining, very low strength, distinctly weathered. From 4.1m, grey, distinctly, very low to low strength. SHALE; dark grey, with some orange staining, bedding dipping 0-5°. CORELOSS; 330mm thick. SHALE; dark grey, with some orange staining, bedding dipping 0-5°, interbedded with clay. From 6.0m, heavy iron staining, no clay.	(M <p< td=""><td></td><td></td><td></td><td>Galic Cover Concrete Concrete Solution</td></p<>				Galic Cover Concrete Concrete Solution
Log IS AU BOREHOLE 3 E22913 BOREHOLE LO			60-70% RETURN	- - 9 - - - - - - - -											Bentonite
EIA LIB 1.03.GLB	This borehole log should be read in conjunction with Environmental Investigations Australia's accompanying standard notes.														

e	eia		Str		Project Location Position Job No. Client	Rege Refe E229	osed M ent & T r to Fig 913 orp Pty	BOF	Sheet Date Started Date Completed Logged SY Checked NF	2 OF 2 8/3/16			
		Duri			0		1		Inclination -90°				
METHOD	PENETRATION RESISTANCE		DEPTH (metres) 10-	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	CONDITION CONSISTENCY	DENSITY	PIEZOMETER DE Static Water Level 9M	TAILS
NMLC		70-75% RETURN	11 — 12 — 12 — 13 — 14 — 15 — 16 — 17 — 18 — 19 — 20 —						SHALE: dark grey, with some orange staining, bedding dipping 0-5°, interbedded with clay.				Sand -
	This borehole log should be read in conjunction with Environmental Investigations Australia's accompanying standard notes.												

04/04/2016 16:00 8:30.004 Datgel Lab and In Situ Tool - DGD | Lb: EIA 1.03 2014-07-05 Prj: EIA 1.03 2014-07-05

EIA LIB 1.03.GLB Log IS AU BOREHOLE 3 E22913 BOREHOLE LOGS.GPJ <<DrawingFile>>

c	Contamina		str	Geotechnic	Project Location Position Job No. Client	Rege Refe E229	ent & T er to Fig	Trafalo gure 2	Use Development ar Street, Petersham NSW	Sheet 2 OF 2 Date Started 7/3/16 Date Completed 7/3/16 Logged SY Checked NF Date: 7/3	3/16
		Dri	lling		Sampling				Field Material Description		
METHOD	PENETRATION RESISTANCE	-	01 (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL		PIEZOMETER DETAILS ID Static Water Level BH10M	
			10-					-	SHALE; bedding dipping 0-5°, dark grey.		
		85-90% RETURN		12.27 12.47 12.47 12.57 15.00					CORELOSS: 200mm thick. SHALE; bedding dipping 0-5°, dark grey.	Sand	
nd In S			—16— -	_					Hole Terminated at 16.00 m		
0.004 Datgel Lab a			-	-							
4/04/2016 16:00 8.5			17 — -	-							
-ile>> 0			-	-							
Drawing			-	-							
PI <<			18 —]							
LOGS.G			-	-							
EHOLE			-	-							
13 BORE			-	1							
3 E229			19 —	1							
HOLE			.	-							
3 Log IS AU BORE				-							
EIA LIB 1.03.GLI					This bore	hole lo	g shou	ild be	read in conjunction with Environmental Investigations Australia's accomp	panying standard notes.	

Project Proposed Mixed Use Development

Location Regent & Trafalgar Street, Petersham NSW

Position Job No. Client

E22913 Deicorp Pty Ltd

Refer to Figure 2

Contractor Terratest Pty Ltd Drill Rig Hydropower Scout Inclination -90°
 Sheet
 1 OF 2

 Date Started
 7/3/16

 Date Completed
 7/3/16

 Logged
 SY
 Date: 7/3/16

 Checked NF
 Date: 21/3/16

BOREHOLE: BH11M

eiaustralia Contamination Remediation Geotechnical

Project Proposed Mixed Use Development

 Location
 Regent & Trafalgar Street, Petersham NSW

 Position
 Refer to Figure 2

Position Job No. Client

E22913 Deicorp Pty Ltd Contractor Terratest Pty Ltd Drill Rig Hydropower Scout Inclination -90°
 Sheet
 2 OF 2

 Date Started
 7/3/16

 Date Completed
 7/3/16

 Logged
 SY

 Date: 7/3/16
 7/3/16

BOREHOLE: BH11M

		Dril	ling		Sampling				Field Material Desc	riptio	on	
METHOD	PENE IRALION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE CONDITION	CONSISTENCY DENSITY	PIEZOMETER DETAILS ID Static Water Level BH11M
			10-					-	SHALE; bedding dipping 0-10°, dark grey.			
			-	10.53			$\overline{\times}$	-	CORELOSS: 280mm thick.	-		
			- 11 —	10.81				-	SHALE; bedding dipping 0-10°, dark grey.	1		
			-	11.27			$\overline{\nabla}$	-	CORELOSS: 340mm thick.	-		
			-	11.61			$ \ge $	-	SHALE; bedding dipping 0-10°, dark grey.	-		
			- 12 —									
			-									
		URN	-	_								Sand
AD/T		80-85% RETURN	13 —	_								
		80-85	-									
			-	-								
14-07-05			14 —	-								
EIA 1.03 20			-	14.53								
07-05 Prj: E			-	-					From 14.53m, interbedded with fine grained sandstone.			
1.03 2014-			15 —	-								
0 LIb: EIA			-	-								
Tool - DG			-	16.00								
and In Situ				16.00					Hole Terminated at 16.00 m	1		
Datgel Lab			-	-								
8.30.004			-	-								
/2016 16:00			17 —									
ile>> 04/04			-									
<c f<="" rawing="" td=""><td></td><td></td><td>- 18 —</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></c>			- 18 —	-								
JGS.GPJ <			-									
SEHOLE LC			-									
22913 BOF			- 19 —									
HOLE 3 E			-									
3 AU BORE			-									
LB Log IS			- 20 —	1								
EA LB 1.03 GLB Log IS AU BOREHOLE 3 E22913 BOREHOLE LOGS GPJ <cdawingf1e>> 04104/2016 16:00 8.30.004 Dagel Lab and In Shu Tool - DGD Ub: EIA 1.03 2014/07-05 Prj: EIA 1.03 2014/07-05</cdawingf1e>					This borehole	e log	shoul	d be	read in conjunction with Environmental Investigations Austr	alia's a	accol	mpanying standard notes.
EIA												

	e			str		Project Location				Use Development jar Street, Petersham NSW		В	OREHOLE: BH12 Sheet 1 OF 1
						Position Job No. Client	E229	to Fig 13 prp Pty		2 Contractor Terratest Pty Lt Drill Rig Hydropower Sc			Date Started 11/3/16 Date Completed 11/3/16 Logged JZ Date: 11/3/16
ŀ										Inclination -90°			Checked NF Date: 21/3/16
			_	ling		Sampling				Field Material Desc			
	METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
ľ		<u></u> .म∕		0	0.50	BH12_0.2-0.4 ES 0.20-0.40 m			<u> - /</u>	ASPHALT: 30mm thick. FILL: Gravelly SAND; fine to medium grained, with fine to coarse gravel.	<u>∧ -</u> ∕ □		CONCRETE HARDSTAND
				- - 1	0.50	BH120.5-0.95		\bigotimes	-	FILL: Silty CLAY; dark grey/dark brown, with fine to medium grained gravel and sand, trace of fine to medium grained sandstone fragments.	M <pi< td=""><td>-</td><td>-</td></pi<>	-	-
		E		-	1.30	BH12_1.3-1.5 ES 1.30-1.50 m BH12_1.5-1.95			-	SHALE; dark brown/dark grey/red, extremely low strength, extremely weathered.		_	WEATHERED ROCK
				2— - -									-
	AD/T			- 3— -		BH12_3.0-3.1						-	-
014-07-05		F		- - 4							-		-
2014-07-05 Prj: EIA 1.03 2014-07-05		н	Δ		4.50	BH12_4.5-4.63				From 4.5m, inferred low strength.	-		-
	-	VH		-	5.50	BH12_5.5-6.0 D 5.50-6.00 m				From 5.5m, inferred low to medium strength.	-		-
Situ Too				6	6.00								
EIA LIB 1.03 GLB Log IS AU BOREHOLE 3 E22913 BOREHOLE LOGS.GPJ <										Hole Terminated at 6.00 m			-
3 IS AU BOREHOLE 3 E22913 BOREHOLE LOU				- - 9 - - -									
EIA LIB 1.03.GLB Log	10 - This borehole log should be read in conjunction with Environmental Investigations Australia's accompanying standard notes.												

1

eiaustralia Contamination Remediation Geotechnical

BOREHOLE: BH15M

Sheet

Project	Proposed Mixed Use Development
Location	Regent & Trafalgar Street, Petersham NSW

Refer to Figure 2

Position E22913

Job No.

Client

Deicorp Pty Ltd

Terratest Pty Ltd Contractor Drill Rig Hydropower Scout Inclination -90°

8/3/16 Date Started Date Completed 8/3/16 Date: 8/3/16 Logged JZ Checked NF Date: 21/3/16

1 OF 2

Drilling Sampling							Field Material Description							
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	BH15M	ter Level	
			0	0.50	BH15M_0.2-0.4 ES 0.20-0.40 m BH15M_0.5-0.9		X	-	ASPHALT: 80mm thick. FILL: Gravelly CLAY; low plasticity, dark grey/dark brown, with fine to medium grained sand. FILL: Silty CLAY; medium plasticity, grey mottled red-brown,	<u> </u>	-			 Gatic Cover Bentonite
			1-	-	BH15M_0.9-0.95		\bigotimes		with shale and ironstone fragments.	M <pi< td=""><td>-</td><td></td><td></td><td></td></pi<>	-			
			-	1.50	BH15M_1.5-1.95			CI- CH	Silty CLAY; medium to high plasticity, dark grey.		-			
	E		2—	-	BH15M_1.8-2.0 ES 1.80-2.00 m					M>PI	St			
			3-	3.00	BH15M_3.0-3.3	1 X X		CI-	Silty CLAY; medium to high plasticity, red mottled grey, with	_				 Cuttings
			-	3.30	_ BH15M_3.3-3.45		- ×	-	ironstone fragments. SHALE; red-brown/dark grey, extremely low to very low strength, extremely weathered.					50 mm uPV Casing
			4—	4.50						_	_		603	
	F	USE	5-	4.50	BH15M_4.5-4.95				From 4.5m, grey mottled red-brown.					Bentonite
		TRICTIONS INSIDE WAREHOUSE	-	5.50				-	SHALE; dark grey/dark bornw, highly fractured, with frequent decomposed seams.					
		CTIONS INSI	6	-										
			-	<u>6.50</u> 7.00			$\overline{\langle}$	-	CORELOSS: 500mm thick.					
		DUE TO HEIO	7-	-				-	SHALE; dark grey/dark bornw, highly fractured, with frequent decomposed seams.					
		VOT OBSERVABLE - CASING NOT INSTALLED DUE TO HEIGHT RES	8-	7.85				-	CORELOSS: 150mm thick. SHALE; dark grey, highly fractured.					
		SASING NOT	-	8.42				-	SHALE; dakr grey, well developed, thinly laminated to medium bedded, bedding dipping 0-5°.					■— Sand
		ERVABLE - C	9	-										50 mm uPV Screen
		NOT OBSI	- 10	-										Screen

eiaustralia Contamination Remediation Geotechnical

 Project
 Proposed Mixed Use Development

 Location
 Regent & Trafalgar Street, Petersham NSW

Position Refer to Figure 2

Job No. Client E22913 Deicorp Pty Ltd Contractor Terratest Pty Ltd Drill Rig Hydropower Scout Inclination -90° Sheet2 OF 2Date Started8/3/16Date Completed8/3/16Logged JZDate: 8/3/16Checked NFDate: 21/3/1

BOREHOLE: BH15M

Date: 21/3/16

Drilling Sampling												
METHOD	PENETRATION	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE CONDITION	CONSISTENCY DENSITY	PIEZOMETER DETAILS ID Static Water Level BH15M
NMLC									SHALE; dakr grey, well developed, thinly laminated to medium bedded, bedding dipping 0-5°.			
			- 13 - - -	12.70					Hole Terminated at 12.70 m			
004 Dargei Lab and In Silu Tool - DGD Lib: ElA 1,03 2014-07-05 Prj: ElA 1,03 2014-07-05			14 — - - - 15 —	· · ·								
Datgel Lab and In Situ Tool - DGD Lib: El.			- - - 16									
awingFile>> 04/04/2016 16:00 8.30.004 1												
EA LIB 103 GLB Log IS AU BOREHOLE 3 E22913 BOREHOLE LOGS GPJ < <drawingfile> 04042016 16:00 8:30</drawingfile>			18 — - - 19 —	· · ·								
EIA LIB 1.03.GLB Log IS AU BOREHOL			20		This borehole	e log	should	d be	read in conjunction with Environmental Investigations Austral	ia's a	accor	npanying standard notes.

e	eia		str	alia	Project	•			Use Development		В	OREHOLE: BH16
Co	ontamina	tion R	emediation	Geotechnic	Location Position	-	ent & T r to Fig	-	gar Street, Petersham NSW 2			Sheet1 OF 1Date Started17/3/16
					Job No.	E229			Contractor BG Drilling			Date Completed 17/3/16 Logged MT Date: 17/3/16
					Client	Deic	orp Pty	/ Ltd	Drill Rig Dando Dual Ma: Inclination -90°	st		Logged MT Date: 17/3/16 Checked NF Date: 21/3/16
F		Dril	ling		Sampling				Field Material Descri	intio	n	
	z		iing		oumpning	0		OL				
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
DΤ			0.0 —	0.08				-	CONCRETE: 80mm thick.	-		CONCRETE HARDSTAND
EA LIB 103 GLB Log IS AU BOREHOLE 3 E22913 BOREHOLE LOGG 6PJ <-CPRANINgFile>> 2103/2016 13:28 8.30,004 Datget Late and In Situ Tool - DGD LUb: EIA 102 2014/07:45 Pi; EIA 102 2014/07:45 Di Conte 07:45 D		GWNE		0.08	BH16_0.4-0.5 ES 0.40-0.50 m 0.40 m PID = 68 ppm BH16_1.0-1.1 ES 1.00-1.10 m 1.00 m PID = 19.8 ppm				CONCRETE: 80mm thick. FILL: Silty CLAY; low to medium plasticity, with fine to medium, angular to sub-angular gravel, with odour. From 0.6m, light brown. Silty CLAY; low to medium plasticity, brown, no odour. Hole Terminated at 1.10 m	M		CONCRETE HARDSTAND - FILL - RESIDUAL SOIL -
.E LOGS.GPJ < <drawingfile< td=""><td></td><td></td><td>- 4.0— -</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></drawingfile<>			- 4.0— -									-
S AU BOREHOLE 3 E22913 BOREHOL			- - 4.5 - - -									
EIA LIB 1.03.GLB Log I:			5.0 —		This bore	hole log	g shou	ld be	read in conjunction with Environmental Investigations Australi	ia's a	accor	npanying standard notes.

Project

BOREHOLE: BH17

Date: 17/3/16

Date: 21/3/16

Drilling	Sampling	Q	BOL		Fiel	Id Material Description		
					Inclination	-90°	Checked NF	Date: 27
	Client	Deico	rp Pty Ltd		Drill Rig	Dando Dual Mast	Logged MT	Date: 17
	Job No.	E229	13		Contractor	BG Drilling	Date Completed	17/3/16
	Position	Refer	to Figure 2				Date Started	17/3/16
ion Remediation Geotechnical		Rege	nt & Trafalg	ar Street, Petersham NSW			Sheet	1 OF 1

Proposed Mixed Use Development

METHOD	PENETRATION RESISTANCE	WATER		DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBO	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENC DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
AD/T	-	GWNE	0.0		BH17_0.5-0.6 ES			-	CONCRETE: 80mm thick. FILL: Sandy CLAY; low plasticity, dark brown, with angular to sub-angular gravel, no odour.	м	-	CONCRETE HARDSTAND
		U	-		BH17_0.5-0.6 ES 0.50-0.60 m 0.50 m PID = 54 ppm			CL- CI	Silty CLAY; low to medium plasticity, dark grey, no odour.	м		RESIDUAL SOIL - - -
			-1.0	1.00	BH17_0.9-1.0 ES 0.90-1.00 m 0.90 m PID = 28 ppm		¥		Hole Terminated at 1.00 m			
			- 1.5 — -									-
14-07-05			2.0 —									-
014-07-05 Prj: EIA 1.03 20												-
4 - DGD LIb: EIA 1.03 2(2.5 — _ _									-
atgel Lab and In Situ Tool												-
2016 13:29 8.30.004 Da			- 3.5 —									-
< <drawingfile>> 21/03/</drawingfile>			- - 4.0									-
BOREHOLE LOGS.GPJ			-									
BOREHOLE 3 E22913			4.5									-
EA LIB 103 GLB Log IS AU BOREHOLE 3 E22913 BOREHOLE LOGS/GPJ <-DawingFile>> 21/03/2016 13:28 8:30.004 DageLab and in Situ Tool - DGD LID: EIA 1:03 2014/0745 Pr; EIA 1:03 2014/0745			- 5.0 —		This borehole	log	should	d be	read in conjunction with Environmental Investigations Austra	lia's a	accon	- npanying standard notes.

BOREHOLE: BH18

Project	Proposed Mixed Use Development
Location	Regent & Trafalgar Street, Petersh

Regent & Trafalgar Street, Petersham NSW

Position Job No. Client

Refer to Figure 2 E22913 Deicorp Pty Ltd

BG Drilling Contractor Drill Rig Dando Dual Mast Inclination -90°

			Dril	ling	-	Sampling				Field Material Descr	iptic	n		
	METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
F	DT			0.0 —	0.40			XX	-	CONCRETE: 100mm thick.	-		CONCRETE HARDSTAND	
ŀ				-	0.10			(X)	-	Silty CLAY; light yellow, I-m plasticity, no odour.			Fill	_
	AD/T	-	GWNE	- - 0.5 - -	0.60	BH18_0.4-0.5 ES 0.40-0.50 m 0.40 m PID = 0 ppm				From 0.6m, light brown.	D	-	Residual	- - - -
				-		RH18 0010ES								
				—1.0—	1.00	BH18_0.9-1.0 ES 0.90-1.00 m								<u> </u>
EA LIB 10.3 G.B. Log IS AU BOREHOLE 3 E22913 BOREHOLE LOGS GPJ < <drawingfile>> 2103/2016 13:28 8:30.04 Dage(Lab and In Situ Tool - DGD LIb: EIA 103 2014/07-35 Pij: EIA 1.03 2014/07-35</drawingfile>						0.90 m PID = 0 ppm				Hole Terminated at 1.00 m				
HOLE 3				-										-
BOREH				-										
S AU E				_										
Log !!				5.0 —										
EIA LIB 1.03.GLB				5.0		This borehole	e log	g shoul	d be	read in conjunction with Environmental Investigations Austral	ia's a	accon	npanying standard notes.	

	Conta	aminat		str	alia	Project Location Position Job No. Client	Rege Refe	ent & T r to Fig	rafalg jure 2	Use Development jar Street, Petersham NSW 2 Contractor BG Drilling Drill Rig Dando Dual Ma Inclination -90°	st	В	Sheet 1 OF 1 Date Started 17/3/16 Date Completed 17/3/16 Logged MT Date: 17/3/16 Checked NF Date: 21/3/16
	_		Dril	ling		Sampling				Field Material Descr			
		RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
ł	5			0.0 —	0.10			\boxtimes	-	CONCRETE: 100mm thick.	-		CONCRETE HARDSTAND
				- - - - - - - -	0.90	BH20_0.4-0.5 ES 0.40-0.50 m 0.40 m PID = 10.1 ppm			CL-	FILL Silty CLAY; low to medium plasticity, with angular to sub-angular gravel, with trace of plastic, no odour.	М	-	FILL - - - - - - - - - - - - - - - - - - -
	AUT	-	GWNE	1.0 — - - 1.5 — - - - -		BH20_1.4-1.5 ES 1.40-1.50 m 1.40 m PID = 20.1 ppm			CI	odour.	м	-	
:014-07-05 Prj: EIA 1.03 2014-07-05				2.0	2.40	BH20_2.4-2.5 ES 2.40-2.50 m				SHALE; grey-orange, inferred extremely weathered, no odour.			WEATHERED ROCK
EA LIB 1.03.GLB Log IS AU BOREHOLE 3 E22913 BOREHOLE LOGS.GPJ					3.20	2.40 m PID = 0 ppm				From 3.2m, light grey.	D		
File>> 21/03/2016 13:29 8:30.004 [- 3.5 - -	3.50	BH20_3.3-3.4 ES 3.30-3.40 m 3.30 m PID = 0 ppm				Hole Terminated at 3.50 m			
3 BOREHOLE LOGS.GPJ < <drawing< td=""><td></td><td></td><td></td><td> 4.0 - -</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></drawing<>				 4.0 - -									
Log IS AU BOREHOLE 3 E2291:				4.5									
EIA LIB 1.03.GLB						This boreh	nole log	g shoul	ld be	read in conjunction with Environmental Investigations Austral	ia's a	accor	npanying standard notes.

BOREHOLE: BH21

Sheet

Project	Proposed Mixed Use Development
Location	Regent & Trafalgar Street, Petersham NSW

Position Job No. Client

Refer to Figure 2 E22913 Deicorp Pty Ltd

BG Drilling Contractor Drill Rig Inclination

Dando Dual Mast -90°

1 OF 1 Date Started 17/3/16 Date Completed 17/3/16 Date: 17/3/16 Logged MT Checked NF Date: 21/3/16

		Dri	lling		Sampling				Field Material Desc			
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE CONDITION	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
DT			0.0 —	0.10				-		3276		CONCRETE HARDSTAND
			-	0.30			X	-	FILL: Gravelly SAND; medium grained, dark grey, with angular to sub-angular gravel, no odour.	м	-	FILL
			-	0.50	BH21_0.4-0.5 ES 0.40-0.50 m		X	-	FILL: Silty CLAY; low plasticity, dark grey, with fine to medium, angular to sub-angular gravel, no odour.	м		
		Ш	0.5	-	0.40 m PID = 25 ppm			-	FILL: Silty CLAY; low plasticity, dark grey, no odour.	м		
AD/T	-	GWNE	- - 1.5 —	1.60	BH21_1.4-1.5 ES 1.40-1.50 m 1.40 m PID = 55 ppm			CI	Silty CLAY; medium plasticity, light grey mottled orange, no		-	RESIDUAL SOIL
and in Situ Tool - DGD LIb: EIA 1.03 2014-07-05 Pŋ: EIA 1.03 2014-07-05			- - 2.0 - - - - -	-				5	Sitty CLAY; medium plasticity, light grey motiled orange, no odour.	м		
ol - DGD Lib: EIA 1.03 201			2.5	2.60	BH21_2.5-2.6 ES 2.50-2.60 m 2.50 m PID = 0 ppm				Hole Terminated at 2.60 m			
Datgel Lab and In Situ To			3.0 — - -	-								
10/2010 13:23 0.00.00			- 3.5 — -	-								
.GFJ < <drawingfile>> 21/03/2016 13:29</drawingfile>			- - 4.0									
			- - 4.5—									
AU BUREHULE 3 EZ			-									
A UB 1.03.GLB Log IS AU BOREHOLE 3 E22913 BOREHOLE LOGS.GPJ			5.0 —]	This borehole	e log	shoul	d be	read in conjunction with Environmental Investigations Austra	lia's a	accor	npanying standard notes.

BOREHOLE 3 E22913 BOREHOLE LOGS.GPJ

S ALL S

EIA LIB 1.03.GLB

BOREHOLE: BH22

Project	Proposed Mixed Use Development
Location	Regent & Trafalgar Street, Petersham NSW

Refer to Figure 2

Position Job No. Client

E22913 Deicorp Pty Ltd Contractor **BG** Drilling Drill Rig Dando Dual Mast Inclination -90°

Sheet	1 OF 1
Date Started	17/3/16
Date Completed	17/3/16
Logged MT	Date: 17/3/16
Checked NF	Date: 21/3/16

Drilling Sampling **Field Material Description** MOISTURE CONDITION CONSISTENCY DENSITY PENETRATION RESISTANCE JSCS SYMBOL RECOVERED STRUCTURE AND ADDITIONAL OBSERVATIONS SAMPLE OR FIELD TEST GRAPHIC LOG SOIL/ROCK MATERIAL DESCRIPTION METHOD WATER DEPTH (metres) DEPTH RL 0.0 FILL FILL: Gravelly SAND; fine to medium grained, dark grey, trace of plastic, no odour. М 0.30 FILL: Silty CLAY; low plasticity, dark grey, no odour. М BH22_0.4-0.5 ES 0.40-0.50 m 0.40 m PID = 0.5 ppm 0.50 0.5 RESIDUAL SOIL CL GWNE Silty CLAY; low plasticity, dark grey mottled red, with trace of rootlets, no odour. L AD/T _ X М 1.0 BH22_1.1-1.2 ES 1.10-1.20 m 1.10 m PID = 0.6 ppm 1.20 Hole Terminated at 1.20 m 1.5 <<DrawingFile>> 21/03/2016 13:29 8.30.004 Datgei Lab and In Situ Tool - DGD | Lib: EIA 1.03 2014-07-05 Pij: EIA 1.03 2014-07-05 2.0 2.5 3.0 3.5 4.0 4.5 5.0 This borehole log should be read in conjunction with Environmental Investigations Australia's accompanying standard notes.

<<DrawingFile>> 21/03/2016 13:30 8.30.004 Datgei Lab and In Situ Tool - DGD | Lib: EIA 1.03 2014-07-05 Pij: EIA 1.03 2014-07-05

BOREHOLE 3 E22913 BOREHOLE LOGS.GPJ

ON IS AU

FIA LIB 1 03 GLB

BOREHOLE: BH23

Project	Proposed Mixed Use Development
Location	Regent & Trafalgar Street, Petersham NSW

Position Job No.

Client

Refer to Figure 2 E22913 Deicorp Pty Ltd

Contractor BG Drilling Drill Rig Dando Dual Mast Inclination -90°
 Sheet
 1 OF 1

 Date Started
 17/3/16

 Date Completed
 17/3/16

 Logged MT
 Date: 17/3/16

 Checked NF
 Date: 21/3/16

Drilling Sampling **Field Material Description** PENETRATION RESISTANCE JSCS SYMBOL MOISTURE CONDITION CONSISTENCY DENSITY RECOVERED STRUCTURE AND ADDITIONAL OBSERVATIONS GRAPHIC LOG SAMPLE OR FIELD TEST SOIL/ROCK MATERIAL DESCRIPTION METHOD WATER DEPTH (metres) DEPTH RL 0.0 CONCRETE HARDSTAND DT CONCRETE: 100mm thick. 0.10 -FILL FILL: Silty CLAY; low to medium plasticity, grey, no odour. BH23_0.4-0.5 ES 0.40-0.50 m 0.40 m PID = 26.1 ppm 0.50 0.5 From 0.5m, orange mottled grey. М GWNE _ _ AD/T BH23_0.9-1.0 ES 0.90-1.00 m 0.90 m PID = 7.4 ppm 1.00 1.0 RESIDUAL SOIL X CI Silty CLAY; medium plasticity, grey mottled orange, no odour. М BH23_1.4-1.5 ES 1.40-1.50 m 1.40 m PID = 5.6 ppm 1.50 1.5 Hole Terminated at 1.50 m 2.0 2.5 3.0 3.5 4.0 4.5 5.0 This borehole log should be read in conjunction with Environmental Investigations Australia's accompanying standard notes.

Project Proposed Mixed Use Development Location Regent & Trafalgar Street, Petersham NSW

Position Job No.

Client

Refer to Figure 2 E22913 Deicorp Pty Ltd

Contractor BG Drilling Drill Rig Dando Dual Mast Inclination -90° BOREHOLE: BH24

 Sheet
 1 OF 1

 Date Started
 17/3/16

 Date Completed
 17/3/16

 Logged MT
 Date: 17/3/16

 Checked NF
 Date: 21/3/16

		··	lin~		Complian				Ciald Metavici Dee-	rint'-			
	z		ling		Sampling	1-		٦٢	Field Material Desc				
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
			0.0 —	0.10			\boxtimes	-	ASPHALT: 100mm thick.	-		CONCRETE HARDSTAND	Τ
			-	0.50	BH24_0.4-0.5 ES 0.40-0.50 m		\bigotimes	-	FILL: Sandy CLAY; low plasticity, brown/orange, with medium, angular to sub-angular gravel, no odour.	м	-	FILL	
			0.5	0.50	0.40-0.50 m 0.40 m PID = 0.6 ppm		X	-	FILL: Sandy CLAY; brown mottled orange, trace of brick, no odour.		-		
			- 1.0 <i></i>				\bigotimes						
AD/T	-	GWNE	- - 1.5 —		BH24_1.4-1.5 ES 1.40-1.50 m 1.40 m		\bigotimes			м	-		
			-		PID = 10.1 ppm		\bigotimes						
			2.0	2.30				CI-	City OLAV, modium to high plasticity light even motified		_	RESIDUAL SOIL	
			2.5 —	2.60	BH24_2.4-2.5 ES 2.40-2.50 m 2.40 m PID = 0.1 ppm				Silty CLAY; medium to high plasticity, light grey mottled orange, no odour. Hole Terminated at 2.60 m	м			
			- - 3.0 —										
			-										
			3.5— - -										
			4.0-										
			-										
			4.5 — - -										
			- 5.0 —		This borehol	e log	g shoul	d be	read in conjunction with Environmental Investigations Austra	lia's a	accor	npanying standard notes.	

	Con	tamina		str	alia	Location Position Job No.	Rege Refe E229	ent & Ti r to Fig	rafalg ure 2	Use Development jar Street, Petersham NSW ? Contractor BG Drilling Drill Rig Dando Dual Ma Inclination -90°	ast	В	Sheet 1 OF 1 Date Started 17/3/16 Date Completed 17/3/16 Logged MT Date: 17/3/16 Checked NF Date: 21/3/16
E			Dril	ling		Sampling				Field Material Desc			
	METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	Sample or Field test	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
				0.0 —	0.05			X		ASPHALT: 50mm thick.	-	1	CONCRETE HARDSTAND
	AD/T		GWNE		2.10	BH25_0.3-0.4 ES QD3 QT3 0.30-0.40 n 0.30 m PID = 0.5 ppm BH25_2.1-2.2 ES 2.10-2.20 m PID = 0.1 ppm	n			FILL: Silty SAND; fine to medium grained, with angular to sub-angular gravel, no odour.	м	-	FILL
EA UB 1.03 GLB Log IS AU BOREHOLE 3 E22913 BOREHOLE LOOS GPJ < CorawingFia>> 21/03/2016 13:30 8.30.004 DatgeLab and in Situ Tool-DGD Ub: EIA 1.03 2014/07-05 Pg: EIA 1.03 2014/07-05				3.0 — - - - - - - - - - - - - - - - - - - -	2.80					Hole Terminated at 2.80 m			
EIA LIB 1.03. GLB Log IS AU BOREHOLE 3 E22913 BOREHO				- 4.5 - - 5.0		This boreho	ble log	g shoul	d be	read in conjunction with Environmental Investigations Austra	lia's :	accor	npanying standard notes.

											В	OREHOLE: BH27
						•			Use Development jar Street, Petersham NSW			Sheet 1 OF 1
					Position		r to Fig	jure 2				Date Started 17/3/16 Date Completed 17/3/16
					Job No. Client	E229 Deic	orp Pty	Ltd	Contractor BG Drilling Drill Rig Dando Dual M	last		Logged MT Date: 17/3/16
									Inclination -90°			Checked NF Date: 21/3/16
		_	lling		Sampling				Field Material Des	<u> </u>		
METHOD	PENETRATION	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
F			0.0	0.05			\mathbb{N}		ASPHALT: 50mm thick.	<u> </u>		CONCRETE HARDSTAND
			-				\bigotimes	-	FILL: Silty SAND; yellow/red, with rounded to sub-rounded gravel, no odour.			FILL
			-	-	BH27_0.2-0.3 ES 0.20-0.30 m 0.20 m		\bigotimes			м		
			0.5 —	0.50	PID = 0.8 ppm		\bigotimes					-
			0.5 -	-				CL	Sandy CLAY; low plasticity, yellow, no odour.]	RESIDUAL SOIL
			-	-			<u> </u>					
			-									
			1.0 —	-								-
Ι.		_ш	-									
AD/T	-	GWNE	-	-			[-	
			-	-						M		
			1.5-	-								-
			-									
			-	-								
7-05			2.0									-
33 2014-0			-	2.20								
j: EIA 1.0			-	2.20			•	-	SHALE; grey, inferred extremely weathered, no odour.	1		WEATHERED ROCK
F07-05 P			-	0.50	BH27_2.3-2.4 ES 2.30-2.40 m 2.30 m					D		
1.03 2014			-2.5-	2.50	PID = 0.6 ppm				Hole Terminated at 2.50 m	+		
LIb: EIA			-	-								
- DGD			-	-								
Situ Tool			3.0-	-								-
ab and In			-	-								
Datgel Lé			-									
30.004			-	-								
13:30 8			3.5 —									-
/03/2016			-	1								
-ile>> 21			-	-								.
Drawingf			40-									.
.GPJ <<			4.0-	-								
LE LOGS			-	-								.
OREHOI			-	1								
=22913 B			4.5 —	-								-
IOLE 3 F			-]								.
J BOREH			-									
og IS AL			-	-								.
EA UB 103 GLB Log IS AU BOREHOLE 3 E22913 BOREHOLE LOGS GPJ <chawingfile> 21/03/2016 13:30 8.30.004 Dagel Lab and In Situ Tool - DGD Ub: EIA 1.03 2014/07-05 Prj: EIA 1.03 2014/07-05</chawingfile>			5.0 —		This bore	hole log	, g shoul	d be	read in conjunction with Environmental Investigations Austr	alia's :	accon	npanying standard notes.
eia LIB 1.									-			
ш												

Detailed Site Investigation 3-7 Regent Street, 13-17 Regent Street and 287-309 Trafalgar Street, Petersham, NSW Report No. E22913 AA_Rev0

> Appendix G Field Data Sheets

FIELD DATA SHEET

Project: _________

Contamination | Remediation | Geotechnical

Site Address: Italalgar St, Petersharm Engineer: UT Client:

Sampling Date: 25/03/16

_ Sheet: <u>1</u> of <u>4</u>

Monitoring Bore	e 10: BHISH	Date Drilled:	Date	Developed:		Drilled	Depth: <u>12.</u>	A_mBGL Hole Size:mm Measured Bore Depth:mBTOC
Bore Location I	Description:							₩ TOC Slickup <u>0.85</u> m (Relative to Ground Level)
SWL Before Pu	urging (m BTOC)): _2.6		L:	S	ampling Me	thod:	Time Sample Taken: <u>3:40 · _</u>
Volume Purged (L)	Temp (·C)	pH (units)	EC (µs/cm) OR mS/cm	TDS (ppm)	DO (mg/L)	Redox (mV)	Odours (Y / N)	Sample Description
(<u>s)</u>	0.2.65	6.28	11171	<u>585'</u>	3.77	14.1	U	man clear, no tuibidity no sheen .
	22.66	6.29	11.70	585	3019	G 12	<u>.</u>	no ocour
	22.66	6.29	1470	<u>585</u>	2.91	166.3	<u> </u>	
	22.67	6.30	1869	584	273	160.6	<u>v</u>	
Bore Location Date Purged:	Description:		Purging Method	l:				mBGL_Hole Size:mm_Measured Bore Depth: <u>13.9</u> mBTOC TOC Stickup <u>1_1</u> m (Relative to Ground Level Time Sample Taken: <u>3: 55</u>
Volume	T	рн	EC (µs/cm) OR	TDS	DO	Redox	Odours	
Purged (L)	Temp (°C)	(units)	mS/cm	(ppm)	(mg/L)	(mV)	(Y / N)	Sample Description
(FS)	22.79	6.67	550	275	9.19	1452	<u> </u>	clear no torbidity no sheen.
	22.86	6.20	549	274	296	1360	_ <u> </u>	0000000.
	22.87	6.81	549	275	2.89	134.3	U	
	22.88	6.82	SA9	275	2.79	131.9	þ.	
					-			
Monitoring Bo	ore ID: 84414	Date Drílled:	Dat	l s Developed:		Drille	d Deplh:	mBGL_Hole Size:mm_Measured Bore Depth: <u>*5_4</u> mBTO
Bore Location	Description:							TOC Stickup <u>0. 13</u> m (Relative to Ground Leve
Date Purged:			Purging Metho	d:				
SWL Before P	^o urging (m BTOC	»: <u>334</u> .	Time of SV	VL:	:	Sampling M	ethod:	Time Sample Taken: <u>4.10</u>
Volume Purged (L)	Temp (-C)	рН (units)	EC (µs/cm) OR mS/cm	TDS (ppm)	DO (mg/L)	Redox (mV)	Odours (Y / N)	Sample Description
	2354	6.15	<u>c26</u>	314	3.88	160,5	v	light Brown, no sheep no
	23.86	6.19	628	314	3.39	K6.9	N	GOOG, law tolkidity.
	24.03	6.19	628	314	329	69.9	0	
	24.24	6.20	638	318	1	45.6	U	
	24.48	6.21	627	313) 14.3	().	

\mathbb{Z}		AUSTRALIA Geotechnica	Project: _ Site Addr	<u>€220</u> 955: <u>T</u> ¢	geber			Sheet: <u>2</u> of <u>2</u> <u>Shirw</u> Engineer: Sampling Date:
re Location D	escription:							mBGL_Hole Size:mm_Measured Bore Dapth: <u>6. 5.</u> mBTO TOC Stickupm (Relative to Ground Leve
								Time Sample Taken: 4-30
Volume ¤urged (L.)	Temp (·C)	pH (units)	EC (µs/cm) OR mS/cm	TDS (ppm)	DO (mg/L)	Redox (mV)	Odours (Y / N)	Sample Description
	2333	5.29	ĺ	1029	† 32	96A	v	with brown, low withdry Tonton
_	23.34	<u>537</u>	2000	1062		<u>90</u>		no alean no adoor
	2331	5.39	2005	1001	315	88,2	_v	
	13.29	5.39	2010	1003	2.67	<u>04.0</u>	ν	
	23:30	5.39	2004	1004	2.A2	82.S	u	
Bare Location	Description:		Purging Mathoo	l:				TOC Slickup <u>8.CQ</u> m (Relative to Ground Le
Bare Location	Description:		Purging Mathoo	l:		ampling M		TOC Stickup <u>8.C9</u> m (Relative to Ground Le
Bare Location Date Purged: SWL Before Pr Volume	Description:): <u>33</u>	Purging Mathoo Time of SW (µs/cm) OR	1:	DO (mg/L)	ampling M Redox (mV)	athod: Odours (Y / N)	TOC Slickup 3.09 m (Relative to Ground Le Time Sample Taken: 4945 Sample Description Party H19/2
Bare Location Date Purged: SWL Before Pr Volume	Urging (m BTOC)): <u>3.3</u> pH (units)	Purging Mathoo Time of SW EC (µs/cm) OR mS/cm	L: <u>B: 15</u> TDS (ppm)	DO (mg/L) 2.98	ampling M Redox (mV)	athod: Odours (Y / N)	TOC Slickup <u>3.09</u> m (Relative to Ground Le Time Sample Taken: <u>4:45</u> Sample Description
Bare Location Date Purged: SWL Before Pr Volume	Description: urging (m BTOC) <i>Tomp (-</i> C) 23-7 1): <u>3.3</u> pH (units) 6.27	Purging Mathoo Time of SW EC (µs/cm) OR mS/cm 804	1:	DO (mg/L) 2.98	ampling M Redox (mV) 12, S 16 8	athod: Odours (Y / N)	TOC Slickup 3.09 m (Relative to Ground Le Time Sample Taken: 4:45. Sample Description
Bare Location Date Purged: SWL Before Pr Volume	Description: urging (m BTOC) 70mp (-C) 23-7 1 23-96 24.10): <u>33</u> pH (units) 6.27 6.29	Purging Mathoo Time of SW EC (µs/cm) OR mS/cm 804 808 808	1:	epa s (myl.) 2.98 2.90 1.83	iampling M Redox (mV) 120, S 116, B 113, S	athod: Odours (Y / N) U U	TOC Slickup 3.09 m (Relative to Ground Le Time Sample Taken: 4:45. Sample Description
Bare Location Date Purged: SWL Before Pr Volume	Description: urging (m BTOC; 70mp (-C) 23-7 1 23-7 1 23-6 24.10 24.5 1): <u>3.3</u> pH (units) 6.27 6.29 6.30	Purging Mathoo Time of SW EC (µs/cm) OR mS/cm 804 808 808	: TDS (ppm) 402 404	em s po (my/L) 2.98 2.90 1.83 1.60	iampling M Redox (mV) 120, S 116, B 113, S	aihod: Odours (Y/N) U U U U	TOC Slickup 0.09 m (Relative to Ground Le Time Sample Taken: <u>ALAS</u> Sample Description PORK HIGH HIGH LIGHT DO COOLY
Bare Location Date Purged: SWL Before Pr Volume	Description: urging (m BTOC; 70mp (-C) 23-7 1 23-7 1 23-6 24.10 24.5 1): <u>3.3</u> pH (units) <u>6.27</u> <u>6.29</u> <u>6.30</u> <u>6.30</u>	Purging Mathoo Time of SW EC (µs/cm) OR mS/cm BOA BOA BOA BOA BOA	1:3: 15 TDS (ppm) 402 404 404	em s po (my/L) 2.98 2.90 1.83 1.60	Redox (mV) 120,5 115,6 113,6 111,2	aihod: Odours (Y/N) U U U U	TOC Slickup 0.09 m (Relative to Ground Le
Bare Location Data Purgad: SWL Before Pr Volume Purged (L)	Description: urging (m BTOC; 23-1 23-1 23-1 24.51 24.51 24.96 ENTITY re ID: CHILL): <u>3.3</u> pH (units) <u>6.27</u> <u>6.29</u> <u>6.30</u> <u>6.30</u> <u>6.30</u> <u>6.30</u> <u>6.29</u> <u>6.29</u>	Purging Mathod Time of SW <i>EC</i> (<i>µs/cm</i>) OR <i>mS/cm</i> 804 804 804 804 804 804 804 804	1:3: 1\$ TDS (ppm) AO2 AOA AOA AOA AO2	en s DO (my/L) 298 298 298 298 193 160 168	Redox (mV) (ED, S) (E, B) (I) S (I)	ethod: Odours (Y / N) U U U U U U U U C C C C C C C C C C C	TOC Slickup 0.09 m (Relative to Ground Le
Bare Location Data Purgad: SWL Before Pr Volume Purged (L) Nonitoring Bo Bare Location	Description: urging (m BTOC) 23-7 1 23-7 1 23-9 6 24.5 1 24.5 1 24.9 6 Bit in Fil in Place in Electronic): <u>3.3</u> pH (unite) <u>6.27</u> <u>6.29</u> <u>6.30</u> <u>6.30</u> <u>6.30</u> <u>6.30</u> <u>6.29</u> <u>.29</u>	Purging Mathoo Time of SW EC (µs/cm) OR mS/cm 804 804 804 804 804 804 804 804 804	1:3: 15 (ppm) 402 404 404 402 402 402 e Developed	2.90 (my/L) 2.98 2.90 1.83 1.60 1.68	ampling M Redox (mV) 120,5 116,8 113,5 115,5 115	ethod: Odours (Y/N) U U U U U U U C C C C C C C C C C C C	TOC Slickup 0.09m (Relative to Ground Lo
Bare Location Data Purged: SWL Before Pr Volume Purged (L) Nanitoring Bo Bare Location Date Purged:	Description:): <u>3.3</u> pH (units) <u>6.27</u> <u>6.29</u> <u>6.30</u> <u>6.30</u> <u>6.30</u> <u>6.30</u> <u>6.29</u> <u>6.29</u> <u>6.29</u>	Purging Mathod Time of SW <i>EC</i> (<i>µs/cm</i>) OR <i>mS/cm</i> 804 804 804 804 804 804 804 804 804 804	1:3: 1\$ TDS (ppm) AO2 AOA AOA AOA AO2 AO3	en s DO (my/1) 298 298 298 298 193 160 168 	Redox (mV) 120, S 113, S 113, S 113, S 113, S 113, S 113, S 114, 2 1158, 3 1168, 3 1178, 3	ethod: Odours (Y / N) U U U U U U U C C C C C C C C C C C C	TOC Slickup 0.09 m (Relative to Ground Le
Bare Location Data Purged: SWL Before Pr Volume Purged (L) Nanitoring Bo Bare Location Date Purged:	Description:): <u>3.3</u> pH (units) <u>6.27</u> <u>6.29</u> <u>6.30</u> <u>6.30</u> <u>6.30</u> <u>6.30</u> <u>6.29</u> <u>6.29</u> <u>6.29</u>	Purging Mathod Time of SW <i>EC</i> (<i>µs/cm</i>) OR <i>mS/cm</i> 804 804 804 804 804 804 804 804 804 804	$\frac{1}{2} = \frac{315}{15}$ $\frac{1}{2} = \frac{1}{15}$ $\frac{1}{15}$ $\frac{1}{$	en s DO (my/1) 298 298 298 298 193 160 168 	Redox (mV) (A) 5 (K 8 (K 8) (K	ethod: Odours (Y / N) U U U U U U U C C C C C C C C C C C C	TOC Slickup 0.09 m (Relative to Ground Le
Bare Location Date Purged: SWL Before Pr Volume Purged (L) Nonitoring Bo Bare Location Date Purged: SWL Before F Volume	Description:	$\begin{array}{c} : 3.3 \\ pH \\ (units) \\ 6.27 \\ 6.29 \\ 6.30 \\ $	Purging Mathoo Time of SW EC (µs/cm) OR mS/cm BOA BOA BOA BOA BOA BOA BOA BOA	I: TDS (ppm) AO2 AO2 AOA AOA AO2	2.98 2.98 2.98 2.90 1.83 1.60 1.68 1.68	Redox (mV) (A) 5 (K 8 (K 8) (K	ethod: Odours (Y / N) U U U U U U U U U U U U U	TOC Slickup 0.09 m (Relative to Ground Lo
Bare Location Date Purged: SWL Before Pr Volume Purged (L) Nonitoring Bo Bare Location Date Purged: SWL Before F Volume	Description: urging (m BTOC; <i>Tomp</i> (·C) 23-7 1 23-9 1 24-5 1 24-5 1 24-9 (c) 24-5 1 24-5 1 24-5 1 24-5 1 24-5 (c) 24-5 (c) 24	$\begin{array}{c} 3.3 \\ pH \\ (units) \\ 6.27 \\ 6.29 \\ 6.30 \\ 6.$	Purging Mathoo Time of SW EC (µs/cm) OR mS/cm BOA BOA BOA BOA BOA BOA BOA Data Purging Matho Time of SV (µs/cm) OR mS/cm	$\begin{array}{c} \vdots \\ \hline TDS \\ (ppm) \\ \hline 402 \\ \hline 102 \\ \hline 1$	2.90 (my/L) 2.98 2.90 1.83 1.60 1.68 1.68 1.68 1.68 1.68 1.68 1.68	Redox (mV) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M	ethod: Odours (Y / N) U U U U U U U U U U U U U	TOC Slickup 0.09 m (Relative to Ground Le
Bare Location Date Purged: SWL Before Pr Volume Purged (L) Nonitoring Bo Bare Location Date Purged: SWL Before F Volume	Description: urging (m BTOC; 7 omp (·C) 23-7 1 23-7 1 23-9 (24.51 24.51 24.9 (6) 24.51 24.9 (6) 24.51 24.51 24.51 24.51 25.51 24.51 25.51	$\begin{array}{c} : 3.3 \\ pH \\ (units) \\ 6.27 \\ 6.29 \\ 6.30 \\ 6.30 \\ 6.30 \\ 6.30 \\ 6.30 \\ 6.30 \\ 6.30 \\ 6.30 \\ 6.36 \\ 6.36 \\ 6.34 \end{array}$	Purging Mathod Time of SW EC (µs/cm) OR mS/cm BOA BOA BOA BOA BOA BOA BOA BOA	$\begin{array}{c} \vdots \\ \hline TDS \\ (ppim) \\ \hline AO2 \\ \hline $	en s DO (my/L) 2.98 2.98 2.98 1.68 1.68 1.68 2.5 	Redox (mV) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M	eihod: Odours (Y / N) U U U U U U U U U U U U U	TOC Slickup 0.09 m (Relative to Ground Le
Bare Location Date Purged: SWL Before Pr Volume Purged (L) Nonitoring Bo Bare Location Date Purged: SWL Before F Volume	Description: urging (m BTOC) 7 omp (-C) 23-7 1 23-7 1 23-96 24.10 24.51 24.96 24.96 Part of the second se	$\begin{array}{c} 3.3 \\ pH \\ (units) \\ 6.27 \\ 6.29 \\ 6.30 \\ 6.30 \\ 6.30 \\ 6.30 \\ 6.30 \\ 6.30 \\ 6.30 \\ 6.30 \\ 6.30 \\ 6.36 \\ 6.34 \\ 6.33 \end{array}$	Purging Mathoo Time of SW (µs/cm) OR mS/cm BOA BOA BOA BOA BOA BOA BOA BOA	:: TDS (ppm) 402 404 404 40200 4000 4000 4000 4000 4000 4000 4000 4000 4000 40000 400000000	em s po (my/L) 2.98 2.98 2.90 1.83 1.60 1.60 1.68 3.91 3.91 3.21	iampling M Redox (mV) 120, 5 115, 8 113, 5 114, 2 113, 5 114, 2 113, 5 114, 2 113, 5 114, 2 113, 5 114, 2 114, 3 Drille Sampling I Redox (mV) 125, 2 128, 8	ethod: Odours (Y/N) U U U U U U U U U U U U U	Time Sample Taken: <u>A</u> :AS Sample Description CATK HIGH HD Sheen ND MODEN

FIELD DATA SHEET

Project: <u>622913</u>

Client:

Contamination | Remediation | Geotechnical

Site Address:	Trafabar	F8	Bersham
	0		

Sheet:	3	of	. .
 Engine	эг:		

Sampling Date:

Monitoring Bore	ID: DHGH	Date Drilled:	Date	Developed:		Drilled	Depth: 88	mBGL Hole Size:mm Measured Bore Depth:mBTOC
Bore Location (Description:							TOC Slickup 0.08 m (Relative to Ground Level)
Date Purged: _			Purging Method:					
SWL Bafore Pu	urging (m BTOC)	: 27	Time of SWL	: <u>1`30</u>	Sa	ampling Ma	(hod:	Time Sample Taken: 🔏 🕆 🕰
Volume Purged (L)	Temp (·C)	pH (units)	EC (µs/cm) OR mS/cm	TD\$ (ppm)	DO (mg/L)	Redox (mV)	Odours (Y / N)	Sample Description
	22.33	55	1468	<u>758</u>	8.92	DA S	N	light brown - l-m turbicity,
	0232	<u>ss</u>	1476	<u> </u>	5.63	160.6	U	no sheen no abor.
	22.26	5.51	1479	140	9.76	<u>\$2.2</u>	<u> </u>	
·····	22.19	5.51	1480	140	4-21	1983	<u> </u>	
<u></u>	22.13	5.51	14901	440	<u>A.10</u>	14 7 .1	<u> </u>	
				<u> </u>]			
Bore Location Date Purged:	Description:	******	Purging Method	j:				mBGL Hole Size:mm Measured Bore Depth:mBTOCTOC Stickupm (Relative to Ground Level)Time Sample Taken:
Volume Purrod (1)	Temp (-C)	pH	EC (µs/cm) OR	TDS	DO	Redox	Odours	Sample Description
Purged (L)		(units)	mS/cm	(ppm)	(mg/L)	(mV)	(Y / N)	
			_	1	-		<u> </u>	
							<u> </u>	
					_		· · · · · ·	
	_				_			
	1					1		
								mBGL Hole Size:mm Measured Bore Depth:mBTOC
								TOC Slickup m (Relative to Ground Level)
SWL Before Volume	Purging (m BTO	c):	EC	1 708	DO	-1		Time Sample Taken:
Purged (L)	Temp (C)	pH (units)	(µs/cm) OR m\$/cm	TDS (ppm)	(mg/L)	Redox (mV)	(Y / N)	Sample Description
Į						_		
1	1			1		1		

Detailed Site Investigation 3-7 Regent Street, 13-17 Regent Street and 287-309 Trafalgar Street, Petersham, NSW Report No. E22913 AA_Rev0

Appendix H Chain of Custody and Sample Receipt Forms

source: M630_SR_20160309100919.pdf page: 7 SGS Ref: SE149872_COC

	Sheet	of	4			Sam	nple M	latrix									Ana	lysis							Comments
	Site: 3-7 feger 2 287 Te	H Gtrees Halgar	r, 13-17 fe St, pekn	gent St. Shavn	Project No: E229\3			t, etc.)	AHs	AHS NOCIS							thange)	conductivity)							HM <u>A</u> Arsenic Cadmium Chromium
		Unit 16, ALEXAN	stralia 33 Maddox 9 IDRIA NSW 94 0400 F: 0	2015	99			i (i.e. Fibro, Paint, etc.)	/TRH/BTEX/PAHs DP/PCB/	HM ^A /TRH/BTEX/PAHs	HM ^A /TRH/BTEX	TRH/BTEX/Lead	тех			SO	pH / CEC (cation exchange)	/ EC (electrical co	S			PAHs	HM A	HM B	Copper Lead Mercury Nickel
	Sample	Laboratory			mpling I	WATER	SOIL	OTHERS (i.e.	HM A /TRH OCP/OP/P(MA	MAL	RH/B.	TRH/BTEX	PAHs	VOCS	Asbestos	H/CE	pH / EC	sPOCAS			TCLP F	TCLP H	TCLP H	ZinC
	ID	ID	Туре	Date	Time	Ň	SC	0	TO	Т	T	H	H	а.	>	A	d	d	N.	-		F	F	F	HM ^B Arsenic
	BHILL 0.5-06		ghus jar	4/ 3/10	6				V							-	s	GS Ale	 kandria	 =nviron	ment	al	l		Cadmium Chromium
M		2		† . ; .					1.								Ĭ					41	-		Lead Mercury
	BH4 0.2-0.4			7/3/16					V	1													-		Nickel
	BHA 1.5-1.95			7/3/16					<i>J</i> .	•									9872 1: 08–N				-		
	BHB 02-0.4 BHS 1.8-2.0			713/16						\checkmark									1. 00 - 14				/		LABORATORY
	BKINO.S-0.6	1	bre var							•						/									TURNAROUND
			ripicit was	112710												V									Standard
411	OH4 02-0.4	7	explace bag	7/3/16												/									48 Hours
	8415_0.204	0	218 KUL 10001													/									72 Hours
			cy as any																						Other
	Investigator: I					ccorda	ance	Samp	ler's Na	me (El)	:			Recei	ved by	(SGS):			E	nvir	on	me	nt	al	
			ard El field sa	ampling pr	ocedures.			_1	lania	nar	DYYC	S								IVE	251	tig	a	tio	ns 🕪
	Sampler's Co could you plea up thing time	mments: Se rvale	sore all san	nples all	analysed u	othin		- 11	bete	8	•			Prin	S	the									Australia
	Trank Yo					413	10	8	altura 3 102	.Nr).			Sign		Bu	-6			ntamii te 6.0					n Geotechnical
	Container Type J= solvent wash	ed, acid rins			R			Date)					Date 08	103	lls	e	4.~	< PY	RMON				eel	
	S= solvent wash P= natural HDP VC= glass vial,	E plastic bol	ttle						ORT										Ph	9	516 (0722			
	ZLB = Zip-Lock							Pleas	e e-ma	ail labo	oratory	/ resu	Its to:	lab@	yeiau	strali	la.co	m.au	lab	@eiau	istrali	ia.coi	m.au		COC July 2014 FORM v.2 - SGS

CLIENT DETAIL	S	LABORATORY DETA	ILS	
Contact	Mariana Torres	Manager	Huong Crawford	
Client	Environmental Investigations	Laboratory	SGS Alexandria Environmental	
Address	Suite 6.01, 55 Miller Street NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015	
Telephone	02 9516 0722	Telephone	+61 2 8594 0400	
Facsimile	02 9516 0741	Facsimile	+61 2 8594 0499	
Email	mariana.torres@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com	
Project	E22913 Regent St&Trafalgar St Petersham	Samples Received	Tue 8/3/2016	
Order Number	E22913	Report Due	Tue 15/3/2016	
Samples	8	SGS Reference	SE149872	

_ SUBMISSION DETAILS _

This is to confirm that 8 samples were received on Tuesday 8/3/2016. Results are expected to be ready by Tuesday 15/3/2016. Please quote SGS reference SE149872 when making enquiries. Refer below for details relating to sample integrity upon receipt.

- Sample counts by matrix Date documentation received Samples received without headspace Sample container provider Samples received in correct containers Sample cooling method Complete documentation received
- 8 Soils 8/3/2016 Yes SGS Yes Ice Bricks Yes

Type of documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested Sufficient sample for analysis Samples clearly labelled COC Yes 10.5°C Standard Yes Yes

Samples will be held for one month for water samples and two months for soil samples from date of report, unless otherwise instructed.

COMMENTS -

To the extent not inconsistent with the other provisions of this document and unless specifically agreed otherwise in writing by SGS, all SGS services are rendered in accordance with the applicable SGS General Conditions of Service accessible at http://www.sgs.com/en/terms-and-conditions as at the date of this document. Attention is drawn to the limitations of liability and to the clauses of indemnification.

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

www.sgs.com.au

___ CLIENT DETAILS __

Client Environmental Investigations

Project E22913 Regent St&Trafalgar St Petersham

UMMARY	OF ANALYSIS		1	1	1	1	1	1	1
No.	Sample ID	OC Pesticides in Soil	OP Pesticides in Soil	PAH (Polynuclear Aromatic Hydrocarbons) in Soil	PCBs in Soil	Total Recoverable Metals in Soil by ICPOES	TRH (Total Recoverable Hydrocarbons) in Soil	VOC's in Soil	Volatile Petroleum Hydrocarbons in Soil
001	BH1M_0.5-0.6	28	13	25	11	7	10	12	8
002	BH4_0.2-0.4	28	13	25	11	7	10	12	8
003	BH4_1.5-1.95	-	-	25	-	7	10	79	8
004	BH15_0.2-0.4	28	13	25	11	7	10	12	8
005	BH15_1.8-2.0	-	-	25	-	7	10	79	8

_ CONTINUED OVERLEAF

___ CLIENT DETAILS _

Client Environmental Investigations

Project E22913 Regent St&Trafalgar St Petersham

 SUMMARY	OF ANALYSIS			
No.	Sample ID	Fibre Identification in soil	Mercury in Soil	Moisture Content
001	BH1M_0.5-0.6	-	1	1
002	BH4_0.2-0.4	-	1	1
003	BH4_1.5-1.95	-	1	1
004	BH15_0.2-0.4	-	1	1
005	BH15_1.8-2.0	-	1	1
006	BH1M_0.5-0.6	2	-	-
007	BH4_0.2-0.4	2	-	-
008	BH15_0.2-0.4	2	-	-

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details . Testing as per this table shall commence immediately unless the client intervenes with a correction .

Sheet	_ of	2			Sam	ple N	latrix									Ana	alysis							Comments
Site: 3-4 Regent S 28-7 Trafalo NSW Laboratory:	it, 13-F jor it			Project No:	-		Paint, etc.)	X/PAHs	VPAHS/VC 'S							pH / CEC (cation exchange)	pH / EC (electrical conductivity)							HM A Arsenic Cadmium Chromium Copper
	ALEXAN	33 Maddox S IDRIA NSW 2 94 0400 F: 02	2015	9			OTHERS (i.e. Fibro, Paint, etc.)	HM A /TRH/BTEX/PAHS OCP/OP/PCB/ACDE	/TRH/BTEX/PAHs	HM ^A /TRH/BTEX	TRH/BTEX/Lead	TEX			SO	EC (cation	C (electrica	AS	DID		PAHs	HMA	HM B	Lead Mercury Nickel ZinC
Sample ID	Laboratory ID	Container Type	San Date	npling Time	WATER	SOIL	OTHERS	HM A OCP/O	HM A /	HM A /	TRH/B	TRH/BTEX	PAHs	VOCS	Asbestos	pH / CI	pH / E(sPOCAS	- no		TCLP PAHs	TCLP HM	TCLP HM	HM₿
BH202-0.4	. 1	glassier	9/03/16			1		\checkmark																Arsenic Cadmium Chromium
HZ 0.5-0.8		· ·	9/03/16			-			ļ,								ļ	1	\checkmark		-			Lead Mercury
BH21.2-1.5	Z		9/03/16			1			\checkmark			SGS A	lexan	dria E	nviron	ment	al							Nickel
64302-04	3		9/03/16			1		\checkmark																
BH3 0.8-1.0	4		910316			/			\checkmark				111111 100	60										
2491 02-03			8/03/6			1		1			R	DE I Receiv	499 ed: 1(0 3)-Ma	CO(r-20	, 16								LABORATORY TURNAROUND
BH911 1.0-1-1			8/03/16	>		1			. ,															Standard
HAM 20-2)	6		8/03/11			1			\checkmark															24 Hours
84/191-1.1-0.2	7		7103/16			1		\bigvee																48 Hours
BHIM-10-11	0	11	7/03/16			1			1							1								72 Hours
BH2 02-D.4	-	Practices				/									V									Other
BH30209	10	2000Kbag				1									\checkmark									
Investigator: I		0			accord	ance	Sam	oler's Na	ame (El):	1	J	Rece	ived by	(SGS):				Env	iron	me	ent	al	1
		ard El field sa					N	ancen	n Th	1911									Inv	'es	tic	ja	tic	ons 🎶
Sampler's Co Joine Samp please anal	mments: 185 wer 11182 Hu	etaken on m so the	the 7/3	116. (00)	id you voldi	ng	Pn		f.					nt A · (nature	00	isl	n Ĉ	,		1	1			Australia
time	HANK	YOU .	1			D	i	0/63	1					1	fe	2	0	5	Suite 6	6.01. 5	5 Mill	er St	reet	
Container Type J= solvent wash S= solvent wash	ed, acid rin						Dat	e					Dat	10/	3/1	66	03	:00	PYRM	ONT N	ISW 2	2009		
P= natural HDPE VC= glass vial, ZLB = Zip-Lock	E plastic bo Feflon Sept	ottle					1.000	ORT			ry resu	ults to:	lab	Deia	ustral	ia.co			Ph: lab@e	9516	0722	2		COC July 2014 FORM v.2 - SG

Sheet of Sample								Sample Matrix Analysis														Comments						
Site: 3-7 Regent St. 13-17 Regent St 2 287 Trafalgar St, Retristram E22913 OSW				HSt. 13-17 Regaritist Trafalgar St. Retristian E22913		rSt. 13-17 Regaritist rafalgarSt, Retersham E22913		ershamezzalz			ıt, etc.)	AHS stos	AHs							change)	onductivity)							HM <u>A</u> Arsenic Cadmium Chromium
Laboratory:	SGS Australia Unit 16, 33 Maddox Street, ALEXANDRIA NSW 2015 P: 02 8594 0400 F: 02 8594 0499						OTHERS (i.e. Fibro, Paint, etc.)	HM A /TRH/BTEX/PAHS OCP/OP/PCB/Asbestos	HM ^A /TRH/BTEX/PAHs	HM ≜ /TRH/BTEX	TRH/BTEX/Lead	TEX			tos	pH / CEC (cation exchange)	pH / EC (electrical conductivity)	SA	d Otterio		TCLP PAHs	AM A	HM B	Copper Lead Mercury Nickel ZinC				
Sample ID	Laboratory ID	Container Type	San Date	npling Time	WATER	SOIL	OTHERS	HM A.	HM A /	HM - MH	TRH/B	TRH/BTEX	PAHs	VOCs	Asbestos	pH / C	PH/E	sPOCAS	ASha			TCLP HM A	TCLP HM ^B	нм₿				
34911020.3	11	apprilling	8/03/16															í.	\checkmark					Arsenic Cadmium Chromium				
SHILMD 1-0.2	12	zylaldzag	.2[03](6																					Lead Mercury Nickel				
																								LABORATORY				
				_	-	-																		TURNAROUND Standard				
																								24 Hours				
1								_	_															48 Hours				
																								Other				
							Sam	nler's Na	me (FI).).			Rece	ived by	(SGS)									4				
Investigator: I attest that these samples were collected in accordance with standard EI field sampling procedures.						Sampler's Name (EI): Received								Received by (SGS):						Environmental Investigations								
Sampler's Comments:						ſ	Print Print A. OOLISV Signature Signature								sh	Contamination Remediation							Australia					
Container Type: J= solvent washed, acid rinsed,Teflon sealed, glass jaR S= solvent washed, acid rinsed glass bottle						Date Date Date Date 0.13/16 @ 3:00 PYRMONT NSW 2009																						
P= natural HDPE plastic bottle VC= glass vial, Teflon Septum ZLB = Zip-Lock Bag																		Ph: 9516 0722 lab@eiaustralia.com.au coc July 2014 FORM v.2 - SGS										

CLIENT DETAILS	3	LABORATORY DETA	ILS
Contact	Mariana Torres	Manager	Huong Crawford
Client	Environmental Investigations	Laboratory	SGS Alexandria Environmental
Address	Suite 6.01, 55 Miller Street NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	02 9516 0722	Telephone	+61 2 8594 0400
Facsimile	02 9516 0741	Facsimile	+61 2 8594 0499
Email	mariana.torres@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E22913 Regent St & Trafalgar St	Samples Received	Thu 10/3/2016
Order Number	E22913	Report Due	Thu 17/3/2016
Samples	12	SGS Reference	SE149963

_ SUBMISSION DETAILS _

This is to confirm that 12 samples were received on Thursday 10/3/2016. Results are expected to be ready by Thursday 17/3/2016. Please quote SGS reference SE149963 when making enquiries. Refer below for details relating to sample integrity upon receipt.

- Sample counts by matrix Date documentation received Samples received without headspace Sample container provider Samples received in correct containers Sample cooling method Complete documentation received
- 12 Soil 10/3/2016 Yes SGS Yes Ice Bricks Yes

Type of documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested Sufficient sample for analysis Samples clearly labelled COC Yes 7.0°C Standard Yes Yes

Samples will be held for one month for water samples and two months for soil samples from date of report, unless otherwise instructed.

COMMENTS -

2 samples have been placed on hold as no tests have been assigned for them by the client. These samples will not be processed.

To the extent not inconsistent with the other provisions of this document and unless specifically agreed otherwise in writing by SGS, all SGS services are rendered in accordance with the applicable SGS General Conditions of Service accessible at http://www.sgs.com/en/terms-and-conditions as at the date of this document. Attention is drawn to the limitations of liability and to the clauses of indemnification.

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

www.sgs.com.au

___ CLIENT DETAILS _

Client Environmental Investigations

Project E22913 Regent St & Trafalgar St

IMMARY	OF ANALYSIS								
No.	Sample ID	OC Pesticides in Soil	OP Pesticides in Soil	PAH (Polynuclear Aromatic Hydrocarbons) in Soil	PCBs in Soil	Total Recoverable Metals in Soil by ICPOES	TRH (Total Recoverable Hydrocarbons) in Soil	VOC's in Soil	Volatile Petroleum Hydrocarbons in Soil
001	BH2_0.2-0.4	28	13	25	11	7	10	12	8
002	BH2_1.2-1.5	-	-	25	-	7	10	79	8
003	BH3_0.2-0.4	28	13	25	11	7	10	12	8
004	BH3_0.8-1.0	-	-	25	-	7	10	79	8
005	BH9M_0.2-0.3	28	13	25	11	7	10	12	8
006	BH9M_2.0-2.1	-	-	25	-	7	10	79	8
007	BH11M_0.1-0.2	28	13	25	11	7	10	12	8
008	BH11M_1.0-1.1	-	-	25	-	7	10	79	8

_ CONTINUED OVERLEAF

___ CLIENT DETAILS _

Client Environmental Investigations

- SUMMARY OF ANALYSIS

Project E22913 Regent St & Trafalgar St

No.	Sample ID	Fibre Identification in soil	Mercury in Soil	Moisture Content
001	BH2_0.2-0.4	-	1	1
002	BH2_1.2-1.5	2	1	1
003	BH3_0.2-0.4	-	1	1
004	BH3_0.8-1.0	2	1	1
005	BH9M_0.2-0.3	-	1	1
006	BH9M_2.0-2.1	2	1	1
007	BH11M_0.1-0.2	-	1	1
008	BH11M_1.0-1.1	2	1	1
009	BH2_0.2-0.4	2	-	-
010	BH3_0.2-0.4	2	-	-
011	BH9M_0.2-0.3	2	-	-
012	BH11M_0.1-0.2	2	-	-

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details . Testing as per this table shall commence immediately unless the client intervenes with a correction .

Sheet	Sa	mpl	e Mat	Analysis														Comments												
Site: 3-7 legent St, 13-17 legent St 2 287 Trafalgar St, letersham 622913							Í	i, eic. <i>)</i> AHs	2 Solution	AHS/VOC 1S	þ						change)	onductivity)								HM <u>A</u> Arsenic Cadmium Chromium				
Laboratory	poratory: SGS Australia Unit 16, 33 Maddox Street, ALEXANDRIA NSW 2015 P: 02 8594 0400 F: 02 8594 0499							TRH/BTEX/P	OCP/OP/PCB/Aebestos	НМ ^А /ТКН/ВТЕХ/РАНѕ /	A /TRH/BTEX	TRH/BTEX/Lead	TEX			os	pH / CEC (cation exchange)	/ FC (electrical conductivity)	St		,		SHAC	AM A	HM B	Copper Lead Mercury Nickel ZinC				
Sample ID	Laboratory ID	Container Type	Sar Date	npling Tim	WATER			HMA /	OCP/O	HM A /	HM A /	TRH/B1	TRH/BTEX	PAHs	vocs	Asbestos	pH / CE	pH/EC	sPOCAS	BICX			TCLP PAHs	TCLP HM	TCLP HM B	HM ^B				
BH6 0.204 BH6 1.3-1.5 BH7 0.2-0.4 BH7 2.3-2.5 BH12 0.2-0.4	2 3 4	glasjav	11 03 11 11 103 1 1 10 103 1 1 10 103 1 1 11 103 1 1	6															SE1	exand 500 red: 14	39	COC		al		Arsenic Cadmium Chromium Lead Mercury Nickel				
12 1.3-1.5			1103/1		1				×	\checkmark																LABORATORY TURNAROUND				
BHG02-04	0	zybak bag			\pm											V										Standard				
34120.2-0.4		= yetur bag	110311		+	+		+	-		\checkmark					V		H								48 Hours				
QD1 QTB1	11	01055ja(\checkmark						Other				
QR1	12	PIZVC IS	11/03/1			rdan	S	ampler	's Nar	me (El):			Rece	eived by	(SGS)	 :			En	vir	on	me	ent	al					
Investigator: I attest that these samples were collected in accordance with standard El field sampling procedures. Sampler's Comments: Container Type: J= solvent washed, acid rinsed, Teflon sealed, glass jaR								Sampler's Name (EI):Received by (SGS):Environmental InvestigationPrint Int A. Ochish OPrint A. Ochish OContamination Remediate Suite 6.01, 55 Miller Street PYRMONT NSW 2009											diatic reet	Australia										
S= solvent washed, acid ninsed, relicit sealed, glass jart S= solvent washed, acid rinsed glass bottle P= natural HDPE plastic bottle VC= glass vial, Teflon Septum ZLB = Zip-Lock Bag								IMPORTANT: Ph:								Ph: 9516 0722 lab@eiaustralia.com.au coc July 2014 FORM v.2 - SGS														

CLIENT DETAIL	S	LABORATORY DETA	ILS	
Contact	Mariana Torres	Manager	Huong Crawford	
Client	Environmental Investigations	Laboratory	SGS Alexandria Environmental	
Address	Suite 6.01, 55 Miller Street NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015	
Telephone	02 9516 0722	Telephone	+61 2 8594 0400	
Facsimile	02 9516 0741	Facsimile	+61 2 8594 0499	
Email	mariana.torres@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com	
Project	E22913 Regent & Trafalgar St Petersham	Samples Received	Mon 14/3/2016	
Order Number	E22913	Report Due	Mon 21/3/2016	
Samples	12	SGS Reference	SE150039	

_ SUBMISSION DETAILS

This is to confirm that 12 samples were received on Monday 14/3/2016. Results are expected to be ready by Monday 21/3/2016. Please quote SGS reference SE150039 when making enquiries. Refer below for details relating to sample integrity upon receipt.

- Sample counts by matrix Date documentation received Samples received without headspace Sample container provider Samples received in correct containers Sample cooling method Complete documentation received
- 11 Soils, 1 Water 14/3/2016 Yes SGS Yes Ice Bricks Yes

Type of documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested Sufficient sample for analysis Samples clearly labelled COC Yes 10.9°C Standard Yes Yes

Samples will be held for one month for water samples and two months for soil samples from date of report, unless otherwise instructed.

COMMENTS -

To the extent not inconsistent with the other provisions of this document and unless specifically agreed otherwise in writing by SGS, all SGS services are rendered in accordance with the applicable SGS General Conditions of Service accessible at http://www.sgs.com/en/terms-and-conditions as at the date of this document. Attention is drawn to the limitations of liability and to the clauses of indemnification.

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

www.sgs.com.au

___ CLIENT DETAILS _

Client Environmental Investigations

Project E22913 Regent & Trafalgar St Petersham

JMMARY	OF ANALYSIS					1			
No.	Sample ID	OC Pesticides in Soil	OP Pesticides in Soil	PAH (Polynuclear Aromatic Hydrocarbons) in Soil	PCBs in Soil	Total Recoverable Metals in Soil by ICPOES	TRH (Total Recoverable Hydrocarbons) in Soil	VOC's in Soil	Volatile Petroleum Hydrocarbons in Soil
001	BH6 0.2-0.4	28	13	25	11	7	10	12	8
002	BH6 1.3-1.5	-	-	25	-	7	10	79	8
003	BH7 0.2-0.4	28	13	25	11	7	10	12	8
004	BH7 2.3-2.5	-	-	25	-	7	10	79	8
005	BH12 0.2-0.4	28	13	25	11	7	10	12	8
006	BH12 1.3-1.5	-	-	25	-	7	10	79	8
010	QD1	-	-	-	-	7	10	79	8
011	QTB1	-	-	-	-	-	-	12	-

_ CONTINUED OVERLEAF

Testing as per this table shall commence immediately unless the client intervenes with a correction .

___ CLIENT DETAILS _

Client Environmental Investigations

Project E22913 Regent & Trafalgar St Petersham

IMMARY	OF ANALYSIS						
No.	Sample ID	Fibre Identification in soil	Mercury in Soil	Moisture Content	TRH (Total Recoverable Hydrocarbons) in Water	VOCs in Water	Volatile Petroleum Hydrocarbons in Water
001	BH6 0.2-0.4	-	1	1	-	-	-
002	BH6 1.3-1.5	-	1	1	-	-	-
003	BH7 0.2-0.4	-	1	1	-	-	-
004	BH7 2.3-2.5	-	1	1	-	-	-
005	BH12 0.2-0.4	-	1	1	-	-	-
006	BH12 1.3-1.5	-	1	1	-	-	-
007	BH6 0.2-0.4_ZLP	2	-	-	-	-	-
008	BH7 0.2-0.4_ZLP	2	-	-	-	-	-
009	BH12 0.2-0.4_ZLP	2	-	-	-	-	-
010	QD1	-	1	1	-	-	-
011	QTB1	-	-	1	-	-	-
012	QR1	-	-	-	9	12	8

_ CONTINUED OVERLEAF

___ CLIENT DETAILS _

Client Environmental Investigations

Project E22913 Regent & Trafalgar St Petersham

-	SUMMARY	OF ANALYSIS		
	No.	Sample ID	Mercury (dissolved) in Water	Trace Metals (Dissolved) in Water by ICPMS
	012	QR1	1	7

Sheet	of	3			Sam	nple N	latrix									Ana	alysis								Comments	
	SGS Aus Unit 16, ALEXAN	Pegent S Stralia 33 Maddox S IDRIA NSW 2 94 0400 F: 02	Street, 2015	ero	iect No:			OTHERS (i.e. Fibro, Paint, etc.)	/TRH/BTEX/PAHS OP/PCB/ /******	A /TRH/BTEX/PAHs / VOC'S	/TRH/BTEX	TRH/BTEX/Lead	EX			S	/ CEC (cation exchange)	EC (electrical conductivity)	0	GTOH	e		PAHs	HM ^A	HM B	HM A Arsenic Cadmium Chromium Copper Lead Mercury Nickel
Sample	Laboratory	Container	Sa	ampling	g	Ш Ш		ERS	P/OF	AT	AIT	H/BT	TRH/BTEX	N T	vocs	Asbestos		/EC	sPOCAS	5			4	H H	L L	ZinC
Sample ID	Laboratory ID	Container Type	Date		Time	WATER	SOIL	OTH	HM A OCP/(MH	MH	TRI	TRI	PAHs	VO	Ask	Hd	Hd	sP(D			TCLP	TCLP	TCLP	HMB
BA1604-0.5	١	allesign	FF 103/1	6					\checkmark											\checkmark						Arsenic Cadmium Chromium Lead
641709-1.0	2								. 1																	Mercury Nickel
BHIB04-05	3								\checkmark																	
BA200.4-0.5																				\checkmark						
BH20 3 3-3 4	4									\checkmark																LABORATORY TURNAROUND
3A210.4-05	5								\checkmark								ļ									Standard
812114-15	C			_					,	\checkmark							S	GS AI	exand	ria En	viron	menta 	al			24 Hours
BA2209-05	7			_					\checkmark													111-				48 Hours
BH22 1.1-1.2	8									\checkmark							S	E15	502	33 (COC	1 1 /1 1				72 Hours
BH230.4-D5	9	V	V	/					\checkmark								R	eceive I	d: 18	-Mar	-201	6				Other
PH2314-15	10	v								\checkmark																
Investigator: I		at these samp ard EI field sa				ccord	ance	Samp	oler's Na	ame (El):			Rece	ived by	(SGS):				En	vir	on	me	ent		
Sampler's Co			amping p	loced	10165.			Pri	nt M	Ton	Sile	5		Prir	nt S	Sub	A				VE	5		Ja		Australia
								Sigi	nature	900	3/10			Sign	ature	B	u	ł								n Geotechnical
Container Type	ed, acid rin			R				Date Date Date Suite 6.01, 55 Miller Stre Date 18103114 @ 10.10 PYRMONT NSW 2009																		
S= solvent wash P= natural HDP VC= glass vial,	E plastic bo	ttle							ORT				ulto to:	lab@						Ph:	9	516	0722			
ZLB = Zip-Lock								Fieas	5e e-m	all lab	orator	yresu	115 10.	iante	gulat	Joud	14.00	mat	•	lab(yelal	ustral	la.co	m.at	1	COC July 2014 FORM v.2 - SG

debrivn3 - 1	COC 1nl S014 FORM V.2 - E	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	lab(ne.m	9°COL	ilente	neiəi	@d6l	:ot si	y resul			ATAO ism-9 9i	- Charleson -						əm	plastic bottle	P= natural HDPE f VC= glass vial, Te ZLB = Zip-Lock Ba				
					SN TNC				04.	10	0 9	11150	181							1		à	Asį szelę ,	on sealed,	selg bas	ed, acid rinse ed, acid rinse	J= solvent washed
יוכפו	in/Geotechni	ionsi ieet	rieu Pr Str	элт n ЭШіМ č	01° 22	1.6 9.1	inst	\square		5	mst	20	> Date		•	91	155	23		\vdash						;	Container Type:
bi	IsrteuA	Oitcir	Jour		Oifeair	meter		\vdash		Y	p qn	əture	engi2	+			×	(einei	ubis	-							
and the second	and the second	01	5	6				\vdash			1.	0	Print	<u> </u>	6		1-	toll	Print	\vdash						:sinemr	Sampler's Con
1	sui	014	101	bit	.50			<u> </u>						<u> </u>	10	ne			<u>(1</u>			ocedures.	nd gnildn	field san	IE bre	ebnete dti	iw
				Bui	LOU	Inu	4	—	T	iqe): T	(Envirola	/eq pλ (ЧөрөЯ	<u> </u>		;/	(II) əu	ver's Van	Idmes	9006	ibroon	s ni bected in a) 919W 29	Idmes 9:	sedt te		Investigator: I a
	′		<u> </u>	\downarrow	⊢	\rightarrow		<u> </u>	<u> </u>	'						L_'		!			\square'			A		30	20-60 12Ha
	Ofber				\square			\square	′		1					L_'			\Box'	\Box	\Box'		5			61	20-10-02H0
	ST2 Hours	\square							[]	[]	\wedge		\Box'			[]'			\square	\square	\square					\$1	20-40 2046
	sinoH 84							\square	\square		N		1		\square	\square	<u> </u>		\vdash	\vdash	—			+	-		2.0-4081H
SJ	S4 Hours	\square		$\left \right $		+	+	\rightarrow		-	Ń	\square	\vdash	′	 		′	+	\vdash	\square	—			+ +	\rightarrow	31	9050440
, td	Standard	\vdash	$ \rightarrow $	\square		+	+	\rightarrow	—	\vdash	~		\vdash	<u> </u>	+		<u> </u>	+	\vdash		-			· Baga	spidz		50-20940
	ПОЯАИЯИТ	\vdash	$ \longrightarrow $	+		-+-	-+		<u> </u>	<u> </u> '			\vdash	<u> </u>	\vdash			\vdash	\vdash	\square	<u> </u>	├ ── ├					+ 2-23 t2Hg
790	ОТАЯОВАЈ	\vdash	$ \longrightarrow $	+-+]	<u> </u>	\vdash	<u> </u> _'	<u> '</u>	\vdash	<u> </u>	<u> </u>)	1	\vdash	\square	4	⊢_′	⊢		1			
)	\vdash	$ \longrightarrow $	++		_//	4]	<u> </u>	<u> </u>		\square	<u> </u>	<u> </u>				\square									2-0-2-0 t2(19
	IONOINI	Щ	\square	L		/	\land																			1	5.0-40.0249
	Mercury Mercury	\square									\square	\square	\square		\square	\square	\square'	\wedge	\square				1			51	\$ 0-80 S2H8
v	Chromium Lead									\square				\square	\square	1	\wedge	r t	\square					1		21	52-62 62119
u	muimbeO	\square		\square					\square	\square	\square	[]	\square^{+}		\square	\rightarrow				\square	\rightarrow	0)	11892	1 15(5	500	$\overline{\mathbf{n}}$	2.0-2.0 tett
	HW B	7	T			6	_	s	P	p	Þ	<	P			I		OI	9	SC	N.	əmiT	Date	- Lype	-+	aı	ai
	OniZ	TCLP HM	TCLP F			8	-	sPOCAS	pH / EC	pH / CE	Asbestos	VOCs	AHs	FRH/BTEX	TRH/BTEX/Lead	HM A /	HM A /	HM A /TRH	OTHERS (i.e	SOIL	WATER	buildme		ontainer		Laboratory	
	Nickel	HMB	PAHs			E	2	St		CEC (c	sol			TEX	TEX	/TRH	TRH	DP/P	S (i.e.	61	, ł		- C	2040	the	920:9	
	Mercury Lead					U	7		ectric	(cation exchange)	$\left[\right]$				/Leac	I/BTEX	/TRH/BTEX/PAHs	CB/AL	Fibro,	11		· 5	102 m	i'a b?	NON OCCO	DX210	гарогаtогу: Гарогаtогу:
	Copper					•			al cor	1 exc						×	XIPA	XIP/	Fibro, Paint, etc.)					DILE	ausn	N 399	Laboratory:
	muimbeO								nduct	hang					(Hs	AHS	t, etc.)			516223					1217-582
	HM ∆ Arsenic								(electrical conductivity)	e)	()	()					1					1000	1	i të	the	t about	57015-17
																		$ \rightarrow $				Project No:					:etie:
540	tnemmoD								sisyle	BuA								ľ	xinteN	1 əlqn	nsS				ę	- of -	2heet 2

Sheet 3	_ of <u>3</u>	Sam	ple N	latrix			01-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-						Ana	alysis								Comments			
	SGS Aus Unit 16, 3 ALEXAN		Street, 2015	roject No:			OTHERS (i.e. Fibro, Paint, etc.)	HM ^A /TRH/BTEX/PAHs OCP/OP/PCB/Asbestos	HM ^A /TRH/BTEX/PAHs	HM ^A /TRH/BTEX	TRH/BTEX/Lead	EX.			SC	CEC (cation exchange)	EC (electrical conductivity)	S	X			PAHs	HM A	HM B	HM A Arsenic Cadmium Chromium Copper Lead Mercury Nickel
			Samp	ling	ц Ш	-	ERS	P/O	L ►	V V	1/8	TRH/BTEX	- v	Cs	Asbestos		/EC	sPOCAS	HA.	2			<u> </u>	<u> </u>	ZinC
Sample ID	Laboratory ID	Container Type	Date	Time	WATER	SOIL	ОТН	HM	HM	HM	TRI	TRI	PAHs	VOCS	Ask	Hd	Hd	sP(5			TCLP	TCLP	TCLP	HM B
#12204-05		24tichez	12/03/16.												V										Arsenic Cadmium Chromium Lead
34123 0.4-0S	N														1										Mercury Nickel
0H24 0A-0.5					<u> </u>	t.									1										Norei
34250304	0			1		1						-			5/										
842604-05 84270.2-03	-					/									\checkmark										LABORATORY TURNAROUND
s02	27					1				\checkmark															Standard
QD3	28									\checkmark			ļ												24 Hours
ATB-1	29			_		-																			48 Hours
																									72 Hours
																-									Other
							Sam	oler's Na	ame (El):			Rece	ived by	(SGS)				E						4
Investigator:		at these sam lard El field s			accord			non			0								In	Ve	on st	tia	la:	tio	ns ル
Sampler's C	omments:					-	Pr	10 F	il		ے		Prii	2	Sul	59					1	1		1 Aler	Australia
Contribut T							Sig Dat		BIN	ò			1		Bu						nation 1, 55				n Geotechnical
Container Typ J= solvent was S= solvent was	hed, acid rir												18	1031	16	eia)·40								
P= natural HDF VC= glass vial	= natural HDPE plastic bottle /C= glass vial, Teflon Septum ZLB = Zip-Lock Bag							ORT			y resu	ults to:	lab@	Deia	ustra	lia.co	m.au		Ph: lab@		516 (I <mark>stral</mark> i			l.	COC July 2014 FORM v.2 - SGS

CLIENT DETAILS	S	LABORATORY DETA	ILS
Contact	Mariana Torres	Manager	Huong Crawford
Client	Environmental Investigations	Laboratory	SGS Alexandria Environmental
Address	Suite 6.01, 55 Miller Street NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	02 9516 0722	Telephone	+61 2 8594 0400
Facsimile	02 9516 0741	Facsimile	+61 2 8594 0499
Email	mariana.torres@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project Order Number Samples	E22913 Regent St & Trafalgar St E22913 29	Samples Received Report Due SGS Reference	Fri 18/3/2016 Tue 29/3/2016 SE150233

_ SUBMISSION DETAILS

This is to confirm that 29 samples were received on Friday 18/3/2016. Results are expected to be ready by Tuesday 29/3/2016. Please quote SGS reference SE150233 when making enquiries. Refer below for details relating to sample integrity upon receipt.

- Sample counts by matrix Date documentation received Samples received without headspace Sample container provider Samples received in correct containers Sample cooling method Complete documentation received
- 29 Soil 18/3/2016 Yes SGS Yes Ice Bricks Yes

Type of documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested Sufficient sample for analysis Samples clearly labelled COC Yes 6.1°C Standard Yes Yes

Samples will be held for one month for water samples and two months for soil samples from date of report, unless otherwise instructed.

COMMENTS -

4 samples have been placed on hold as no tests have been assigned for them by the client. These samples will not be processed.

2 extra samples received: BH19 0.4-0.5, BH19 1.3-1.4.

To the extent not inconsistent with the other provisions of this document and unless specifically agreed otherwise in writing by SGS, all SGS services are rendered in accordance with the applicable SGS General Conditions of Service accessible at http://www.sgs.com/en/terms-and-conditions as at the date of this document. Attention is drawn to the limitations of liability and to the clauses of indemnification.

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

www.sgs.com.au

___ CLIENT DETAILS _

Client Environmental Investigations

- SUMMARY OF ANALYSIS

Project E22913 Regent St & Trafalgar St

No.	Sample ID	OC Pesticides in Soil	OP Pesticides in Soil	PAH (Polynuclear Aromatic Hydrocarbons) in Soil	PCBs in Soil	Total Recoverable Metals in Soil/Waste	TRH (Total Recoverable Hydrocarbons) in Soil	VOC's in Soil	Volatile Petroleum Hydrocarbons in Soil
001	BH16 0.4-0.5	28	13	25	11	7	10	12	8
002	BH17 0.9-1.0	-	-	25	-	7	10	79	8
003	BH18 0.4-0.5	28	13	25	11	7	10	12	8
004	BH20 3.3-3.4	-	-	25	-	7	10	79	8
005	BH21 0.4-0.5	28	13	25	11	7	10	12	8
006	BH21 1.4-1.5	-	-	25	-	7	10	79	8
007	BH22 0.4-0.5	28	13	25	11	7	10	12	8
008	BH22 1.1-1.2	-	-	25	-	7	10	79	8
009	BH23 0.4-0.5	28	13	25	11	7	10	12	8
010	BH23 1.4-1.5	-	-	25	-	7	10	79	8
011	BH24 0.4-0.5	28	13	25	11	7	10	12	8
012	BH24 2.4-2.5	-	-	25	-	7	10	79	8
013	BH25 0.3-0.4	28	13	25	11	7	10	12	8
014	BH27 2.3-2.4	-	-	25	-	7	10	79	8

_ CONTINUED OVERLEAF

___ CLIENT DETAILS _

Client Environmental Investigations

Project E22913 Regent St & Trafalgar St

 SUMMARY	OF ANALYSIS				
No.	Sample ID	Total Recoverable Metals in Soil/Waste	TRH (Total Recoverable Hydrocarbons) in Soil	VOC's in Soil	Volatile Petroleum Hydrocarbons in Soil
027	QD2	7	10	12	8
028	QD3	7	10	12	8
029	QTB1	-	-	12	-

_ CONTINUED OVERLEAF

CLIENT DETAILS .

Client Environmental Investigations

- SUMMARY OF ANALYSIS

Project E22913 Regent St & Trafalgar St

No.	Sample ID	Fibre Identification in soil	Mercury in Soil	Moisture Content
001	BH16 0.4-0.5	-	1	1
002	BH17 0.9-1.0	-	1	1
003	BH18 0.4-0.5	-	1	1
004	BH20 3.3-3.4	-	1	1
005	BH21 0.4-0.5	-	1	1
006	BH21 1.4-1.5	-	1	1
007	BH22 0.4-0.5	-	1	1
008	BH22 1.1-1.2	-	1	1
009	BH23 0.4-0.5	-	1	1
010	BH23 1.4-1.5	-	1	1
011	BH24 0.4-0.5	-	1	1
012	BH24 2.4-2.5	-	1	1
013	BH25 0.3-0.4	-	1	1
014	BH27 2.3-2.4	-	1	1
015	BH16 0.4-0.5_ZLB	2	-	-
016	BH17 0.5-0.6_ZLB	2	-	-
017	BH18 0.4-0.5_ZLB	2	-	-
018	BH19 0.4-0.5_ZLB	2	-	-
019	BH20 0.4-0.5_ZLB	2	-	-
020	BH21 0.4-0.5_ZLB	2	-	-
021	BH22 0.4-0.5_ZLB	2	-	-
022	BH23 0.4-0.5_ZLB	2	-	-
023	BH24 0.4-0.5_ZLB	2	-	-
024	BH25 0.3-0.4_ZLB	2	-	-

_ CONTINUED OVERLEAF

___ CLIENT DETAILS _

Client Environmental Investigations

Project E22913 Regent St & Trafalgar St

- 5	SUMMARY	OF ANALYSIS			
	No.	Sample ID	Fibre Identification in soil	Mercury in Soil	Moisture Content
	025	BH26 0.4-0.5_ZLB	2	-	-
	026	BH27 0.2-0.3_ZLB	2	-	-
	027	QD2	-	1	1
	028	QD3	-	1	1
	029	QTB1	-	-	1

Comments	HM A Arsenic Cadmium Chromium Copper Lead Mercury Nickel ZinC HM B	Arsenic Cadmium	Chromium Lead Mercury Nickel		LABORATORY TURNAROUND	M Standard	24 Hours	48 Hours	72 Hours	Other		ons w	Australia	contamination kemediation Geotecnnical Suite 6.01-55. Miller Street		COC July 2014 FORM v.2 - SGS
	TCLP HM ^B										le	tio	i o i i o		5	
	тсгь нм ^д										nt	a		emec	600	m.au
	TCLP PAHs										mei	tig		Mille	SW 2	0722 ia.col
				Envirelab Service		n	216		Ren/None Broken/None		Environ	Invest	K	Contamination Kemediati	PYRMONT NSW 2009	Ph: 9516 0722 lab@eiaustralia.com.au
	spocas			virelab	5weed h: (02)	25	2.	nt C					and			-
Analysis	pH / EC (electrical conductivity)			Ŀ	8 Chats	121	ved: veded	and the second second	and a set						5.	m.al
Ana	PH / CEC (cation exchange)			E	EINIKOUR	NO:			niny Th				Lead	Ø	5	lia.co
	soteedaA				EIN	9	Time	Terr	Sec		(SGS)		2	llevel	16	ustra
	VOCs										Received by (SGS):	S	Print	A ABUT	Patel B	Deia
	sHA9										Rece	U	Print	Bio L	Dat	lab(
	ХЭТЯН/ВТЕХ															IMPORTANT: Please e-mail laboratory results to: lab@eiaustralia.com.au
	TRH/BTEX/Lead											4				ry resu
	ХЭТ8/НЯТСХ МН	>									÷	Fuer		9		: orator
	≳НАЧ\ХЭТ8\НЯТ\ ^А МН										ame (El		7	R		ANT Iail lab
	HM [≜] /TRH/BTEX/PAHs OCP/OP/PCB/Asbestos										Sampler's Name (EI):	Marianer	at the	A PI	8	IMPORTAN1 Please e-mail lat
Sample Matrix	OTHERS (i.e. Fibro, Paint, etc.)										Samp	2	Prin	lbic	Date	IMP Pleas
nple N	SOIL										ance		土			
San	ятаw										accord		8	0		
	Project No:										ected in a	edures.	duna	SNE		
	n	al lealor									s were coll	pling proce	ato	F	glass jaR	
	Regent SH B-JH Ragent SH Tradelgar SH Retent SH Tradelgar SH Retent SH Itory: SGS Australia unit 16, 33 Maddox Street, Laporation P: 02 8594 0400 F: 02 8594 0499 Sampling ple Laboratory Container Itory: Date Tim	gicky yor in									ese sample	with standard EI field sampling procedures.	concel up	HANT	Teflon sealed,	glass bottle
7	Austra 6, 33 6, 33 10n	F									that th	Indard	ts:	ia	rinsed,	t rinsed bottle eptum
of	ent St B- Balgar St B- Balgar St R SGS Australia Unit 16, 33 Ma ALEXANDRIA P: 02 8594 040 P: 02 8594 040 Laboratory D: D	-									l attest	with sta	ommen	1	hed, acid	PE plastic Teflon S Bag
Sheet	Site: 3-7 Peg 201 To Laboratory: Sample	FT0									Investigator: I attest that these samples were collected in accordance)	Sampler's Comments:	(All Allon o)	Container Type: J= solvent washed, acid rinsed, Teflon sealed, glass jaR	S= solvent washed, acid rinsed glass bottle P= natural HDPE plastic bottle VC= glass vial, Teflon Septum ZLB = Zip-Lock Bag

Sheet _/ of/		Sample Matrix	Matrix							Ana	Analysis				1.	Comments
Site: 3-7 a 13-17 Repert St, 287-309 Tradalgar St, Performann Laboratory: Envirolab Services 12 Ashley Street CHATSWOOD NSW 2067 P: 02 9910 6200	Project No:		(i.e. Fibro, Paint, etc.)	RH/BTEX/PAHs P/PCB/Asbestos	RH/BTEX/PAHs	ЕХ/Гезд	EX		S	C (cation exchange)	(electrical conductivity)	S		2HA	a M	HM <u>A</u> Arsenic Cadmium Chromium Copper Lead Mercury Nickel
Sample Laboratory Container Da	Sampling Date Time	WATER SOIL					та\нят	200V	Asbesto		DH / EC	sPOCAs		тсгь р	н члот	ZinC HM B
ATI VOIRE 1 SLORE LAND	17/03/6															Arsenic Cadmium
QT3 Z glassion 176	1363)16.															Chromium Lead Mercury
													Envirdiab Seiv	ces		Nickel
						1					E -	ENVIROUAB	3 Charswood NSW 2067 Ph: (02) 9910 6200	/ St 067 200		
												Date Received: Time Received: Received hv.	ed 15/3/6			Standard
											F O Ø	Temp: Cool/Ambient Cooling: Ice/Icepack Security Intact/Broke	Temp: Cool And Dent Cooling: Ice/Ice/pack			. 24 Hours 48 Hours
																Other
Investigator: I attest that these samples were collected in accordance	rere collected in ac	cordance		Sampler's Name (EI)	; (EI):			Received by (Envirolab):	by (Envi	irolab):		Ш	Environ	nent	R	
with standard EI field sampling procedures.	ng procedures.			Moning	TANAL	. 10	J	Jumes	\sim	Juddand	and	_	nvest	iga	ŧ	ons v
Sampler's Comments:			Signe	Signature				Print Drecteburd Signature	Print Drectoured Signature D 1675 116	\sim	8.8		Intamination	Reme	diatio	Contamination Remediation Geotechnical
Container Type: J= solvent washed, acid rinsed,Teflon sealed, glass jaR S= solvent washed, acid rinsed glass bottle P= natural HDPF olastic hottle	ss jaR		Date		Ë			Date					PYRMONT NSW 2009 PYRMONT NSW 2009	W 2009	EE	
VC= glass vial, Teflon Septum ZLB = Zip-Lock Bag			Pleas	Please e-mail laboratory results to: lab@eiaustralia.com.au	laborato	ry resu	Its to:	ab@ei	laustra	alia.co	m.au		@eis	1 44 1.com.al	_	COC July 2014 FORM v.2 - Envirolati

Sheet	∖_ of	$\boldsymbol{\lambda}$			San	nple N	/latrix									Ana	lysis								Comments
Site: 3-7 pegen 540 287	H Stree	=+,13-17 gar St		2913	-		, etc.)	AHs tos	Hs /voc's							hange)	nductivity)								HM <u>A</u> Arsenic Cadmium Chromium
	ALEXAN	stralia 33 Maddox S DRIA NSW 2 94 0400 F: 02	2015				OTHERS (i.e. Fibro, Paint, etc.)	HM ^A /TRH/BTEX/PAHs OCP/OP/PCB/Asbestos	/TRH/BTEX/PAHs	HM ^A /TRH/BTEX	TRH/BTEX/Lead	TEX			sc	pH / CEC (cation exchange)	pH / EC (electrical conductivity)	S				SHR	HM A	HM B	Copper Lead Mercury Nickel
Sample	Laboratory	Container	Samplir	ng	WATER		HERS	AA/ CP/O	HM A /	MAN	SH/B	E A/BTEX	PAHs	VOCs	Asbestos	H/CE	H/EC	sPOCAS				TCLP PAHs	TCLP H	TCLP H	ZinC
ID	ID	Туре	Date	Time	WA	SOIL	DI	ΞŎ	Ĩ	H	4	國	P/	×	As	p	pF	SР				TC	10	T	HM ^B Arsenic
EUD BHIM	1	15,18,240	28/03/16		1				V																Cadmium Chromium
GW BHAM	2	-1	28/05/16		\bigvee				\checkmark																Lead
ENDHEN.	3		29/03/16						\checkmark																Mercury Nickel
GWBH9M.	4		28/03/16						V																
GWBH10M	5								\checkmark							S	GS AI	exand	Iria En	viron	nenta III	I			
6101011 111	6								\checkmark											1					LABORATORY TURNAROUND
GWBH 15M	-								~								E1	505	60 (V Standard
QR1	00									>) – Mai						24 Hours
90-1	a	T								>															48 Hours
	10	AVC										\checkmark													72 Hours
701 TS1	11				V							/													Other
131	11	AVC																							
Investigator: I	ettect the	t those same				ance	Samp	oler's Na	me (El):			Recei	ived by	(SGS):				En	vir	oni	me	nt	al	4
			ampling proce			ance	6.0	YCING	AT .	n on							_		In	ve	st	tiq	a	tio	ns ル
Sampler's Co	mments:						Pri	74 11		me.	2		Prir		2	1.	11	22		/					Australia
									FO	•			Sign	ature	2	212	she		Cont	tamin	ation	n Re	emed	diatio	n Geotechnical
Container Type							Dat	2910	031	16	*		Date			111	23	2.0		e 6.01				eet	
J= solvent wash S= solvent wash	ied, acid rin: ned, acid rin	sed glass bottle						ODT		0			2	:91	31	160	000	0110		MON					
P= natural HDP VC= glass vial, ZLB = Zip-Lock	Teflon Sept							ORT			y resu	ilts to:	lab@	Deiau	ustral	lia.co	m.au		Ph: lab@	9:)eiau	516 0 strali				COC July 2014 FORM v.2 - SGS

CLIENT DETAIL	S	LABORATORY DETA	ILS	
Contact	Mariana Torres	Manager	Huong Crawford	
Client	Environmental Investigations	Laboratory	SGS Alexandria Environmental	
Address	Suite 6.01, 55 Miller Street NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015	
Telephone	02 9516 0722	Telephone	+61 2 8594 0400	
Facsimile	02 9516 0741	Facsimile	+61 2 8594 0499	
Email	mariana.torres@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com	
Project	E22913-3-7, 13-17 Regent St Trafalgar St	Samples Received	Tue 29/3/2016	
Order Number	E22913	Report Due	Tue 5/4/2016	
Samples	11	SGS Reference	SE150560	

_ SUBMISSION DETAILS

This is to confirm that 11 samples were received on Tuesday 29/3/2016. Results are expected to be ready by Tuesday 5/4/2016. Please quote SGS reference SE150560 when making enquiries. Refer below for details relating to sample integrity upon receipt.

- Sample counts by matrix Date documentation received Samples received without headspace Sample container provider Samples received in correct containers Sample cooling method Complete documentation received
- 11 Water 29/3/2016 Yes SGS Yes Ice Bricks Yes

Type of documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested Sufficient sample for analysis Samples clearly labelled COC Yes 12.1°C Standard Yes Yes

Samples will be held for one month for water samples and two months for soil samples from date of report, unless otherwise instructed.

COMMENTS -

To the extent not inconsistent with the other provisions of this document and unless specifically agreed otherwise in writing by SGS, all SGS services are rendered in accordance with the applicable SGS General Conditions of Service accessible at http://www.sgs.com/en/terms-and-conditions as at the date of this document. Attention is drawn to the limitations of liability and to the clauses of indemnification.

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

www.sgs.com.au

___ CLIENT DETAILS _

Client Environmental Investigations

Project E22913-3-7, 13-17 Regent St Trafalgar St

	Y OF ANALYSIS						
No.	Sample ID	Mercury (dissolved) in Water	PAH (Polynuclear Aromatic Hydrocarbons) in Water	Trace Metals (Dissolved) in Water by ICPMS	TRH (Total Recoverable Hydrocarbons) in Water	VOCs in Water	Volatile Petroleum
001	6WBH1M	1	22	7	9	79	8
002	6WBH4M	1	22	7	9	79	8
003	6WBH6M	1	22	7	9	79	8
004	6WBH9M	1	22	7	9	79	8
005	6WBH10M	1	22	7	9	79	8
006	6WBH11M	1	22	7	9	79	8
007	6WBH15M	1	22	7	9	79	8
008	QR1	1	-	7	9	12	8
009	QD1	1	-	7	9	12	8
010	TB1	-	-	-	-	12	-
011	TS1	-	-	-	-	12	-

Detailed Site Investigation 3-7 Regent Street, 13-17 Regent Street and 287-309 Trafalgar Street, Petersham, NSW Report No. E22913 AA_Rev0

> Appendix I Laboratory Analytical Reports

ANALYTICAL REPORT

CLIENT DETAILS		LABORATORY DE	TAILS	
Contact	Mariana Torres	Manager	Huong Crawford	
Client	Environmental Investigations	Laboratory	SGS Alexandria Environmental	
Address	Suite 6.01, 55 Miller Street NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015	
Telephone	02 9516 0722	Telephone	+61 2 8594 0400	
Facsimile	02 9516 0741	Facsimile	+61 2 8594 0499	
Email	mariana.torres@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com	
Project	E22913 Regent St&Trafalgar St Petersham	SGS Reference	SE149872 R0	
Order Number	E22913	Date Received	8/3/2016	
Samples	8	Date Reported	15/3/2016	

COMMENTS

Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562(4354).

No respirable fibres detected in all samples using trace analysis technique.

Asbestos analysed by Approved Identifier Yusuf Kuthpudin.

SIGNATORIES -

Ady Sith

Andy Sutton Senior Organic Chemist

S. Ravender.

Ravee Sivasubramaniam Asbestos Analyst/Hygiene Team Leader

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC

Alexandria NSW 2015 Alexandria NSW 2015

t +61 2 8594 0400 Australia f +61 2 8594 0499 Australia

www.sgs.com.au

Kamrul Ahsan Senior Chemist

kinty

Ly Kim Ha **Organic Section Head**

SE149872 R0

VOC's in Soil [AN433/AN434] Tested: 10/3/2016

			BH1M_0.5-0.6	BH4_0.2-0.4	BH4_1.5-1.95	BH15_0.2-0.4	BH15_1.8-2.0
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
PARAMETER	UOM	LOR	4/3/2016	7/3/2016	7/3/2016	7/3/2016	7/3/2016 SE149872.005
Benzene	mg/kg	0.1	SE149872.001 <0.1	SE149872.002 <0.1	SE149872.003 <0.1	SE149872.004 <0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes*	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	0.1	<0.1
Dichlorodifluoromethane (CFC-12)	mg/kg	1	-	-	<1	-	<1
Chloromethane	mg/kg	1	-		<1	-	<1
Vinyl chloride (Chloroethene)	mg/kg	0.1		_	<0.1	-	<0.1
Bromomethane	mg/kg	1			<1		<1
Chloroethane	mg/kg	1			<1	-	<1
Trichlorofluoromethane	mg/kg	1			<1		<1
Acetone (2-propanone)	mg/kg	10	-	-	<10	-	<10
Iodomethane	mg/kg	5			<5		<5
1,1-dichloroethene	mg/kg	0.1			<0.1		<0.1
Acrylonitrile	mg/kg	0.1			<0.1	-	<0.1
Dichloromethane (Methylene chloride)	mg/kg	0.5			<0.5	-	<0.5
Allyl chloride	mg/kg	0.0		_	<0.1	-	<0.1
Carbon disulfide	mg/kg	0.5			<0.5		<0.5
trans-1,2-dichloroethene	mg/kg	0.0			<0.1		<0.1
MtBE (Methyl-tert-butyl ether)	mg/kg	0.1	-	-	<0.1		<0.1
1,1-dichloroethane	mg/kg	0.1			<0.1		<0.1
Vinyl acetate	mg/kg	10			<10		<10
MEK (2-butanone)	mg/kg	10		-	<10	-	<10
cis-1,2-dichloroethene	mg/kg	0.1			<0.1	-	<0.1
Bromochloromethane	mg/kg	0.1			<0.1		<0.1
Chloroform	mg/kg	0.1			<0.1	-	<0.1
2,2-dichloropropane	mg/kg	0.1			<0.1	-	<0.1
1,2-dichloroethane	mg/kg	0.1			<0.1	-	<0.1
1,1,1-trichloroethane	mg/kg	0.1	-		<0.1	-	<0.1
1,1-dichloropropene	mg/kg	0.1			<0.1		<0.1
Carbon tetrachloride	mg/kg	0.1			<0.1	-	<0.1
Dibromomethane	mg/kg	0.1		_	<0.1	-	<0.1
1,2-dichloropropane	mg/kg	0.1	_	-	<0.1	-	<0.1
Trichloroethene (Trichloroethylene -TCE)	mg/kg	0.1			<0.1	-	<0.1
2-nitropropane	mg/kg	10	-	-	<10	-	<10
Bromodichloromethane	mg/kg	0.1		_	<0.1	-	<0.1
MIBK (4-methyl-2-pentanone)	mg/kg	1		_	<1	-	<1
cis-1,3-dichloropropene	mg/kg	0.1	-	-	<0.1	-	<0.1
trans-1,3-dichloropropene	mg/kg	0.1	-	-	<0.1	-	<0.1
1,1,2-trichloroethane	mg/kg	0.1	-	-	<0.1	-	<0.1
1,3-dichloropropane	mg/kg	0.1	-	-	<0.1	-	<0.1
Chlorodibromomethane	mg/kg	0.1	-	-	<0.1	-	<0.1
2-hexanone (MBK)	mg/kg	5	-	-	<5	-	<5
1,2-dibromoethane (EDB)	mg/kg	0.1	-	-	<0.1	-	<0.1
Tetrachloroethene (Perchloroethylene,PCE)	mg/kg	0.1	-	-	<0.1	-	<0.1
1,1,1,2-tetrachloroethane	mg/kg	0.1	-	-	<0.1	-	<0.1
Chlorobenzene	mg/kg	0.1	_	_	<0.1	-	<0.1
Bromoform	mg/kg	0.1	-	-	<0.1	-	<0.1
cis-1,4-dichloro-2-butene	mg/kg	1		_	<1	-	<1
Styrene (Vinyl benzene)	mg/kg	0.1	_	_	<0.1	-	<0.1
1,1,2,2-tetrachloroethane	mg/kg	0.1		_	<0.1	-	<0.1
1,2,3-trichloropropane	mg/kg	0.1		-	<0.1	-	<0.1
trans-1,4-dichloro-2-butene	mg/kg	1	_	-	<1	-	<1

SE149872 R0

VOC's in Soil [AN433/AN434] Tested: 10/3/2016 (continued)

			BH1M_0.5-0.6	BH4_0.2-0.4	BH4_1.5-1.95	BH15_0.2-0.4	BH15_1.8-2.0
			SOIL - 4/3/2016	SOIL - 7/3/2016	SOIL - 7/3/2016	SOIL - 7/3/2016	SOIL - 7/3/2016
PARAMETER	UOM	LOR	SE149872.001	SE149872.002	SE149872.003	SE149872.004	SE149872.005
Isopropylbenzene (Cumene)	mg/kg	0.1	-	-	<0.1	-	<0.1
Bromobenzene	mg/kg	0.1	-	-	<0.1	-	<0.1
n-propylbenzene	mg/kg	0.1	-	-	<0.1	-	<0.1
2-chlorotoluene	mg/kg	0.1	-	-	<0.1	-	<0.1
4-chlorotoluene	mg/kg	0.1	-	-	<0.1	-	<0.1
1,3,5-trimethylbenzene	mg/kg	0.1	-	-	<0.1	-	<0.1
tert-butylbenzene	mg/kg	0.1	-	-	<0.1	-	<0.1
1,2,4-trimethylbenzene	mg/kg	0.1	-	-	<0.1	-	<0.1
sec-butylbenzene	mg/kg	0.1	-	-	<0.1	-	<0.1
1,3-dichlorobenzene	mg/kg	0.1	-	-	<0.1	-	<0.1
1,4-dichlorobenzene	mg/kg	0.1	-	-	<0.1	-	<0.1
p-isopropyltoluene	mg/kg	0.1	-	-	<0.1	-	<0.1
1,2-dichlorobenzene	mg/kg	0.1	-	-	<0.1	-	<0.1
n-butylbenzene	mg/kg	0.1	-	-	<0.1	-	<0.1
1,2-dibromo-3-chloropropane	mg/kg	0.1	-	-	<0.1	-	<0.1
1,2,4-trichlorobenzene	mg/kg	0.1	-	-	<0.1	-	<0.1
Hexachlorobutadiene	mg/kg	0.1	-	-	<0.1	-	<0.1
1,2,3-trichlorobenzene	mg/kg	0.1	-	-	<0.1	-	<0.1
Total VOC*	mg/kg	24	-	-	-	-	-

Volatile Petroleum Hydrocarbons in Soil [AN433/AN434/AN410] Tested: 10/3/2016

			BH1M_0.5-0.6	BH4_0.2-0.4	BH4_1.5-1.95	BH15_0.2-0.4	BH15_1.8-2.0
			SOIL	SOIL	SOIL	SOIL	SOIL
						7/3/2016	7/3/2016
PARAMETER	UOM	LOR	SE149872.001	SE149872.002	SE149872.003	SE149872.004	SE149872.005
TRH C6-C9	mg/kg	20	<20	<20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25	<25

SE149872 R0

TRH (Total Recoverable Hydrocarbons) in Soil [AN403] Tested: 10/3/2016

			BH1M_0.5-0.6	BH4_0.2-0.4	BH4_1.5-1.95	BH15_0.2-0.4	BH15_1.8-2.0
			SOIL	SOIL	SOIL	SOIL	SOIL
			4/3/2016	7/3/2016	7/3/2016	7/3/2016	7/3/2016
PARAMETER	UOM	LOR	SE149872.001	SE149872.002	SE149872.003	SE149872.004	SE149872.005
TRH C10-C14	mg/kg	20	<20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	<45	72	<45	1000	<45
TRH C29-C36	mg/kg	45	<45	<45	<45	630	<45
TRH C37-C40	mg/kg	100	<100	<100	<100	140	<100
TRH >C10-C16 (F2)	mg/kg	25	<25	<25	<25	42	<25
TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	<25	<25	<25	42	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	100	<90	1500	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	280	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	<110	1600	<110
TRH C10-C40 Total	mg/kg	210	<210	<210	<210	1800	<210

SE149872 R0

PAH (Polynuclear Aromatic Hydrocarbons) in Soil [AN420] Tested: 10/3/2016

			BH1M_0.5-0.6	BH4_0.2-0.4	BH4_1.5-1.95	BH15_0.2-0.4	BH15_1.8-2.0
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-			-
						7/3/2016	7/3/2016
PARAMETER	UOM	LOR	SE149872.001	SE149872.002	SE149872.003	SE149872.004	SE149872.005
Naphthalene	mg/kg	0.1	<0.1	0.1	<0.1	2.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	0.7	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	0.8	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	0.4	<0.1	6.6	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	0.6	<0.1
Fluorene	mg/kg	0.1	<0.1	0.1	<0.1	3.6	<0.1
Phenanthrene	mg/kg	0.1	<0.1	3.2	<0.1	41	<0.1
Anthracene	mg/kg	0.1	<0.1	0.7	<0.1	13	<0.1
Fluoranthene	mg/kg	0.1	<0.1	4.8	<0.1	85	<0.1
Pyrene	mg/kg	0.1	<0.1	5.7	<0.1	94	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1	2.5	<0.1	45	<0.1
Chrysene	mg/kg	0.1	<0.1	2.4	<0.1	36	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	1.8	<0.1	32	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	2.0	<0.1	32	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1	2.4	<0.1	40	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	1.1	<0.1	19	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	0.3	<0.1	4.5	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	0.9	<0.1	15	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ</td><td>0.2</td><td><0.2</td><td>3.4</td><td><0.2</td><td>58</td><td><0.2</td></lor=0<>	TEQ	0.2	<0.2	3.4	<0.2	58	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td>3.4</td><td><0.3</td><td>58</td><td><0.3</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	3.4	<0.3	58	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td>3.4</td><td><0.2</td><td>58</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	3.4	<0.2	58	<0.2
Total PAH (18)	mg/kg	0.8	<0.8	29	<0.8	470	<0.8

OC Pesticides in Soil [AN400/AN420] Tested: 10/3/2016

			BH1M_0.5-0.6	BH4_0.2-0.4	BH15_0.2-0.4
			SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	4/3/2016 SE149872.001	7/3/2016 SE149872.002	7/3/2016 SE149872.004
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1	<0.1	<0.1
Lindane	mg/kg	0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	0.1	<0.1	<0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1	<0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1	<0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	<0.1
o,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	0.2	<0.2	<0.2	<0.2
Endrin	mg/kg	0.2	<0.2	<0.2	<0.2
o,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1
o,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1	<0.1	<0.1
Endrin Ketone	mg/kg	0.1	<0.1	<0.1	<0.1
Isodrin	mg/kg	0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	0.1	<0.1	<0.1	<0.1

OP Pesticides in Soil [AN400/AN420] Tested: 10/3/2016

			BH1M_0.5-0.6	BH4_0.2-0.4	BH15_0.2-0.4
			SOIL	SOIL	SOIL
			4/3/2016	7/3/2016	7/3/2016
PARAMETER	UOM	LOR	SE149872.001	SE149872.002	SE149872.004
Dichlorvos	mg/kg	0.5	<0.5	<0.5	<0.5
Dimethoate	mg/kg	0.5	<0.5	<0.5	<0.5
Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	<0.5
Fenitrothion	mg/kg	0.2	<0.2	<0.2	<0.2
Malathion	mg/kg	0.2	<0.2	<0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	<0.2
Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	<0.2
Methidathion	mg/kg	0.5	<0.5	<0.5	<0.5
Ethion	mg/kg	0.2	<0.2	<0.2	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	<0.2

PCBs in Soil [AN400/AN420] Tested: 10/3/2016

			BH1M_0.5-0.6	BH4_0.2-0.4	BH15_0.2-0.4
			SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	SE149872.001	SE149872.002	SE149872.004
Arochlor 1016	mg/kg	0.2	<0.2	<0.2	<0.2
Arochlor 1221	mg/kg	0.2	<0.2	<0.2	<0.2
Arochlor 1232	mg/kg	0.2	<0.2	<0.2	<0.2
Arochlor 1242	mg/kg	0.2	<0.2	<0.2	<0.2
Arochlor 1248	mg/kg	0.2	<0.2	<0.2	<0.2
Arochlor 1254	mg/kg	0.2	<0.2	<0.2	<0.2
Arochlor 1260	mg/kg	0.2	<0.2	<0.2	<0.2
Arochlor 1262	mg/kg	0.2	<0.2	<0.2	<0.2
Arochlor 1268	mg/kg	0.2	<0.2	<0.2	<0.2
Total PCBs (Arochlors)	mg/kg	1	<1	<1	<1

Total Recoverable Metals in Soil by ICPOES [AN040/AN320] Tested: 14/3/2016

			BH1M_0.5-0.6	BH4_0.2-0.4	BH4_1.5-1.95	BH15_0.2-0.4	BH15_1.8-2.0
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 4/3/2016	- 7/3/2016	- 7/3/2016	- 7/3/2016	- 7/3/2016
PARAMETER	UOM	LOR	SE149872.001	SE149872.002	SE149872.003	SE149872.004	SE149872.005
Arsenic, As	mg/kg	3	3	4	10	5	6
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	0.4	0.6	0.5
Chromium, Cr	mg/kg	0.3	12	7.4	6.9	10	21
Copper, Cu	mg/kg	0.5	17	24	31	29	13
Lead, Pb	mg/kg	1	26	260	21	100	24
Nickel, Ni	mg/kg	0.5	2.9	4.3	<0.5	12	2.9
Zinc, Zn	mg/kg	0.5	8.2	110	5.7	340	6.5

Mercury in Soil [AN312] Tested: 14/3/2016

			BH1M_0.5-0.6	BH4_0.2-0.4	BH4_1.5-1.95	BH15_0.2-0.4	BH15_1.8-2.0
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
						7/3/2016	7/3/2016
PARAMETER	UOM	LOR	SE149872.001	SE149872.002	SE149872.003	SE149872.004	SE149872.005
Mercury	mg/kg	0.01	0.02	0.47	<0.01	0.10	0.02

Moisture Content [AN002] Tested: 9/3/2016

			BH1M_0.5-0.6	BH4_0.2-0.4	BH4_1.5-1.95	BH15_0.2-0.4	BH15_1.8-2.0
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
						7/3/2016	7/3/2016
PARAMETER	UOM	LOR	SE149872.001	SE149872.002	SE149872.003	SE149872.004	SE149872.005
% Moisture	%w/w	0.5	19	13	16	15	24

Fibre Identification in soil [AN602] Tested: 14/3/2016

			BH1M_0.5-0.6	BH4_0.2-0.4	BH15_0.2-0.4
			SOIL	SOIL	SOIL
			4/3/2016	7/3/2016	7/3/2016
PARAMETER	UOM	LOR	SE149872.006	SE149872.007	SE149872.008
Asbestos Detected	No unit	-	No	No	No
Estimated Fibres*	%w/w	0.01	<0.01	<0.01	<0.01

METHOD	METHODOLOGY SUMMARY
AN002	The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.
AN040/AN320	A portion of sample is digested with nitric acid to decompose organic matter and hydrochloric acid to complete the digestion of metals. The digest is then analysed by ICP OES with metals results reported on the dried sample basis. Based on USEPA method 200.8 and 6010C.
AN040	A portion of sample is digested with Nitric acid to decompose organic matter and Hydrochloric acid to complete the digestion of metals and then filtered for analysis by ASS or ICP as per USEPA Method 200.8.
AN312	Mercury by Cold Vapour AAS in Soils: After digestion with nitric acid, hydrogen peroxide and hydrochloric acid, mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500
AN400	OC and OP Pesticides by GC-ECD: The determination of organochlorine (OC) and organophosphorus (OP) pesticides and polychlorinated biphenyls (PCBs) in soils, sludges and groundwater. (Based on USEPA methods 3510, 3550, 8140 and 8080.)
AN403	Total Recoverable Hydrocarbons: Determination of Hydrocarbons by gas chromatography after a solvent extraction. Detection is by flame ionisation detector (FID) that produces an electronic signal in proportion to the combustible matter passing through it. Total Recoverable Hydrocarbons (TRH) are routinely reported as four alkane groupings based on the carbon chain length of the compounds: C6-C9, C10-C14, C15-C28 and C29-C36 and in recognition of the NEPM 1999 (2013), >C10-C16 (F2), >C16-C34 (F3) and >C34-C40 (F4). F2 is reported directly and also corrected by subtracting Naphthalene (from VOC method AN433) where available.
AN403	Additionally, the volatile C6-C9 fraction may be determined by a purge and trap technique and GC/MS because of the potential for volatiles loss. Total Petroleum Hydrocarbons (TPH) follows the same method of analysis after silica gel cleanup of the solvent extract. Aliphatic/Aromatic Speciation follows the same method of analysis after fractionation of the solvent extract over silica with differential polarity of the eluent solvents.
AN403	The GC/FID method is not well suited to the analysis of refined high boiling point materials (ie lubricating oils or greases) but is particularly suited for measuring diesel, kerosene and petrol if care to control volatility is taken. This method will detect naturally occurring hydrocarbons, lipids, animal fats, phenols and PAHs if they are present at sufficient levels, dependent on the use of specific cleanup/fractionation techniques. Reference USEPA 3510B, 8015B.
AN420	(SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols (etc) in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN420	SVOC Compounds: Semi-Volatile Organic Compounds (SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN433/AN434/AN410	VOCs and C6-C9/C6-C10 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.
AN433/AN434	VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.
AN602	Qualitative identification of chrysotile, amosite and crocidolite in bulk samples by polarised light microscopy (PLM) in conjunction with dispersion staining (DS). AS4964 provides the basis for this document. Unequivocal identification of the asbestos minerals present is made by obtaining sufficient diagnostic `clues`, which provide a reasonable degree of certainty, dispersion staining is a mandatory `clue` for positive identification. If sufficient `clues` are absent, then positive identification of asbestos is not possible. This procedure requires removal of suspect fibres/bundles from the sample which cannot be returned.
AN602	Fibres/material that cannot be unequivocably identified as one of the three asbestos forms, will be reported as unknown mineral fibres (umf).
AN602	AS4964.2004 Method for the Qualitative Identification of Asbestos in Bulk Samples, Section 8.4, Trace Analysis Criteria, Note 4 states:"Depending upon sample condition and fibre type, the detection limit of this technique has been found to lie generally in the range of 1 in 1,000 to 1 in 10,000 parts by weight, equivalent to 1 to 0.1 g/kg."

The sample can be reported "no asbestos found at the reporting limit of 0.1 g/kg" (<0.01%w/w) where AN602 section 4.5 of this method has been followed, and if-
 (a) no trace asbestos fibres have been detected (i.e. no 'respirable' fibres): (b) the estimated weight of non-respirable asbestos fibre bundles and/or the estimated weight of asbestos in asbestos-containing materials are found to be less than 0.1g/kg: and (c) these non-respirable asbestos fibre bundles and/or the asbestos containing materials are only visible under stereo-microscope viewing conditions.

FOOTNOTES

*	NATA accreditation does not cover	-	Not analysed.	UOM	Unit of Measure.
	the performance of this service.	NVL	Not validated.	LOR	Limit of Reporting.
**	Indicative data, theoretical holding	IS	Insufficient sample for analysis.	↑↓	Raised/lowered Limit of
	time exceeded.	LNR	Sample listed, but not received.		Reporting.

Samples analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here : http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/en/terms-and-conditions. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full.

ANALYTICAL REPORT

CLIENT DETAILS		LABORATORY DETAI	LS
Contact	Mariana Torres	Manager	Huong Crawford
Client	Environmental Investigations	Laboratory	SGS Alexandria Environmental
Address	Suite 6.01, 55 Miller Street NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	02 9516 0722	Telephone	+61 2 8594 0400
Facsimile	02 9516 0741	Facsimile	+61 2 8594 0499
Email	mariana.torres@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E22913 Regent St&Trafalgar St Petersham	SGS Reference	SE149872 R0
Order Number	E22913	Date Received	08 Mar 2016
Samples	3	Date Reported	15 Mar 2016

COMMENTS -

Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562(4354).

No respirable fibres detected in all samples using trace analysis technique.

Asbestos analysed by Approved Identifier Yusuf Kuthpudin.

SIGNATORIES -

Ady Sitte

Andy Sutton Senior Organic Chemist

S. Ravender.

Ravee Sivasubramaniam Asbestos Analyst/Hygiene Team Leader

> SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC

Kamrul Ahsan

Senior Chemist

Alexandria NSW 2015 Alexandria NSW 2015

V 2015 Australia V 2015 Australia

Ly Kim Ha

Organic Section Head

t +61 2 8594 0400 f +61 2 8594 0499

Km/n/

594 0400 www.sgs.com.au 594 0499

Member of the SGS Group

ANALYTICAL REPORT

RESULTS –	tion in soil				Method AN60	12
Laboratory Reference	Client Reference	Matrix	Sample Description	Date Sampled	Fibre Identification	
SE149872.006	BH1M_0.5-0.6	Soil	127g Clay, Soil, Rocks	04 Mar 2016	No Asbestos Found	<0.01
SE149872.007	BH4_0.2-0.4	Soil	145g Clay, Sand, Soil, Rocks	07 Mar 2016	No Asbestos Found	<0.01
SE149872.008	BH15_0.2-0.4	Soil	139g Clay, Sand, Soil, Rocks	07 Mar 2016	No Asbestos Found	<0.01

METHOD SUMMARY

METHOD	METHODOLOGY SUMMARY
AN602	Qualitative identification of chrysotile, amosite and crocidolite in bulk samples by polarised light microscopy (PLM) in conjunction with dispersion staining (DS). AS4964 provides the basis for this document. Unequivocal identification of the asbestos minerals present is made by obtaining sufficient diagnostic `clues`, which provide a reasonable degree of certainty, dispersion staining is a mandatory `clue` for positive identification. If sufficient `clues` are absent, then positive identification of asbestos is not possible. This procedure requires removal of suspect fibres/bundles from the sample which cannot be returned.
AN602	Fibres/material that cannot be unequivocably identified as one of the three asbestos forms, will be reported as unknown mineral fibres (umf).
AN602	AS4964.2004 Method for the Qualitative Identification of Asbestos in Bulk Samples , Section 8.4, Trace Analysis Criteria, Note 4 states:"Depending upon sample condition and fibre type, the detection limit of this technique has been found to lie generally in the range of 1 in 1,000 to 1 in 10,000 parts by weight, equivalent to 1 to 0.1 g/kg."
AN602	The sample can be reported "no asbestos found at the reporting limit of 0.1 g/kg" (<0.01%w/w) where AN602 section 4.5 of this method has been followed, and if-
	 (a) no trace asbestos fibres have been detected (i.e. no 'respirable' fibres): (b) the estimated weight of non-respirable asbestos fibre bundles and/or the estimated weight of asbestos in asbestos-containing materials are found to be less than 0.1g/kg: and (c) these non-respirable asbestos fibre bundles and/or the asbestos containing materials are only visible under stereo-microscope viewing conditions.

FOOTNOTES

Amosite	-	Brown Asbestos	NA	-	Not Analysed
Chrysotile	-	White Asbestos	LNR	-	Listed, Not Required
Crocidolite	-	Blue Asbestos	*	-	NATA accreditation does not cover the performance of this service.
Amphiboles	-	Amosite and/or Crocidolite	**	-	Indicative data, theoretical holding time exceeded.

(In reference to soil samples only) This report does not comply with the analytical reporting recommendations in the Western Australian Department of Health Guidelines for the Assessment and Remediation and Management of Asbestos Contaminated sites in Western Australia - May 2009.

Sampled by the client.

Where reported: 'Asbestos Detected': Asbestos detected by polarised light microscopy, including dispersion staining. Where reported: 'No Asbestos Found': No Asbestos Found by polarised light microscopy, including dispersion staining. Where reported: 'UMF Detected': Mineral fibres of unknown type detected by polarised light microscopy, including dispersion staining. Confirmation by another independent analytical technique may be necessary.

Even after disintegration it can be very difficult, or impossible, to detect the presence of asbestos in some asbestos -containing bulk materials using polarised light microscopy. This is due to the low grade or small length or diameter of asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here : <u>http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf</u>

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/en/terms-and-conditions. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This test report shall not be reproduced, except in full.

ANALYTICAL REPORT

- CLIENT DETAILS		LABORATORY DE	LABORATORY DETAILS					
Contact	Mariana Torres	Manager	Huong Crawford					
Client	Environmental Investigations	Laboratory	SGS Alexandria Environmental					
Address	Suite 6.01, 55 Miller Street NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015					
Telephone	02 9516 0722	Telephone	+61 2 8594 0400					
Facsimile	02 9516 0741	Facsimile	+61 2 8594 0499					
Email	mariana.torres@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com					
Project	E22913 Regent St & Trafalgar St	SGS Reference	SE149963 R0					
Order Number	E22913	Date Received	10/3/2016					
Samples	12	Date Reported	17/3/2016					

COMMENTS

Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562(4354).

No respirable fibres detected in all samples using trace analysis technique.

Sample #2, 4, 6, 8: A portion of the sample supplied has been sub-sampled for asbestos according to SGS In-house procedures. We therefore cannot guarantee that the sub-sample is representative of the entire sample supplied. SGS Environmental Services recommends supplying approximately 50-100g of sample in a separate container.

Sample #10: 2-3mm length fibre bundles found in 3x2mm cement sheet fragment.

Asbestos analysed by Approved Identifier Yusuf Kuthpudin.

PAH - The Limit of Reporting (LOR) has been raised due to interferences from the sample matrix.

SIGNATORIES -

Andy Sitte

Andy Sutton Senior Organic Chemist

kmln

Ly Kim Ha Organic Section Head

Uno

Huong Crawford Production Manager

Yusuf Kuthpudin Asbestos Analyst

Kamrul Ahsan Senior Chemist

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia t +61 2 8594 0400 Australia f +61 2 8594 0499 www.sgs.com.au

SE149963 R0

VOC's in Soil [AN433/AN434] Tested: 11/3/2016

			BH2_0.2-0.4	BH2_1.2-1.5	BH3_0.2-0.4	BH3_0.8-1.0	BH9M_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	- 9/3/2016 SE149963.001	- 9/3/2016 SE149963.002	- 9/3/2016 SE149963.003	- 9/3/2016 SE149963.004	- 9/3/2016 SE149963.005
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes*	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Naphthalene	mg/kg	0.1	<0.1	<0.1	0.5	0.1	<0.1
Dichlorodifluoromethane (CFC-12)	mg/kg	1	-	<1	-	<1	-
Chloromethane	mg/kg	1	-	<1	-	<1	-
Vinyl chloride (Chloroethene)	mg/kg	0.1	-	<0.1	-	<0.1	-
Bromomethane	mg/kg	1	-	<1	-	<1	-
Chloroethane	mg/kg	1	-	<1	-	<1	-
Trichlorofluoromethane	mg/kg	1	-	<1	-	<1	-
Acetone (2-propanone)	mg/kg	10	-	<10	-	<10	-
lodomethane	mg/kg	5	-	<5	-	<5	-
1,1-dichloroethene	mg/kg	0.1	-	<0.1	-	<0.1	-
Acrylonitrile	mg/kg	0.1	-	<0.1	-	<0.1	-
Dichloromethane (Methylene chloride)	mg/kg	0.5	-	<0.5	-	<0.5	-
Allyl chloride	mg/kg	0.1	-	<0.1	-	<0.1	-
Carbon disulfide	mg/kg	0.5	-	<0.5	-	<0.5	-
trans-1,2-dichloroethene	mg/kg	0.1	_	<0.1	_	<0.1	-
MtBE (Methyl-tert-butyl ether)	mg/kg	0.1	-	<0.1	-	<0.1	-
1,1-dichloroethane	mg/kg	0.1	-	<0.1	-	<0.1	-
Vinyl acetate	mg/kg	10	-	<10	-	<10	-
MEK (2-butanone)	mg/kg	10	-	<10	-	<10	-
cis-1,2-dichloroethene	mg/kg	0.1	-	<0.1	-	<0.1	-
Bromochloromethane	mg/kg	0.1	-	<0.1	-	<0.1	-
Chloroform	mg/kg	0.1	-	<0.1	-	<0.1	-
2,2-dichloropropane	mg/kg	0.1	-	<0.1	-	<0.1	-
1,2-dichloroethane	mg/kg	0.1	-	<0.1	-	<0.1	-
1,1,1-trichloroethane	mg/kg	0.1	-	<0.1	-	<0.1	-
1,1-dichloropropene	mg/kg	0.1	-	<0.1	-	<0.1	-
Carbon tetrachloride	mg/kg	0.1	-	<0.1	-	<0.1	-
Dibromomethane	mg/kg	0.1	-	<0.1	-	<0.1	-
1,2-dichloropropane	mg/kg	0.1	-	<0.1	-	<0.1	-
Trichloroethene (Trichloroethylene -TCE)	mg/kg	0.1	-	<0.1	-	<0.1	-
2-nitropropane	mg/kg	10	-	<10	-	<10	-
Bromodichloromethane	mg/kg	0.1	-	<0.1	-	<0.1	-
MIBK (4-methyl-2-pentanone)	mg/kg	1	-	<1	-	<1	-
cis-1,3-dichloropropene	mg/kg	0.1	-	<0.1	-	<0.1	-
trans-1,3-dichloropropene	mg/kg	0.1	-	<0.1	-	<0.1	-
1,1,2-trichloroethane	mg/kg	0.1	-	<0.1	-	<0.1	-
1,3-dichloropropane	mg/kg	0.1	-	<0.1	-	<0.1	-
Chlorodibromomethane	mg/kg	0.1	-	<0.1	-	<0.1	-
2-hexanone (MBK)	mg/kg	5	-	<5	-	<5	-
1,2-dibromoethane (EDB)	mg/kg	0.1	-	<0.1	-	<0.1	-
Tetrachloroethene (Perchloroethylene,PCE)	mg/kg	0.1	-	<0.1	-	<0.1	-
1,1,1,2-tetrachloroethane	mg/kg	0.1	-	<0.1	-	<0.1	-
Chlorobenzene	mg/kg	0.1	-	<0.1	-	<0.1	-
Bromoform	mg/kg	0.1	-	<0.1	-	<0.1	-
cis-1,4-dichloro-2-butene	mg/kg	1	-	<1	-	<1	-
Styrene (Vinyl benzene)	mg/kg	0.1	-	<0.1	-	<0.1	-
1,1,2,2-tetrachloroethane	mg/kg	0.1	-	<0.1	-	<0.1	-
1,2,3-trichloropropane	mg/kg	0.1	-	<0.1	-	<0.1	-
trans-1,4-dichloro-2-butene	mg/kg	1	-	<1	-	<1	-
L	-			1		1	

SE149963 R0

VOC's in Soil [AN433/AN434] Tested: 11/3/2016 (continued)

			BH2_0.2-0.4	BH2_1.2-1.5	BH3_0.2-0.4	BH3_0.8-1.0	BH9M_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
			9/3/2016			9/3/2016	9/3/2016
PARAMETER	UOM	LOR	SE149963.001	SE149963.002	SE149963.003	SE149963.004	SE149963.005
Isopropylbenzene (Cumene)	mg/kg	0.1	-	<0.1	-	<0.1	-
Bromobenzene	mg/kg	0.1	-	<0.1	-	<0.1	-
n-propylbenzene	mg/kg	0.1	-	<0.1	-	<0.1	-
2-chlorotoluene	mg/kg	0.1	-	<0.1	-	<0.1	-
4-chlorotoluene	mg/kg	0.1	-	<0.1	-	<0.1	-
1,3,5-trimethylbenzene	mg/kg	0.1	-	<0.1	-	<0.1	-
tert-butylbenzene	mg/kg	0.1	-	<0.1	-	<0.1	-
1,2,4-trimethylbenzene	mg/kg	0.1	-	<0.1	-	<0.1	-
sec-butylbenzene	mg/kg	0.1	-	<0.1	-	<0.1	-
1,3-dichlorobenzene	mg/kg	0.1	-	<0.1	-	<0.1	-
1,4-dichlorobenzene	mg/kg	0.1	-	<0.1	-	<0.1	-
p-isopropyltoluene	mg/kg	0.1	-	<0.1	-	<0.1	-
1,2-dichlorobenzene	mg/kg	0.1	-	<0.1	-	<0.1	-
n-butylbenzene	mg/kg	0.1	-	<0.1	-	<0.1	-
1,2-dibromo-3-chloropropane	mg/kg	0.1	-	<0.1	-	<0.1	-
1,2,4-trichlorobenzene	mg/kg	0.1	-	<0.1	-	<0.1	-
Hexachlorobutadiene	mg/kg	0.1	-	<0.1	-	<0.1	-
1,2,3-trichlorobenzene	mg/kg	0.1	-	<0.1	-	<0.1	-
Total VOC*	mg/kg	24	-	-	-	-	-

VOC's in Soil [AN433/AN434] Tested: 11/3/2016 (continued)

			BH9M_2.0-2.1	BH11M_0.1-0.2	BH11M_1.0-1.1
				00"	
			SOIL	SOIL -	SOIL
			9/3/2016		
PARAMETER	UOM	LOR	SE149963.006	SE149963.007	SE149963.008
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1
m/p-xylene o-xylene	mg/kg mg/kg	0.2	<0.2	<0.2	<0.2
Total Xylenes*	mg/kg	0.3	<0.3	<0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6	<0.6	<0.6
Naphthalene	mg/kg	0.0	<0.1	<0.1	<0.1
Dichlorodifluoromethane (CFC-12)	mg/kg	1	<1	-	<1
Chloromethane	mg/kg	1	<1		<1
Vinyl chloride (Chloroethene)	mg/kg	0.1	<0.1	-	<0.1
Bromomethane	mg/kg	1	<1	-	<1
Chloroethane	mg/kg	1	<1	_	<1
Trichlorofluoromethane	mg/kg	1	<1	-	<1
Acetone (2-propanone)	mg/kg	10	<10	-	<10
lodomethane	mg/kg	5	<5	-	<5
1,1-dichloroethene	mg/kg	0.1	<0.1	-	<0.1
Acrylonitrile	mg/kg	0.1	<0.1	-	<0.1
Dichloromethane (Methylene chloride)	mg/kg	0.5	<0.5	-	<0.5
Allyl chloride	mg/kg	0.1	<0.1	-	<0.1
Carbon disulfide	mg/kg	0.5	<0.5	-	<0.5
trans-1,2-dichloroethene	mg/kg	0.1	<0.1	-	<0.1
MtBE (Methyl-tert-butyl ether)	mg/kg	0.1	<0.1	-	<0.1
1,1-dichloroethane	mg/kg	0.1	<0.1	-	<0.1
Vinyl acetate	mg/kg	10	<10	-	<10
MEK (2-butanone)	mg/kg	10	<10	-	<10
cis-1,2-dichloroethene	mg/kg	0.1	<0.1	-	<0.1
Bromochloromethane	mg/kg	0.1	<0.1	-	<0.1
Chloroform	mg/kg	0.1	<0.1	-	<0.1
2,2-dichloropropane	mg/kg	0.1	<0.1	-	<0.1
1,2-dichloroethane	mg/kg	0.1	<0.1	-	<0.1
1,1,1-trichloroethane	mg/kg	0.1	<0.1	-	<0.1
1,1-dichloropropene	mg/kg	0.1	<0.1	-	<0.1
Carbon tetrachloride	mg/kg	0.1	<0.1	-	<0.1
Dibromomethane	mg/kg	0.1	<0.1	-	<0.1
1,2-dichloropropane	mg/kg	0.1	<0.1	-	<0.1
Trichloroethene (Trichloroethylene -TCE)	mg/kg	0.1	<0.1	-	<0.1
2-nitropropane	mg/kg	10	<10	-	<10
Bromodichloromethane	mg/kg	0.1	<0.1	-	<0.1
MIBK (4-methyl-2-pentanone)	mg/kg	1	<1	-	<1
cis-1,3-dichloropropene	mg/kg	0.1	<0.1	-	<0.1
trans-1,3-dichloropropene	mg/kg	0.1	<0.1	-	<0.1
1,1,2-trichloroethane	mg/kg	0.1	<0.1	-	<0.1
1,3-dichloropropane	mg/kg	0.1	<0.1	-	<0.1
Chlorodibromomethane	mg/kg	0.1	<0.1	-	<0.1
2-hexanone (MBK)	mg/kg	5	<5	-	<5
1,2-dibromoethane (EDB)	mg/kg	0.1	<0.1	-	<0.1
Tetrachloroethene (Perchloroethylene,PCE)	mg/kg	0.1	<0.1	-	<0.1
1,1,1,2-tetrachloroethane	mg/kg	0.1	<0.1	-	<0.1
Chlorobenzene	mg/kg	0.1	<0.1	-	<0.1
Bromoform	mg/kg	0.1	<0.1	-	<0.1
cis-1,4-dichloro-2-butene	mg/kg	1	<1	-	<1
Styrene (Vinyl benzene)	mg/kg	0.1	<0.1	-	<0.1
1,1,2,2-tetrachloroethane	mg/kg	0.1	<0.1	-	<0.1
1,2,3-trichloropropane	mg/kg	0.1	<0.1	-	<0.1
trans-1,4-dichloro-2-butene	mg/kg	1	<1	-	<1

VOC's in Soil [AN433/AN434] Tested: 11/3/2016 (continued)

			BH9M_2.0-2.1	BH11M_0.1-0.2	BH11M_1.0-1.1
			SOIL	SOIL	SOIL
			9/3/2016		
PARAMETER	UOM	LOR	SE149963.006	SE149963.007	SE149963.008
Isopropylbenzene (Cumene)	mg/kg	0.1	<0.1	-	<0.1
Bromobenzene	mg/kg	0.1	<0.1	-	<0.1
n-propylbenzene	mg/kg	0.1	<0.1	-	<0.1
2-chlorotoluene	mg/kg	0.1	<0.1	-	<0.1
4-chlorotoluene	mg/kg	0.1	<0.1	-	<0.1
1,3,5-trimethylbenzene	mg/kg	0.1	<0.1	-	<0.1
tert-butylbenzene	mg/kg	0.1	<0.1	-	<0.1
1,2,4-trimethylbenzene	mg/kg	0.1	<0.1	-	<0.1
sec-butylbenzene	mg/kg	0.1	<0.1	-	<0.1
1,3-dichlorobenzene	mg/kg	0.1	<0.1	-	<0.1
1,4-dichlorobenzene	mg/kg	0.1	<0.1	-	<0.1
p-isopropyltoluene	mg/kg	0.1	<0.1	-	<0.1
1,2-dichlorobenzene	mg/kg	0.1	<0.1	-	<0.1
n-butylbenzene	mg/kg	0.1	<0.1	-	<0.1
1,2-dibromo-3-chloropropane	mg/kg	0.1	<0.1	-	<0.1
1,2,4-trichlorobenzene	mg/kg	0.1	<0.1	-	<0.1
Hexachlorobutadiene	mg/kg	0.1	<0.1	-	<0.1
1,2,3-trichlorobenzene	mg/kg	0.1	<0.1	-	<0.1
Total VOC*	mg/kg	24	-	-	-

Volatile Petroleum Hydrocarbons in Soil [AN433/AN434/AN410] Tested: 11/3/2016

			BH2 0.2-0.4	BH2 1.2-1.5	BH3 0.2-0.4	BH3 0.8-1.0	BH9M_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
PARAMETER		1.05	9/3/2016	9/3/2016	9/3/2016	9/3/2016	9/3/2016
PARAMETER	UOM	LOR	SE149963.001	SE149963.002	SE149963.003	SE149963.004	SE149963.005
TRH C6-C9	mg/kg	20	<20	<20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25	<25

			BH9M_2.0-2.1	BH11M_0.1-0.2	BH11M_1.0-1.1
			SOIL	SOIL	SOIL
			- 9/3/2016	- 9/3/2016	- 9/3/2016
PARAMETER	UOM	LOR	SE149963.006	SE149963.007	SE149963.008
TRH C6-C9	mg/kg	20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25

TRH (Total Recoverable Hydrocarbons) in Soil [AN403] Tested: 11/3/2016

			BH2_0.2-0.4	BH2_1.2-1.5	BH3_0.2-0.4	BH3_0.8-1.0	BH9M_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			9/3/2016			9/3/2016	9/3/2016
PARAMETER	UOM	LOR	SE149963.001	SE149963.002	SE149963.003	SE149963.004	SE149963.005
TRH C10-C14	mg/kg	20	<20	<20	46	<20	<20
TRH C15-C28	mg/kg	45	<45	<45	2100	180	<45
TRH C29-C36	mg/kg	45	<45	<45	1200	84	<45
TRH C37-C40	mg/kg	100	<100	<100	380	<100	<100
TRH >C10-C16 (F2)	mg/kg	25	<25	<25	120	<25	<25
TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	<25	<25	120	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	3000	250	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	650	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	3400	270	<110
TRH C10-C40 Total	mg/kg	210	<210	<210	3800	270	<210

				BH11M_0.1-0.2	BH11M_1.0-1.1
			SOIL	SOIL	SOIL
			- 9/3/2016	- 9/3/2016	- 9/3/2016
PARAMETER	UOM	LOR	SE149963.006	SE149963.007	SE149963.008
TRH C10-C14	mg/kg	20	<20	<20	<20
TRH C15-C28	mg/kg	45	<45	53	<45
TRH C29-C36	mg/kg	45	<45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100	<100
TRH >C10-C16 (F2)	mg/kg	25	<25	<25	<25
TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	<110
TRH C10-C40 Total	mg/kg	210	<210	<210	<210

PAH (Polynuclear Aromatic Hydrocarbons) in Soil [AN420] Tested: 11/3/2016

			BH2_0.2-0.4	BH2_1.2-1.5	BH3_0.2-0.4	BH3_0.8-1.0	BH9M_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			9/3/2016			9/3/2016	9/3/2016
PARAMETER	UOM	LOR	SE149963.001	SE149963.002	SE149963.003	SE149963.004	SE149963.005
Naphthalene	mg/kg	0.1	<0.1	<0.1	7.1	0.3	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	2.3	0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	2.3	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	0.3	<0.1	21	1.3	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	1.9	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	12	<0.1	<0.1
Phenanthrene	mg/kg	0.1	1.4	<0.1	180	11	0.2
Anthracene	mg/kg	0.1	0.5	<0.1	38	2.6	<0.1
Fluoranthene	mg/kg	0.1	3.1	<0.1	230	21	0.2
Pyrene	mg/kg	0.1	3.6	<0.1	270	24	0.3
Benzo(a)anthracene	mg/kg	0.1	1.5	<0.1	98	9.0	0.1
Chrysene	mg/kg	0.1	1.4	<0.1	83	7.7	0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	1.1	<0.1	92	7.0	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	1.1	<0.1	38	5.3	<0.1
Benzo(a)pyrene	mg/kg	0.1	1.3	<0.1	78	7.0	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	0.5	<0.1	32	3.1	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	0.1	<0.1	8.0	0.8	<0.1
Benzo(ghi)perylene	mg/kg	0.1	0.4	<0.1	24	2.3	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ</td><td>0.2</td><td>1.9</td><td><0.2</td><td>110</td><td>10</td><td><0.2</td></lor=0<>	TEQ	0.2	1.9	<0.2	110	10	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>1.9</td><td><0.3</td><td>110</td><td>10</td><td><0.3</td></lor=lor<>	TEQ (mg/kg)	0.3	1.9	<0.3	110	10	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>1.9</td><td><0.2</td><td>110</td><td>10</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	1.9	<0.2	110	10	<0.2
Total PAH (18)	mg/kg	0.8	16	<0.8	1200	100	0.9

			BH9M_2.0-2.1	BH11M_0.1-0.2	BH11M_1.0-1.1
			SOIL	SOIL	SOIL
			9/3/2016		
PARAMETER	UOM	LOR	SE149963.006	SE149963.007	SE149963.008
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	0.4	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	0.1	<0.1
Phenanthrene	mg/kg	0.1	0.5	1.9	<0.1
Anthracene	mg/kg	0.1	0.1	0.4	<0.1
Fluoranthene	mg/kg	0.1	0.5	3.1	0.1
Pyrene	mg/kg	0.1	0.5	3.8	0.2
Benzo(a)anthracene	mg/kg	0.1	0.2	2.1	<0.1
Chrysene	mg/kg	0.1	0.2	1.9	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	0.2	1.9	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	0.1	1.4	<0.1
Benzo(a)pyrene	mg/kg	0.1	0.2	1.9	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	0.8	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	0.2	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	0.6	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ</td><td>0.2</td><td>0.2</td><td>2.8</td><td><0.2</td></lor=0<>	TEQ	0.2	0.2	2.8	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>0.3</td><td>2.8</td><td><0.3</td></lor=lor<>	TEQ (mg/kg)	0.3	0.3	2.8	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>0.3</td><td>2.8</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	0.3	2.8	<0.2
Total PAH (18)	mg/kg	0.8	2.5	21	<0.8

OC Pesticides in Soil [AN400/AN420] Tested: 11/3/2016

			BH2_0.2-0.4	BH3_0.2-0.4	BH9M_0.2-0.3	BH11M_0.1-0.2
			SOIL	SOIL	SOIL	SOIL
						-
PARAMETER	UOM	LOR	9/3/2016 SE149963.001	9/3/2016 SE149963.003	9/3/2016 SE149963.005	9/3/2016 SE149963.007
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Lindane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	0.1	<0.1	0.1	<0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	0.2	0.4	1.5	<0.2	<0.2
Endrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
o,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Endrin Ketone	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Isodrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1

OP Pesticides in Soil [AN400/AN420] Tested: 11/3/2016

			BH2_0.2-0.4	BH3_0.2-0.4	BH9M_0.2-0.3	BH11M_0.1-0.2
			SOIL -	SOIL -	SOIL -	SOIL -
PARAMETER	UOM	LOR	9/3/2016 SE149963.001	9/3/2016 SE149963.003	9/3/2016 SE149963.005	9/3/2016 SE149963.007
Dichlorvos	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5
Dimethoate	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5
Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5
Fenitrothion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Malathion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Methidathion	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5
Ethion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2

PCBs in Soil [AN400/AN420] Tested: 11/3/2016

			BH2_0.2-0.4	BH3_0.2-0.4	BH9M_0.2-0.3	BH11M_0.1-0.2
			SOIL	SOIL	SOIL	SOIL
			- 9/3/2016	- 9/3/2016	- 9/3/2016	- 9/3/2016
PARAMETER	UOM	LOR	SE149963.001	SE149963.003	SE149963.005	SE149963.007
Arochlor 1016	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1221	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1232	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Arochior 1242	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1248	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1254	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1260	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1262	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1268	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Total PCBs (Arochlors)	mg/kg	1	<1	<1	<1	<1

SE149963 R0

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES [AN040/AN320] Tested: 15/3/2016

			BH2_0.2-0.4	BH2_1.2-1.5	BH3_0.2-0.4	BH3_0.8-1.0	BH9M_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 9/3/2016	- 9/3/2016	- 9/3/2016	- 9/3/2016	- 9/3/2016
PARAMETER	UOM	LOR	SE149963.001	SE149963.002	SE149963.003	SE149963.004	SE149963.005
Arsenic, As	mg/kg	3	5	<3	8	4	<3
Cadmium, Cd	mg/kg	0.3	0.4	<0.3	1.3	0.6	0.3
Chromium, Cr	mg/kg	0.3	18	5.7	24	16	39
Copper, Cu	mg/kg	0.5	19	15	180	35	14
Lead, Pb	mg/kg	1	99	21	830	100	27
Nickel, Ni	mg/kg	0.5	4.5	<0.5	15	3.9	41
Zinc, Zn	mg/kg	0.5	53	3.2	690	120	40

			BH9M_2.0-2.1	BH11M_0.1-0.2	BH11M_1.0-1.1
			SOIL	SOIL	SOIL
			9/3/2016	9/3/2016	9/3/2016
PARAMETER	UOM	LOR	SE149963.006	SE149963.007	SE149963.008
Arsenic, As	mg/kg	3	4	4	3
Cadmium, Cd	mg/kg	0.3	0.4	0.5	<0.3
Chromium, Cr	mg/kg	0.3	9.8	12	6.4
Copper, Cu	mg/kg	0.5	36	29	6.1
Lead, Pb	mg/kg	1	29	260	12
Nickel, Ni	mg/kg	0.5	1.1	5.4	<0.5
Zinc, Zn	mg/kg	0.5	12	260	7.9

SE149963 R0

Mercury in Soil [AN312] Tested: 15/3/2016

			BH2_0.2-0.4	BH2_1.2-1.5	BH3_0.2-0.4	BH3_0.8-1.0	BH9M_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			9/3/2016			9/3/2016	9/3/2016
PARAMETER	UOM	LOR	SE149963.001	SE149963.002	SE149963.003	SE149963.004	SE149963.005
Mercury	mg/kg	0.01	0.15	<0.01	0.30	0.07	0.02

			BH9M_2.0-2.1	BH11M_0.1-0.2	BH11M_1.0-1.1
			SOIL	SOIL	SOIL
					-
			9/3/2016		9/3/2016
PARAMETER	UOM	LOR	SE149963.006	SE149963.007	SE149963.008
Mercury	mg/kg	0.01	<0.01	0.59	0.02

SE149963 R0

Moisture Content [AN002] Tested: 11/3/2016

			BH2_0.2-0.4	BH2_1.2-1.5	BH3_0.2-0.4	BH3_0.8-1.0	BH9M_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			9/3/2016			9/3/2016	9/3/2016
PARAMETER	UOM	LOR	SE149963.001	SE149963.002	SE149963.003	SE149963.004	SE149963.005
% Moisture	%w/w	0.5	22	21	19	26	6.9

			BH9M_2.0-2.1	BH11M_0.1-0.2	BH11M_1.0-1.1
			SOIL	SOIL	SOIL
			9/3/2016		
PARAMETER	UOM	LOR	SE149963.006	SE149963.007	SE149963.008
% Moisture	%w/w	0.5	18	10	9.5

SE149963 R0

Fibre Identification in soil [AN602] Tested: 15/3/2016

			BH2_1.2-1.5	BH3_0.8-1.0	BH9M_2.0-2.1	BH11M_1.0-1.1	BH2_0.2-0.4
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			9/3/2016			9/3/2016	9/3/2016
PARAMETER	UOM	LOR	SE149963.002	SE149963.004	SE149963.006	SE149963.008	SE149963.009
Asbestos Detected	No unit	-	No	No	No	No	No
Estimated Fibres*	%w/w	0.01	<0.01	<0.01	<0.01	<0.01	<0.01

			BH3_0.2-0.4	BH9M_0.2-0.3	BH11M_0.1-0.2
			SOIL	SOIL	SOIL
			9/3/2016	9/3/2016	9/3/2016
PARAMETER	UOM	LOR	SE149963.010	SE149963.011	SE149963.012
Asbestos Detected	No unit	-	Yes	No	No
Estimated Fibres*	%w/w	0.01	<0.01	<0.01	<0.01

METHOD	
AN002	The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.
AN040/AN320	A portion of sample is digested with nitric acid to decompose organic matter and hydrochloric acid to complete the digestion of metals. The digest is then analysed by ICP OES with metals results reported on the dried sample basis. Based on USEPA method 200.8 and 6010C.
AN040	A portion of sample is digested with Nitric acid to decompose organic matter and Hydrochloric acid to complete the digestion of metals and then filtered for analysis by ASS or ICP as per USEPA Method 200.8.
AN312	Mercury by Cold Vapour AAS in Soils: After digestion with nitric acid, hydrogen peroxide and hydrochloric acid, mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500
AN400	OC and OP Pesticides by GC-ECD: The determination of organochlorine (OC) and organophosphorus (OP) pesticides and polychlorinated biphenyls (PCBs) in soils, sludges and groundwater. (Based on USEPA methods 3510, 3550, 8140 and 8080.)
AN403	Total Recoverable Hydrocarbons: Determination of Hydrocarbons by gas chromatography after a solvent extraction. Detection is by flame ionisation detector (FID) that produces an electronic signal in proportion to the combustible matter passing through it. Total Recoverable Hydrocarbons (TRH) are routinely reported as four alkane groupings based on the carbon chain length of the compounds: C6-C9, C10-C14, C15-C28 and C29-C36 and in recognition of the NEPM 1999 (2013), >C10-C16 (F2), >C16-C34 (F3) and >C34-C40 (F4). F2 is reported directly and also corrected by subtracting Naphthalene (from VOC method AN433) where available.
AN403	Additionally, the volatile C6-C9 fraction may be determined by a purge and trap technique and GC/MS because of the potential for volatiles loss. Total Petroleum Hydrocarbons (TPH) follows the same method of analysis after silica gel cleanup of the solvent extract. Aliphatic/Aromatic Speciation follows the same method of analysis after fractionation of the solvent extract over silica with differential polarity of the eluent solvents.
AN403	The GC/FID method is not well suited to the analysis of refined high boiling point materials (ie lubricating oils or greases) but is particularly suited for measuring diesel, kerosene and petrol if care to control volatility is taken. This method will detect naturally occurring hydrocarbons, lipids, animal fats, phenols and PAHs if they are present at sufficient levels, dependent on the use of specific cleanup/fractionation techniques. Reference USEPA 3510B, 8015B.
AN420	(SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols (etc) in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN420	SVOC Compounds: Semi-Volatile Organic Compounds (SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols in soils, sediments and waters are determined by GCMS /ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN433/AN434/AN410	VOCs and C6-C9/C6-C10 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.
AN433/AN434	VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.
AN602	Qualitative identification of chrysotile, amosite and crocidolite in bulk samples by polarised light microscopy (PLM) in conjunction with dispersion staining (DS). AS4964 provides the basis for this document. Unequivocal identification of the asbestos minerals present is made by obtaining sufficient diagnostic 'clues', which provide a reasonable degree of certainty, dispersion staining is a mandatory 'clue' for positive identification. If sufficient 'clues' are absent, then positive identification of asbestos is not possible. This procedure requires removal of suspect fibres/bundles from the sample which cannot be returned.
AN602	Fibres/material that cannot be unequivocably identified as one of the three asbestos forms, will be reported as unknown mineral fibres (umf).
AN602	AS4964.2004 Method for the Qualitative Identification of Asbestos in Bulk Samples, Section 8.4, Trace Analysis Criteria, Note 4 states: "Depending upon sample condition and fibre type, the detection limit of this technique has been found to lie generally in the range of 1 in 1,000 to 1 in 10,000 parts by weight, equivalent to 1 to 0.1 g/kg."

AN602	The sample can be reported "no asbestos found at the reporting limit of 0.1 g/kg" (<0.01%w/w) where AN602 section 4.5 of this method has been followed, and if-
	 (a) no trace asbestos fibres have been detected (i.e. no 'respirable' fibres): (b) the estimated weight of non-respirable asbestos fibre bundles and/or the estimated weight of asbestos in asbestos-containing materials are found to be less than 0.1g/kg: and
	(c) these non-respirable asbestos fibre bundles and/or the asbestos containing materials are only visible under stereo-microscope viewing conditions.

FOOTNOTES -

*	NATA accreditation does not cover	-	Not analysed.	UOM	Unit of Measure.
	the performance of this service.	NVL	Not validated.	LOR	Limit of Reporting.
**	Indicative data, theoretical holding	IS	Insufficient sample for analysis.	↑↓	Raised/lowered Limit of
	time exceeded.	LNR	Sample listed, but not received.		Reporting.

Samples analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here : http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/en/terms-and-conditions. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full.

ANALYTICAL REPORT

CLIENT DETAILS		LABORATORY DETAI	LS
Contact	Mariana Torres	Manager	Huong Crawford
Client	Environmental Investigations	Laboratory	SGS Alexandria Environmental
Address	Suite 6.01, 55 Miller Street NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	02 9516 0722	Telephone	+61 2 8594 0400
Facsimile	02 9516 0741	Facsimile	+61 2 8594 0499
Email	mariana.torres@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E22913 Regent St & Trafalgar St	SGS Reference	SE149963 R0
Order Number	E22913	Date Received	10 Mar 2016
Samples	8	Date Reported	17 Mar 2016

COMMENTS -

Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562(4354).

No respirable fibres detected in all samples using trace analysis technique.

Sample #2, 4, 6, 8: A portion of the sample supplied has been sub-sampled for asbestos according to SGS In-house procedures. We therefore cannot guarantee that the sub-sample is representative of the entire sample supplied. SGS Environmental Services recommends supplying approximately 50-100g of sample in a separate container.

Sample #10: 2-3mm length fibre bundles found in 3x2mm cement sheet fragment.

Asbestos analysed by Approved Identifier Yusuf Kuthpudin.

PAH - The Limit of Reporting (LOR) has been raised due to interferences from the sample matrix.

SIGNATORIES -

Ady Sitte

Andy Sutton Senior Organic Chemist

kinter

Ly Kim Ha Organic Section Head

Uno

Huong Crawford Production Manager

Yusuf Kuthpudin Asbestos Analyst

Agan.

Kamrul Ahsan Senior Chemist

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia t +61 2 8594 0400 Australia f +61 2 8594 0499

594 0400 www.sgs.com.au 594 0499

Member of the SGS Group

ANALYTICAL REPORT

Fibre Identifica	tion in soil	Method AN602	<u>.</u>			
Laboratory Reference	Client Reference	Matrix	Sample Description	Date Sampled	Fibre Identification	Est.%w/w*
SE149963.002	BH2_1.2-1.5	Soil	50g Clay	09 Mar 2016	No Asbestos Found	<0.01
SE149963.004	BH3_0.8-1.0	Soil	49g Clay, Soil, Rocks	09 Mar 2016	No Asbestos Found	<0.01
SE149963.006	BH9M_2.0-2.1	Soil	74g Clay	09 Mar 2016	No Asbestos Found	<0.01
SE149963.008	BH11M_1.0-1.1	Soil	65g Clay	09 Mar 2016	No Asbestos Found	<0.01
SE149963.009	BH2_0.2-0.4	Soil	208g Clay, Sand, Soil, Rocks	09 Mar 2016	No Asbestos Found Organic Fibres Detected	<0.01
SE149963.010	BH3_0.2-0.4	Soil	109g Clay, Sand, Soil, Rocks	09 Mar 2016	Chrysotile Asbestos Found	<0.01
SE149963.011	BH9M_0.2-0.3	Soil	64g Sand, Soil, Rocks	09 Mar 2016	No Asbestos Found Organic Fibres Detected	<0.01
SE149963.012	BH11M_0.1-0.2	Soil	71g Clay, Sand Rocks	09 Mar 2016	No Asbestos Found	<0.01

METHOD SUMMARY

METHOD	METHODOLOGY SUMMARY
AN602	Qualitative identification of chrysotile, amosite and crocidolite in bulk samples by polarised light microscopy (PLM) in conjunction with dispersion staining (DS). AS4964 provides the basis for this document. Unequivocal identification of the asbestos minerals present is made by obtaining sufficient diagnostic `clues`, which provide a reasonable degree of certainty, dispersion staining is a mandatory `clue` for positive identification. If sufficient `clues` are absent, then positive identification of asbestos is not possible. This procedure requires removal of suspect fibres/bundles from the sample which cannot be returned.
AN602	Fibres/material that cannot be unequivocably identified as one of the three asbestos forms, will be reported as unknown mineral fibres (umf).
AN602	AS4964.2004 Method for the Qualitative Identification of Asbestos in Bulk Samples , Section 8.4, Trace Analysis Criteria, Note 4 states: "Depending upon sample condition and fibre type, the detection limit of this technique has been found to lie generally in the range of 1 in 1,000 to 1 in 10,000 parts by weight, equivalent to 1 to 0.1 g/kg."
AN602	The sample can be reported "no asbestos found at the reporting limit of 0.1 g/kg" (<0.01%w/w) where AN602 section 4.5 of this method has been followed, and if-
	 (a) no trace asbestos fibres have been detected (i.e. no 'respirable' fibres): (b) the estimated weight of non-respirable asbestos fibre bundles and/or the estimated weight of asbestos in asbestos-containing materials are found to be less than 0.1g/kg: and (c) these non-respirable asbestos fibre bundles and/or the asbestos containing materials are only visible under stereo-microscope viewing conditions.

FOOTNOTES

Amosite	-	Brown Asbestos	NA	-	Not Analysed
Chrysotile	-	White Asbestos	LNR	-	Listed, Not Required
Crocidolite	-	Blue Asbestos	*	-	NATA accreditation does not cover the performance of this service.
Amphiboles	-	Amosite and/or Crocidolite	**	-	Indicative data, theoretical holding time exceeded.

(In reference to soil samples only) This report does not comply with the analytical reporting recommendations in the Western Australian Department of Health Guidelines for the Assessment and Remediation and Management of Asbestos Contaminated sites in Western Australia - May 2009.

Sampled by the client.

Where reported: 'Asbestos Detected': Asbestos detected by polarised light microscopy, including dispersion staining. Where reported: 'No Asbestos Found': No Asbestos Found by polarised light microscopy, including dispersion staining. Where reported: 'UMF Detected': Mineral fibres of unknown type detected by polarised light microscopy, including dispersion staining. Confirmation by another independent analytical technique may be necessary.

Even after disintegration it can be very difficult, or impossible, to detect the presence of asbestos in some asbestos -containing bulk materials using polarised light microscopy. This is due to the low grade or small length or diameter of asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here : http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/en/terms-and-conditions. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This test report shall not be reproduced, except in full.

ANALYTICAL REPORT

CLIENT DETAILS		LABORATORY DE	TAILS	
Contact	Mariana Torres	Manager	Huong Crawford	
Client	Environmental Investigations	Laboratory	SGS Alexandria Environmental	
Address	Suite 6.01, 55 Miller Street NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015	
Telephone	02 9516 0722	Telephone	+61 2 8594 0400	
Facsimile	02 9516 0741	Facsimile	+61 2 8594 0499	
Email	mariana.torres@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com	
Project	E22913 Regent & Trafalgar St Petersham	SGS Reference	SE150039 R0	
Order Number	E22913	Date Received	14/3/2016	
Samples	12	Date Reported	21/3/2016	

COMMENTS

Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562(4354).

No respirable fibres detected in all samples using trace analysis technique.

Asbestos analysed by Approved Identifier Ravee Sivasubramaniam.

SIGNATORIES -

Ady Sith

Andy Sutton Senior Organic Chemist

S. Ravender.

Ravee Sivasubramaniam Asbestos Analyst/Hygiene Team Leader

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC

Kamrul Ahsan

Senior Chemist

Alexandri d BC Alexandri

Alexandria NSW 2015 Alexandria NSW 2015 Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

kinty

Ly Kim Ha

Organic Section Head

www.sgs.com.au

SE150039 R0

VOC's in Soil [AN433/AN434] Tested: 15/3/2016

			BH6 0.2-0.4	BH6 1.3-1.5	BH7 0.2-0.4	BH7 2.3-2.5	BH12 0.2-0.4
			SOIL	SOIL	SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	- 11/3/2016 SE150039.001	- 11/3/2016 SE150039.002	- 10/3/2016 SE150039.003	- 10/3/2016 SE150039.004	- 11/3/2016 SE150039.005
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes*	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	0.2
Dichlorodifluoromethane (CFC-12)	mg/kg	1	-	<1	-	<1	-
Chloromethane	mg/kg	1	-	<1	-	<1	-
Vinyl chloride (Chloroethene)	mg/kg	0.1	_	<0.1	_	<0.1	-
Bromomethane	mg/kg	1	-	<1	_	<1	-
Chloroethane	mg/kg	1	-	<1	_	<1	
Trichlorofluoromethane	mg/kg	1		<1	_	<1	-
Acetone (2-propanone)	mg/kg	10		<10	-	<10	-
lodomethane	mg/kg	5	-	<5	-	<5	-
1.1-dichloroethene		0.1	-	<0.1	-	<0.1	-
	mg/kg						
Acrylonitrile	mg/kg	0.1	-	<0.1	-	<0.1	-
Dichloromethane (Methylene chloride)	mg/kg	0.5	-	<0.5	-	<0.5	-
Allyl chloride	mg/kg	0.1	-	<0.1	-	<0.1	-
Carbon disulfide	mg/kg	0.5	-	<0.5	-	<0.5	-
trans-1,2-dichloroethene	mg/kg	0.1	-	<0.1	-	<0.1	-
MtBE (Methyl-tert-butyl ether)	mg/kg	0.1	-	<0.1	-	<0.1	-
1,1-dichloroethane	mg/kg	0.1	-	<0.1	-	<0.1	-
Vinyl acetate	mg/kg	10	-	<10	-	<10	-
MEK (2-butanone)	mg/kg	10	-	<10	-	<10	-
cis-1,2-dichloroethene	mg/kg	0.1	-	<0.1	-	<0.1	-
Bromochloromethane	mg/kg	0.1	-	<0.1	-	<0.1	-
Chloroform	mg/kg	0.1	-	<0.1	-	<0.1	-
2,2-dichloropropane	mg/kg	0.1	-	<0.1	-	<0.1	-
1,2-dichloroethane	mg/kg	0.1	-	<0.1	-	<0.1	-
1,1,1-trichloroethane	mg/kg	0.1	-	<0.1	-	<0.1	-
1,1-dichloropropene	mg/kg	0.1	-	<0.1	-	<0.1	-
Carbon tetrachloride	mg/kg	0.1	-	<0.1	-	<0.1	-
Dibromomethane	mg/kg	0.1	-	<0.1	-	<0.1	-
1,2-dichloropropane	mg/kg	0.1	-	<0.1	-	<0.1	-
Trichloroethene (Trichloroethylene -TCE)	mg/kg	0.1	-	<0.1	-	<0.1	-
2-nitropropane	mg/kg	10	-	<10	-	<10	-
Bromodichloromethane	mg/kg	0.1	-	<0.1	-	<0.1	-
MIBK (4-methyl-2-pentanone)	mg/kg	1	-	<1	-	<1	-
cis-1,3-dichloropropene	mg/kg	0.1	-	<0.1	-	<0.1	-
trans-1,3-dichloropropene	mg/kg	0.1	-	<0.1	-	<0.1	-
1,1,2-trichloroethane	mg/kg	0.1	-	<0.1	-	<0.1	-
1,3-dichloropropane	mg/kg	0.1	_	<0.1	_	<0.1	-
Chlorodibromomethane	mg/kg	0.1		<0.1		<0.1	-
2-hexanone (MBK)	mg/kg	5		<5		<5	-
1,2-dibromoethane (EDB)	mg/kg	0.1	-	<0.1	-	<0.1	-
Tetrachloroethene (Perchloroethylene,PCE)		0.1	-	<0.1	-	<0.1	-
	mg/kg		-		-		-
1,1,1,2-tetrachloroethane	mg/kg	0.1		<0.1		<0.1	
Chlorobenzene	mg/kg	0.1	-	<0.1	-	<0.1	-
Bromoform	mg/kg	0.1	-	<0.1	-	<0.1	-
cis-1,4-dichloro-2-butene	mg/kg	1	-	<1	-	<1	-
Styrene (Vinyl benzene)	mg/kg	0.1	-	<0.1	-	<0.1	-
1,1,2,2-tetrachloroethane	mg/kg	0.1	-	<0.1	-	<0.1	-
1,2,3-trichloropropane	mg/kg	0.1	-	<0.1	-	<0.1	-
trans-1,4-dichloro-2-butene	mg/kg	1	-	<1	-	<1	-

SE150039 R0

VOC's in Soil [AN433/AN434] Tested: 15/3/2016 (continued)

			BH6 0.2-0.4	BH6 1.3-1.5	BH7 0.2-0.4	BH7 2.3-2.5	BH12 0.2-0.4
			SOIL -	SOIL	SOIL	SOIL -	SOIL -
PARAMETER	UOM	LOR	11/3/2016 SE150039.001	11/3/2016 SE150039.002	10/3/2016 SE150039.003	10/3/2016 SE150039.004	11/3/2016 SE150039.005
Isopropylbenzene (Cumene)	mg/kg	0.1	-	<0.1	-	<0.1	-
Bromobenzene	mg/kg	0.1	-	<0.1	-	<0.1	-
n-propylbenzene	mg/kg	0.1	-	<0.1	-	<0.1	-
2-chlorotoluene	mg/kg	0.1	-	<0.1	-	<0.1	-
4-chlorotoluene	mg/kg	0.1	-	<0.1	-	<0.1	-
1,3,5-trimethylbenzene	mg/kg	0.1	-	<0.1	-	<0.1	-
tert-butylbenzene	mg/kg	0.1	-	<0.1	-	<0.1	-
1,2,4-trimethylbenzene	mg/kg	0.1	-	<0.1	-	<0.1	-
sec-butylbenzene	mg/kg	0.1	-	<0.1	-	<0.1	-
1,3-dichlorobenzene	mg/kg	0.1	-	<0.1	-	<0.1	-
1,4-dichlorobenzene	mg/kg	0.1	-	<0.1	-	<0.1	-
p-isopropyltoluene	mg/kg	0.1	-	<0.1	-	<0.1	-
1,2-dichlorobenzene	mg/kg	0.1	-	<0.1	-	<0.1	-
n-butylbenzene	mg/kg	0.1	-	<0.1	-	<0.1	-
1,2-dibromo-3-chloropropane	mg/kg	0.1	-	<0.1	-	<0.1	-
1,2,4-trichlorobenzene	mg/kg	0.1	-	<0.1	-	<0.1	-
Hexachlorobutadiene	mg/kg	0.1	-	<0.1	-	<0.1	-
1,2,3-trichlorobenzene	mg/kg	0.1	-	<0.1	-	<0.1	-
Total VOC*	mg/kg	24	-	-	-	-	-

VOC's in Soil [AN433/AN434] Tested: 15/3/2016 (continued)

			BH12 1.3-1.5	QD1	QTB1
			SOIL	SOIL	SOIL
			- 11/3/2016		
PARAMETER	UOM	LOR	SE150039.006	SE150039.010	SE150039.011
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1
Total Xylenes*	mg/kg	0.3	<0.3	<0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6	<0.6	<0.6
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1
Dichlorodifluoromethane (CFC-12)	mg/kg	1	<1	<1	-
Chloromethane	mg/kg	1	<1	<1	-
Vinyl chloride (Chloroethene)	mg/kg	0.1	<0.1	<0.1	-
Bromomethane	mg/kg	1	<1	<1	-
Chloroethane	mg/kg	1	<1	<1	-
Trichlorofluoromethane	mg/kg	1	<1	<1	-
Acetone (2-propanone)	mg/kg	10	<10	<10	-
lodomethane	mg/kg	5	<5	<5	-
1,1-dichloroethene	mg/kg	0.1	<0.1	<0.1	-
Acrylonitrile	mg/kg	0.1	<0.1	<0.1	-
Dichloromethane (Methylene chloride)	mg/kg	0.5	<0.5	<0.5	-
Allyl chloride	mg/kg	0.1	<0.1	<0.1	-
Carbon disulfide	mg/kg	0.5	<0.5	<0.5	-
trans-1,2-dichloroethene	mg/kg	0.1	<0.1	<0.1	-
MtBE (Methyl-tert-butyl ether)	mg/kg	0.1	<0.1	<0.1	-
1,1-dichloroethane	mg/kg	0.1	<0.1	<0.1	-
Vinyl acetate	mg/kg	10	<10	<10	-
MEK (2-butanone)	mg/kg	10	<10	<10	-
cis-1,2-dichloroethene	mg/kg	0.1	<0.1	<0.1	-
Bromochloromethane	mg/kg	0.1	<0.1	<0.1	-
Chloroform	mg/kg	0.1	<0.1	<0.1	-
2,2-dichloropropane	mg/kg	0.1	<0.1	<0.1	-
1,2-dichloroethane	mg/kg	0.1	<0.1	<0.1	-
1,1,1-trichloroethane	mg/kg	0.1	<0.1	<0.1	-
1,1-dichloropropene	mg/kg	0.1	<0.1	<0.1	-
Carbon tetrachloride	mg/kg	0.1	<0.1	<0.1	-
Dibromomethane	mg/kg	0.1	<0.1	<0.1	-
1,2-dichloropropane	mg/kg	0.1	<0.1	<0.1	-
Trichloroethene (Trichloroethylene -TCE)	mg/kg	0.1	<0.1	<0.1	-
2-nitropropane	mg/kg	10	<10	<10	-
Bromodichloromethane	mg/kg	0.1	<0.1	<0.1	-
MIBK (4-methyl-2-pentanone)	mg/kg	1	<1	<1	-
cis-1,3-dichloropropene	mg/kg	0.1	<0.1	<0.1	-
trans-1,3-dichloropropene	mg/kg	0.1	<0.1	<0.1	-
1,1,2-trichloroethane	mg/kg	0.1	<0.1	<0.1	-
1,3-dichloropropane	mg/kg	0.1	<0.1	<0.1	-
Chlorodibromomethane	mg/kg	0.1	<0.1	<0.1	-
2-hexanone (MBK)	mg/kg	5	<5	<5	-
1,2-dibromoethane (EDB)	mg/kg	0.1	<0.1	<0.1	-
Tetrachloroethene (Perchloroethylene,PCE)	mg/kg	0.1	<0.1	<0.1	-
1,1,1,2-tetrachloroethane	mg/kg	0.1	<0.1	<0.1	-
Chlorobenzene	mg/kg	0.1	<0.1	<0.1	-
Bromoform	mg/kg	0.1	<0.1	<0.1	-
cis-1,4-dichloro-2-butene	mg/kg	1	<1	<1	-
Styrene (Vinyl benzene)	mg/kg	0.1	<0.1	<0.1	-
1,1,2,2-tetrachloroethane	mg/kg	0.1	<0.1	<0.1	-
1,2,3-trichloropropane	mg/kg	0.1	<0.1	<0.1	-
trans-1,4-dichloro-2-butene	mg/kg	1	<1	<1	-
					1

VOC's in Soil [AN433/AN434] Tested: 15/3/2016 (continued)

			BH12 1.3-1.5	QD1	QTB1
			SOIL -	SOIL -	SOIL -
PARAMETER	UOM	LOR	11/3/2016 SE150039.006	10/3/2016 SE150039.010	11/3/2016 SE150039.011
Isopropylbenzene (Cumene)	mg/kg	0.1	<0.1	<0.1	-
Bromobenzene	mg/kg	0.1	<0.1	<0.1	-
n-propylbenzene	mg/kg	0.1	<0.1	<0.1	-
2-chlorotoluene	mg/kg	0.1	<0.1	<0.1	-
4-chlorotoluene	mg/kg	0.1	<0.1	<0.1	-
1,3,5-trimethylbenzene	mg/kg	0.1	<0.1	<0.1	-
tert-butylbenzene	mg/kg	0.1	<0.1	<0.1	-
1,2,4-trimethylbenzene	mg/kg	0.1	<0.1	<0.1	-
sec-butylbenzene	mg/kg	0.1	<0.1	<0.1	-
1,3-dichlorobenzene	mg/kg	0.1	<0.1	<0.1	-
1,4-dichlorobenzene	mg/kg	0.1	<0.1	<0.1	-
p-isopropyltoluene	mg/kg	0.1	<0.1	<0.1	-
1,2-dichlorobenzene	mg/kg	0.1	<0.1	<0.1	-
n-butylbenzene	mg/kg	0.1	<0.1	<0.1	-
1,2-dibromo-3-chloropropane	mg/kg	0.1	<0.1	<0.1	-
1,2,4-trichlorobenzene	mg/kg	0.1	<0.1	<0.1	-
Hexachlorobutadiene	mg/kg	0.1	<0.1	<0.1	-
1,2,3-trichlorobenzene	mg/kg	0.1	<0.1	<0.1	-
Total VOC*	mg/kg	24	-	-	-

Volatile Petroleum Hydrocarbons in Soil [AN433/AN434/AN410] Tested: 15/3/2016

			BH6 0.2-0.4	BH6 1.3-1.5	BH7 0.2-0.4	BH7 2.3-2.5	BH12 0.2-0.4
			SOIL	SOIL	SOIL	SOIL	SOIL
			11/3/2016	11/3/2016		10/3/2016	
PARAMETER	UOM	LOR	SE150039.001	SE150039.002	SE150039.003	SE150039.004	SE150039.005
TRH C6-C9	mg/kg	20	<20	<20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25	<25

			BH12 1.3-1.5	QD1
			SOIL -	SOIL -
PARAMETER	UOM	LOR	11/3/2016 SE150039.006	10/3/2016 SE150039.010
TRH C6-C9	mg/kg	20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25

SE150039 R0

TRH (Total Recoverable Hydrocarbons) in Soil [AN403] Tested: 15/3/2016

			BH6 0.2-0.4	BH6 1.3-1.5	BH7 0.2-0.4	BH7 2.3-2.5	BH12 0.2-0.4
PARAMETER	UOM	LOR	SOIL - 11/3/2016 SE150039.001	SOIL - 11/3/2016 SE150039.002	SOIL - 10/3/2016 SE150039.003	SOIL - 10/3/2016 SE150039.004	SOIL - 11/3/2016 SE150039.005
TRH C10-C14	mg/kg	20	<20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	<45	<45	<45	<45	220
TRH C29-C36	mg/kg	45	<45	<45	<45	<45	82
TRH C37-C40	mg/kg	100	<100	<100	<100	<100	<100
TRH >C10-C16 (F2)	mg/kg	25	<25	<25	<25	<25	<25
TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	<25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	<90	<90	280
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	<110	<110	300
TRH C10-C40 Total	mg/kg	210	<210	<210	<210	<210	300

			BH12 1.3-1.5	QD1
			SOIL -	SOIL -
PARAMETER	UOM	LOR	11/3/2016 SE150039.006	10/3/2016 SE150039.010
TRH C10-C14	mg/kg	20	<20	<20
TRH C15-C28	mg/kg	45	<45	<45
TRH C29-C36	mg/kg	45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100
TRH >C10-C16 (F2)	mg/kg	25	<25	<25
TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110
TRH C10-C40 Total	mg/kg	210	<210	<210

SE150039 R0

PAH (Polynuclear Aromatic Hydrocarbons) in Soil [AN420] Tested: 15/3/2016

			BH6 0.2-0.4	BH6 1.3-1.5	BH7 0.2-0.4	BH7 2.3-2.5	BH12 0.2-0.4
			SOIL	SOIL	SOIL	SOIL	SOIL
			11/3/2016	11/3/2016		10/3/2016	
PARAMETER	UOM	LOR	SE150039.001	SE150039.002	SE150039.003	SE150039.004	SE150039.005
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	0.6
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	0.2
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	0.2
Acenaphthylene	mg/kg	0.1	0.2	0.1	<0.1	<0.1	1.4
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	0.7
Phenanthrene	mg/kg	0.1	1.2	0.3	<0.1	<0.1	10
Anthracene	mg/kg	0.1	0.4	0.2	<0.1	<0.1	2.5
Fluoranthene	mg/kg	0.1	1.7	1.9	0.4	<0.1	15
Pyrene	mg/kg	0.1	2.0	3.2	0.7	<0.1	23
Benzo(a)anthracene	mg/kg	0.1	1.0	1.2	0.3	<0.1	7.1
Chrysene	mg/kg	0.1	0.9	1.1	0.3	<0.1	6.4
Benzo(b&j)fluoranthene	mg/kg	0.1	0.9	1.2	0.3	<0.1	6.6
Benzo(k)fluoranthene	mg/kg	0.1	0.4	0.5	0.2	<0.1	4.6
Benzo(a)pyrene	mg/kg	0.1	0.8	1.1	0.4	<0.1	7.5
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	0.4	0.5	0.2	<0.1	4.0
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	0.1	<0.1	<0.1	1.0
Benzo(ghi)perylene	mg/kg	0.1	0.3	0.4	0.2	<0.1	3.6
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ</td><td>0.2</td><td>1.1</td><td>1.6</td><td>0.5</td><td><0.2</td><td>11</td></lor=0<>	TEQ	0.2	1.1	1.6	0.5	<0.2	11
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>1.2</td><td>1.6</td><td>0.6</td><td><0.3</td><td>11</td></lor=lor<>	TEQ (mg/kg)	0.3	1.2	1.6	0.6	<0.3	11
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>1.2</td><td>1.6</td><td>0.5</td><td><0.2</td><td>11</td></lor=lor>	TEQ (mg/kg)	0.2	1.2	1.6	0.5	<0.2	11
Total PAH (18)	mg/kg	0.8	10	12	3.0	<0.8	95

PARAMETER	UOM	LOR	BH12 1.3-1.5 SOIL - 11/3/2016 SE150039.006
Naphthalene	mg/kg	0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1
Fluorene	mg/kg	0.1	<0.1
Phenanthrene	mg/kg	0.1	0.4
Anthracene	mg/kg	0.1	0.1
Fluoranthene	mg/kg	0.1	0.5
Pyrene	mg/kg	0.1	0.7
Benzo(a)anthracene	mg/kg	0.1	0.3
Chrysene	mg/kg	0.1	0.2
Benzo(b&j)fluoranthene	mg/kg	0.1	0.2
Benzo(k)fluoranthene	mg/kg	0.1	0.2
Benzo(a)pyrene	mg/kg	0.1	0.2
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	0.1
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ</td><td>0.2</td><td>0.3</td></lor=0<>	TEQ	0.2	0.3
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>0.4</td></lor=lor<>	TEQ (mg/kg)	0.3	0.4
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>0.4</td></lor=lor>	TEQ (mg/kg)	0.2	0.4
Total PAH (18)	mg/kg	0.8	3.0

OC Pesticides in Soil [AN400/AN420] Tested: 15/3/2016

			BH6 0.2-0.4	BH7 0.2-0.4	BH12 0.2-0.4
			SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	11/3/2016 SE150039.001	10/3/2016 SE150039.003	11/3/2016 SE150039.005
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1	<0.1	<0.1
Lindane	mg/kg	0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	0.1	<0.1	<0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1	<0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1	<0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	<0.1
o,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	0.2	<0.2	<0.2	<0.2
Endrin	mg/kg	0.2	<0.2	<0.2	<0.2
o,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1
o,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1	<0.1	<0.1
Endrin Ketone	mg/kg	0.1	<0.1	<0.1	<0.1
Isodrin	mg/kg	0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	0.1	<0.1	<0.1	<0.1

OP Pesticides in Soil [AN400/AN420] Tested: 15/3/2016

			BH6 0.2-0.4	BH7 0.2-0.4	BH12 0.2-0.4
			SOIL	SOIL	SOIL
			11/3/2016	10/3/2016	11/3/2016
PARAMETER	UOM	LOR	SE150039.001	SE150039.003	SE150039.005
Dichlorvos	mg/kg	0.5	<0.5	<0.5	<0.5
Dimethoate	mg/kg	0.5	<0.5	<0.5	<0.5
Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	<0.5
Fenitrothion	mg/kg	0.2	<0.2	<0.2	<0.2
Malathion	mg/kg	0.2	<0.2	<0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	<0.2
Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	<0.2
Methidathion	mg/kg	0.5	<0.5	<0.5	<0.5
Ethion	mg/kg	0.2	<0.2	<0.2	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	<0.2

PCBs in Soil [AN400/AN420] Tested: 15/3/2016

			BH6 0.2-0.4	BH7 0.2-0.4	BH12 0.2-0.4
			SOIL	SOIL	SOIL
			11/3/2016	10/3/2016	11/3/2016
PARAMETER	UOM	LOR	SE150039.001	SE150039.003	SE150039.005
Arochlor 1016	mg/kg	0.2	<0.2	<0.2	<0.2
Arochlor 1221	mg/kg	0.2	<0.2	<0.2	<0.2
Arochlor 1232	mg/kg	0.2	<0.2	<0.2	<0.2
Arochlor 1242	mg/kg	0.2	<0.2	<0.2	<0.2
Arochlor 1248	mg/kg	0.2	<0.2	<0.2	<0.2
Arochlor 1254	mg/kg	0.2	<0.2	<0.2	<0.2
Arochlor 1260	mg/kg	0.2	<0.2	<0.2	<0.2
Arochlor 1262	mg/kg	0.2	<0.2	<0.2	<0.2
Arochlor 1268	mg/kg	0.2	<0.2	<0.2	<0.2
Total PCBs (Arochlors)	mg/kg	1	<1	<1	<1

SE150039 R0

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES [AN040/AN320] Tested: 17/3/2016

			BH6 0.2-0.4	BH6 1.3-1.5	BH7 0.2-0.4	BH7 2.3-2.5	BH12 0.2-0.4
			SOIL	SOIL	SOIL	SOIL	SOIL
			11/3/2016	11/3/2016	10/3/2016	10/3/2016	11/3/2016
PARAMETER	UOM	LOR	SE150039.001	SE150039.002	SE150039.003	SE150039.004	SE150039.005
Arsenic, As	mg/kg	3	5	5	6	7	7
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	<0.3	0.4	0.9
Chromium, Cr	mg/kg	0.3	14	15	15	18	15
Copper, Cu	mg/kg	0.5	13	19	18	21	46
Lead, Pb	mg/kg	1	25	41	26	27	360
Nickel, Ni	mg/kg	0.5	2.7	4.7	2.6	1.9	5.9
Zinc, Zn	mg/kg	0.5	21	41	18	18	440

			BH12 1.3-1.5	QD1
PARAMETER	UOM	LOR	SOIL - 11/3/2016 SE150039.006	SOIL - 10/3/2016 SE150039.010
Arsenic, As	mg/kg	3	7	7
Cadmium, Cd	mg/kg	0.3	0.7	0.4
Chromium, Cr	mg/kg	0.3	29	13
Copper, Cu	mg/kg	0.5	3.2	21
Lead, Pb	mg/kg	1	22	34
Nickel, Ni	mg/kg	0.5	1.2	2.3
Zinc, Zn	mg/kg	0.5	11	27

SE150039 R0

Mercury in Soil [AN312] Tested: 18/3/2016

			BH6 0.2-0.4	BH6 1.3-1.5	BH7 0.2-0.4	BH7 2.3-2.5	BH12 0.2-0.4
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			11/3/2016	11/3/2016		10/3/2016	11/3/2016
PARAMETER	UOM	LOR	SE150039.001	SE150039.002	SE150039.003	SE150039.004	SE150039.005
Mercury	mg/kg	0.01	<0.01	0.02	0.01	<0.01	0.11

			BH12 1.3-1.5	QD1
			SOIL	SOIL
			- 11/3/2016	
PARAMETER	UOM	LOR	SE150039.006	SE150039.010
Mercury	mg/kg	0.01	0.02	0.03

SE150039 R0

Moisture Content [AN002] Tested: 15/3/2016

			BH6 0.2-0.4	BH6 1.3-1.5	BH7 0.2-0.4	BH7 2.3-2.5	BH12 0.2-0.4
			SOIL	SOIL	SOIL	SOIL	SOIL
			11/3/2016	11/3/2016		10/3/2016	
PARAMETER	UOM	LOR	SE150039.001	SE150039.002	SE150039.003	SE150039.004	SE150039.005
% Moisture	%w/w	0.5	18	20	14	21	11

			BH12 1.3-1.5	QD1	QTB1
			SOIL	SOIL	SOIL
					-
			11/3/2016		11/3/2016
PARAMETER	UOM	LOR	SE150039.006	SE150039.010	SE150039.011
% Moisture	%w/w	0.5	14	15	<0.5

Fibre Identification in soil [AN602] Tested: 18/3/2016

			BH6 0.2-0.4_ZLP	BH7 0.2-0.4_ZLP	BH12 0.2-0.4_ZLP
			SOIL	SOIL	SOIL
					-
			11/3/2016		11/3/2016
PARAMETER	UOM	LOR	SE150039.007	SE150039.008	SE150039.009
Asbestos Detected	No unit	-	No	No	No
Estimated Fibres*	%w/w	0.01	<0.01	<0.01	<0.01

SE150039 R0

VOCs in Water [AN433/AN434] Tested: 15/3/2016

			QR1
			WATER
			- 11/3/2016
PARAMETER	UOM	LOR	SE150039.012
Benzene	µg/L	0.5	<0.5
Toluene	µg/L	0.5	1.0
Ethylbenzene	µg/L	0.5	<0.5
m/p-xylene	µg/L	1	<1
o-xylene	µg/L	0.5	<0.5
Total Xylenes	µg/L	1.5	<1.5
Total BTEX	µg/L	3	<3
Naphthalene	µg/L	0.5	<0.5

Volatile Petroleum Hydrocarbons in Water [AN433/AN434/AN410] Tested: 15/3/2016

			QR1
			WATER
			- 11/3/2016
PARAMETER	UOM	LOR	SE150039.012
TRH C6-C9	µg/L	40	<40
Benzene (F0)	µg/L	0.5	<0.5
TRH C6-C10	µg/L	50	<50
TRH C6-C10 minus BTEX (F1)	µg/L	50	<50

TRH (Total Recoverable Hydrocarbons) in Water [AN403] Tested: 14/3/2016

			QR1
			WATER -
			11/3/2016
PARAMETER	UOM	LOR	SE150039.012
TRH C10-C14	µg/L	50	<50
TRH C15-C28	μg/L	200	<200
TRH C29-C36	μg/L	200	<200
TRH C37-C40	μg/L	200	<200
TRH >C10-C16 (F2)	μg/L	60	<60
TRH >C16-C34 (F3)	μg/L	500	<500
TRH >C34-C40 (F4)	μg/L	500	<500
TRH C10-C36	μg/L	450	<450
TRH C10-C40	μg/L	650	<650

SE150039 R0

Trace Metals (Dissolved) in Water by ICPMS [AN318] Tested: 17/3/2016

			QR1
PARAMETER	UOM	LOR	WATER - 11/3/2016 SE150039.012
Arsenic, As	μg/L	1	<1
Cadmium, Cd	µg/L	0.1	<0.1
Chromium, Cr	µg/L	1	<1
Copper, Cu	µg/L	1	<1
Lead, Pb	µg/L	1	<1
Nickel, Ni	µg/L	1	<1
Zinc, Zn	µg/L	5	78

Mercury (dissolved) in Water [AN311/AN312] Tested: 17/3/2016

			QR1
			WATER
			-
			11/3/2016
PARAMETER	UOM	LOR	SE150039.012
Mercury	mg/L	0.0001	<0.0001

METHOD	METHODOLOGY SUMMARY
AN002	The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.
AN020	Unpreserved water sample is filtered through a 0.45µm membrane filter and acidified with nitric acid similar to APHA3030B.
AN040/AN320	A portion of sample is digested with nitric acid to decompose organic matter and hydrochloric acid to complete the digestion of metals. The digest is then analysed by ICP OES with metals results reported on the dried sample basis. Based on USEPA method 200.8 and 6010C.
AN040	A portion of sample is digested with Nitric acid to decompose organic matter and Hydrochloric acid to complete the digestion of metals and then filtered for analysis by ASS or ICP as per USEPA Method 200.8.
AN311/AN312	Mercury by Cold Vapour AAS in Waters: Mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500.
AN312	Mercury by Cold Vapour AAS in Soils: After digestion with nitric acid, hydrogen peroxide and hydrochloric acid, mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500
AN318	Determination of elements at trace level in waters by ICP-MS technique, in accordance with USEPA 6020A.
AN400	OC and OP Pesticides by GC-ECD: The determination of organochlorine (OC) and organophosphorus (OP) pesticides and polychlorinated biphenyls (PCBs) in soils, sludges and groundwater. (Based on USEPA methods 3510, 3550, 8140 and 8080.)
AN403	Total Recoverable Hydrocarbons: Determination of Hydrocarbons by gas chromatography after a solvent extraction. Detection is by flame ionisation detector (FID) that produces an electronic signal in proportion to the combustible matter passing through it. Total Recoverable Hydrocarbons (TRH) are routinely reported as four alkane groupings based on the carbon chain length of the compounds: C6-C9, C10-C14, C15-C28 and C29-C36 and in recognition of the NEPM 1999 (2013), >C10-C16 (F2), >C16-C34 (F3) and >C34-C40 (F4). F2 is reported directly and also corrected by subtracting Naphthalene (from VOC method AN433) where available.
AN403	Additionally, the volatile C6-C9 fraction may be determined by a purge and trap technique and GC/MS because of the potential for volatiles loss. Total Petroleum Hydrocarbons (TPH) follows the same method of analysis after silica gel cleanup of the solvent extract. Aliphatic/Aromatic Speciation follows the same method of analysis after fractionation of the solvent extract over silica with differential polarity of the eluent solvents.
AN403	The GC/FID method is not well suited to the analysis of refined high boiling point materials (ie lubricating oils or greases) but is particularly suited for measuring diesel, kerosene and petrol if care to control volatility is taken. This method will detect naturally occurring hydrocarbons, lipids, animal fats, phenols and PAHs if they are present at sufficient levels, dependent on the use of specific cleanup/fractionation techniques. Reference USEPA 3510B, 8015B.
AN420	(SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols (etc) in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN420	SVOC Compounds: Semi-Volatile Organic Compounds (SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN433/AN434/AN410	VOCs and C6-C9/C6-C10 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.
AN433/AN434	VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.
AN602	Qualitative identification of chrysotile, amosite and crocidolite in bulk samples by polarised light microscopy (PLM) in conjunction with dispersion staining (DS). AS4964 provides the basis for this document. Unequivocal identification of the asbestos minerals present is made by obtaining sufficient diagnostic `clues`, which provide a reasonable degree of certainty, dispersion staining is a mandatory `clue` for positive identification. If sufficient `clues` are absent, then positive identification of asbestos is not possible. This procedure requires removal of suspect fibres/bundles from the sample which cannot be returned.
AN602	Fibres/material that cannot be unequivocably identified as one of the three asbestos forms, will be reported as unknown mineral fibres (umf).

AN602	AS4964.2004 Method for the Qualitative Identification of Asbestos in Bulk Samples, Section 8.4, Trace Analysis Criteria, Note 4 states:"Depending upon sample condition and fibre type, the detection limit of this technique has been found to lie generally in the range of 1 in 1,000 to 1 in 10,000 parts by weight, equivalent to 1 to 0.1 g/kg."
AN602	The sample can be reported "no asbestos found at the reporting limit of 0.1 g/kg" (<0.01%w/w) where AN602 section 4.5 of this method has been followed, and if-
	 (a) no trace asbestos fibres have been detected (i.e. no 'respirable' fibres): (b) the estimated weight of non-respirable asbestos fibre bundles and/or the estimated weight of asbestos in asbestos-containing materials are found to be less than 0.1g/kg: and (c) these non-respirable asbestos fibre bundles and/or the asbestos containing materials are only visible under stereo-microscope viewing conditions.

FOOTNOTES -

*	NATA accreditation does not cover	-	Not analysed.	UOM	Unit of Measure.
	the performance of this service.	NVL	Not validated.	LOR	Limit of Reporting.
**	Indicative data, theoretical holding	IS	Insufficient sample for analysis.	¢↓	Raised/lowered Limit of
•	time exceeded.	LNR	Sample listed, but not received.		Reporting.

Samples analysed as received.

Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here : http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/en/terms-and-conditions. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full.

ANALYTICAL REPORT

CLIENT DETAILS		LABORATORY DE	TAILS	
Contact	Mariana Torres	Manager	Huong Crawford	
Client	Environmental Investigations	Laboratory	SGS Alexandria Environmental	
Address	Suite 6.01, 55 Miller Street NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015	
Telephone	02 9516 0722	Telephone	+61 2 8594 0400	
Facsimile	02 9516 0741	Facsimile	+61 2 8594 0499	
Email	mariana.torres@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com	
Project	E22913 Regent St & Trafalgar St	SGS Reference	SE150233 R0	
Order Number	E22913	Date Received	18/3/2016	
Samples	29	Date Reported	30/3/2016	

COMMENTS

Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562(4354).

No respirable fibres detected in all samples using trace analysis technique.

Asbestos analysed by Approved Identifier Yusuf Kuthpudin.

SIGNATORIES -

Ady Sith

Andy Sutton Senior Organic Chemist

Kinty

Ly Kim Ha Organic Section Head

Dong Liang Metals/Inorganics Team Leader

S. Ravender.

Ravee Sivasubramaniam Asbestos Analyst/Hygiene Team Leader

Kamrul Ahsan Senior Chemist

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

www.sgs.com.au

SE150233 R0

VOC's in Soil [AN433/AN434] Tested: 21/3/2016

			BH16 0.4-0.5	BH17 0.9-1.0	BH18 0.4-0.5	BH20 3.3-3.4	BH21 0.4-0.5
			SOIL	SOIL	SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	- 17/3/2016 SE150233.001	- 17/3/2016 SE150233.002	- 17/3/2016 SE150233.003	- 17/3/2016 SE150233.004	- 17/3/2016 SE150233.005
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes*	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Naphthalene	mg/kg	0.0	<0.1	<0.1	<0.1	<0.1	<0.1
Dichlorodifluoromethane (CFC-12)	mg/kg	1	-	<1		<1	
Chloromethane		1	-	<1	-	<1	-
	mg/kg						
Vinyl chloride (Chloroethene)	mg/kg	0.1	-	<0.1	-	<0.1	-
Bromomethane	mg/kg	1	-	<1	-	<1	-
Chloroethane	mg/kg	1	-	<1	-	<1	-
Trichlorofluoromethane	mg/kg	1	-	<1	-	<1	-
Acetone (2-propanone)	mg/kg	10	-	<10	-	<10	-
lodomethane	mg/kg	5	-	<5	-	<5	-
1,1-dichloroethene	mg/kg	0.1	-	<0.1	-	<0.1	-
Acrylonitrile	mg/kg	0.1	-	<0.1	-	<0.1	-
Dichloromethane (Methylene chloride)	mg/kg	0.5	-	<0.5	-	<0.5	-
Allyl chloride	mg/kg	0.1	-	<0.1	-	<0.1	-
Carbon disulfide	mg/kg	0.5	-	<0.5	-	<0.5	-
trans-1,2-dichloroethene	mg/kg	0.1	-	<0.1	-	<0.1	-
MtBE (Methyl-tert-butyl ether)	mg/kg	0.1	-	<0.1	-	<0.1	-
1,1-dichloroethane	mg/kg	0.1	-	<0.1	-	<0.1	-
Vinyl acetate	mg/kg	10	-	<10	-	<10	-
MEK (2-butanone)	mg/kg	10	-	<10	-	<10	-
cis-1,2-dichloroethene	mg/kg	0.1	-	<0.1	-	<0.1	-
Bromochloromethane	mg/kg	0.1	-	<0.1	-	<0.1	-
Chloroform	mg/kg	0.1	-	<0.1	-	<0.1	-
2,2-dichloropropane	mg/kg	0.1	-	<0.1	-	<0.1	-
1,2-dichloroethane	mg/kg	0.1	-	<0.1	-	<0.1	-
1,1,1-trichloroethane	mg/kg	0.1	-	<0.1	-	<0.1	-
1,1-dichloropropene	mg/kg	0.1	-	<0.1	-	<0.1	-
Carbon tetrachloride	mg/kg	0.1	-	<0.1	-	<0.1	-
Dibromomethane	mg/kg	0.1	-	<0.1	-	<0.1	-
1,2-dichloropropane	mg/kg	0.1	-	<0.1	_	<0.1	-
Trichloroethene (Trichloroethylene -TCE)	mg/kg	0.1		<0.1		<0.1	_
2-nitropropane	mg/kg	10		<10	-	<10	
Bromodichloromethane	mg/kg	0.1	-	<0.1	-	<0.1	-
MIBK (4-methyl-2-pentanone)	mg/kg	1	-	<1	-	<1	-
cis-1,3-dichloropropene	mg/kg	0.1	-	<0.1	-	<0.1	-
trans-1,3-dichloropropene		0.1	-	<0.1	-	<0.1	-
	mg/kg				-		-
1,1,2-trichloroethane	mg/kg	0.1	-	<0.1		<0.1	
1,3-dichloropropane	mg/kg	0.1	-	<0.1	-	<0.1	-
Chlorodibromomethane	mg/kg	0.1	-	<0.1	-	<0.1	-
2-hexanone (MBK)	mg/kg	5	-	<5	-	<5	-
1,2-dibromoethane (EDB)	mg/kg	0.1	-	<0.1	-	<0.1	-
Tetrachloroethene (Perchloroethylene,PCE)	mg/kg	0.1	-	<0.1	-	<0.1	-
1,1,1,2-tetrachloroethane	mg/kg	0.1	-	<0.1	-	<0.1	-
Chlorobenzene	mg/kg	0.1	-	<0.1	-	<0.1	-
Bromoform	mg/kg	0.1	-	<0.1	-	<0.1	-
cis-1,4-dichloro-2-butene	mg/kg	1	-	<1	-	<1	-
Styrene (Vinyl benzene)	mg/kg	0.1	-	<0.1	-	<0.1	-
1,1,2,2-tetrachloroethane	mg/kg	0.1	-	<0.1	-	<0.1	-
1,2,3-trichloropropane	mg/kg	0.1	-	<0.1	-	<0.1	-
trans-1,4-dichloro-2-butene	mg/kg	1	-	<1	-	<1	-

SE150233 R0

			BH16 0.4-0.5	BH17 0.9-1.0	BH18 0.4-0.5	BH20 3.3-3.4	BH21 0.4-0.5
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
			17/3/2016			17/3/2016	17/3/2016
PARAMETER	UOM	LOR	SE150233.001	SE150233.002	SE150233.003	SE150233.004	SE150233.005
Isopropylbenzene (Cumene)	mg/kg	0.1	-	<0.1	-	<0.1	-
Bromobenzene	mg/kg	0.1	-	<0.1	-	<0.1	-
n-propylbenzene	mg/kg	0.1	-	<0.1	-	<0.1	-
2-chlorotoluene	mg/kg	0.1	-	<0.1	-	<0.1	-
4-chlorotoluene	mg/kg	0.1	-	<0.1	-	<0.1	-
1,3,5-trimethylbenzene	mg/kg	0.1	-	<0.1	-	<0.1	-
tert-butylbenzene	mg/kg	0.1	-	<0.1	-	<0.1	-
1,2,4-trimethylbenzene	mg/kg	0.1	-	<0.1	-	<0.1	-
sec-butylbenzene	mg/kg	0.1	-	<0.1	-	<0.1	-
1,3-dichlorobenzene	mg/kg	0.1	-	<0.1	-	<0.1	-
1,4-dichlorobenzene	mg/kg	0.1	-	<0.1	-	<0.1	-
p-isopropyltoluene	mg/kg	0.1	-	<0.1	-	<0.1	-
1,2-dichlorobenzene	mg/kg	0.1	-	<0.1	-	<0.1	-
n-butylbenzene	mg/kg	0.1	-	<0.1	-	<0.1	-
1,2-dibromo-3-chloropropane	mg/kg	0.1	-	<0.1	-	<0.1	-
1,2,4-trichlorobenzene	mg/kg	0.1	-	<0.1	-	<0.1	-
Hexachlorobutadiene	mg/kg	0.1	-	<0.1	-	<0.1	-
1,2,3-trichlorobenzene	mg/kg	0.1	-	<0.1	-	<0.1	-
Total VOC*	mg/kg	24	-	-	-	-	-

SE150233 R0

			BH21 1.4-1.5	BH22 0.4-0.5	BH22 1.1-1.2	BH23 0.4-0.5	BH23 1.4-1.5
			SOIL	SOIL	SOIL	SOIL	SOIL
			17/3/2016			17/3/2016	17/3/2016
PARAMETER	UOM	LOR	SE150233.006	SE150233.007	SE150233.008	SE150233.009	SE150233.010
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes*	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dichlorodifluoromethane (CFC-12)	mg/kg	1	<1	-	<1	-	<1
Chloromethane	mg/kg	1	<1	-	<1	-	<1
Vinyl chloride (Chloroethene)	mg/kg	0.1	<0.1	-	<0.1	-	<0.1
Bromomethane	mg/kg	1	<1	-	<1	-	<1
Chloroethane	mg/kg	1	<1	-	<1	-	<1
Trichlorofluoromethane	mg/kg	1	<1	-	<1	-	<1
Acetone (2-propanone)	mg/kg	10	<10	-	<10	-	<10
Iodomethane	mg/kg	5	<5	-	<5	-	<5
1,1-dichloroethene	mg/kg	0.1	<0.1	-	<0.1	-	<0.1
Acrylonitrile	mg/kg	0.1	<0.1	-	<0.1	-	<0.1
Dichloromethane (Methylene chloride)	mg/kg	0.5	<0.5	-	<0.5	-	<0.5
Allyl chloride	mg/kg	0.1	<0.1	-	<0.1	-	<0.1
Carbon disulfide	mg/kg	0.5	<0.5	-	<0.5	-	<0.5
trans-1,2-dichloroethene	mg/kg	0.1	<0.1	-	<0.1	-	<0.1
MtBE (Methyl-tert-butyl ether)	mg/kg	0.1	<0.1	-	<0.1	-	<0.1
1,1-dichloroethane	mg/kg	0.1	<0.1	-	<0.1	-	<0.1
Vinyl acetate	mg/kg	10	<10	-	<10	-	<10
MEK (2-butanone)	mg/kg	10	<10	-	<10	-	<10
cis-1,2-dichloroethene	mg/kg	0.1	<0.1	-	<0.1	-	<0.1
Bromochloromethane	mg/kg	0.1	<0.1	-	<0.1	-	<0.1
Chloroform	mg/kg	0.1	<0.1	-	<0.1	-	<0.1
2,2-dichloropropane	mg/kg	0.1	<0.1	-	<0.1	-	<0.1
1,2-dichloroethane	mg/kg	0.1	<0.1	-	<0.1	-	<0.1
1,1,1-trichloroethane	mg/kg	0.1	<0.1	-	<0.1	-	<0.1
1,1-dichloropropene	mg/kg	0.1	<0.1	-	<0.1	-	<0.1
Carbon tetrachloride	mg/kg	0.1	<0.1	-	<0.1	-	<0.1
Dibromomethane	mg/kg	0.1	<0.1	-	<0.1	-	<0.1
1,2-dichloropropane	mg/kg	0.1	<0.1	-	<0.1	-	<0.1
Trichloroethene (Trichloroethylene -TCE)	mg/kg	0.1	<0.1	-	<0.1	-	<0.1
2-nitropropane	mg/kg	10	<10	-	<10	-	<10
Bromodichloromethane	mg/kg	0.1	<0.1	-	<0.1	-	<0.1
MIBK (4-methyl-2-pentanone)	mg/kg	1	<1	-	<1	-	<1
cis-1,3-dichloropropene	mg/kg	0.1	<0.1	-	<0.1	-	<0.1
trans-1,3-dichloropropene	mg/kg	0.1	<0.1	-	<0.1	-	<0.1
1,1,2-trichloroethane	mg/kg	0.1	<0.1	-	<0.1	-	<0.1
1,3-dichloropropane	mg/kg	0.1	<0.1	-	<0.1	-	<0.1
Chlorodibromomethane	mg/kg	0.1	<0.1	-	<0.1	-	<0.1
2-hexanone (MBK)	mg/kg	5	<5	-	<5	-	<5
1,2-dibromoethane (EDB)	mg/kg	0.1	<0.1	-	<0.1	-	<0.1
Tetrachloroethene (Perchloroethylene,PCE)	mg/kg	0.1	<0.1	-	<0.1	-	<0.1
1,1,1,2-tetrachloroethane	mg/kg	0.1	<0.1	-	<0.1	-	<0.1
Chlorobenzene	mg/kg	0.1	<0.1	-	<0.1	-	<0.1
Bromoform	mg/kg	0.1	<0.1	-	<0.1	-	<0.1
cis-1,4-dichloro-2-butene	mg/kg	1	<1	-	<1	-	<1
Styrene (Vinyl benzene)	mg/kg	0.1	<0.1	-	<0.1	-	<0.1
1,1,2,2-tetrachloroethane	mg/kg	0.1	<0.1	-	<0.1	-	<0.1
1,2,3-trichloropropane	mg/kg	0.1	<0.1	-	<0.1	-	<0.1
trans-1,4-dichloro-2-butene	mg/kg	1	<1	-	<1	-	<1

SE150233 R0

			BH21 1.4-1.5	BH22 0.4-0.5	BH22 1.1-1.2	BH23 0.4-0.5	BH23 1.4-1.5
			SOIL - 17/3/2016	SOIL - 17/3/2016	SOIL - 17/3/2016	SOIL - 17/3/2016	SOIL - 17/3/2016
PARAMETER	UOM	LOR	SE150233.006	SE150233.007	SE150233.008	SE150233.009	SE150233.010
Isopropylbenzene (Cumene)	mg/kg	0.1	<0.1	-	<0.1	-	<0.1
Bromobenzene	mg/kg	0.1	<0.1	-	<0.1	-	<0.1
n-propylbenzene	mg/kg	0.1	<0.1	-	<0.1	-	<0.1
2-chlorotoluene	mg/kg	0.1	<0.1	-	<0.1	-	<0.1
4-chlorotoluene	mg/kg	0.1	<0.1	-	<0.1	-	<0.1
1,3,5-trimethylbenzene	mg/kg	0.1	<0.1	-	<0.1	-	<0.1
tert-butylbenzene	mg/kg	0.1	<0.1	-	<0.1	-	<0.1
1,2,4-trimethylbenzene	mg/kg	0.1	<0.1	-	<0.1	-	<0.1
sec-butylbenzene	mg/kg	0.1	<0.1	-	<0.1	-	<0.1
1,3-dichlorobenzene	mg/kg	0.1	<0.1	-	<0.1	-	<0.1
1,4-dichlorobenzene	mg/kg	0.1	<0.1	-	<0.1	-	<0.1
p-isopropyltoluene	mg/kg	0.1	<0.1	-	<0.1	-	<0.1
1,2-dichlorobenzene	mg/kg	0.1	<0.1	-	<0.1	-	<0.1
n-butylbenzene	mg/kg	0.1	<0.1	-	<0.1	-	<0.1
1,2-dibromo-3-chloropropane	mg/kg	0.1	<0.1	-	<0.1	-	<0.1
1,2,4-trichlorobenzene	mg/kg	0.1	<0.1	-	<0.1	-	<0.1
Hexachlorobutadiene	mg/kg	0.1	<0.1	-	<0.1	-	<0.1
1,2,3-trichlorobenzene	mg/kg	0.1	<0.1	-	<0.1	-	<0.1
Total VOC*	mg/kg	24	-	-	-	-	-

SE150233 R0

			BH24 0.4-0.5	BH24 2.4-2.5	BH25 0.3-0.4	BH27 2.3-2.4	QD2
			BH24 0.4-0.5	BH24 2.4-2.3	BH20 0.0-0.4	DI127 2.3-2.4	QDZ
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 17/3/2016			- 17/3/2016	- 17/3/2016
PARAMETER	UOM	LOR	SE150233.011	SE150233.012	SE150233.013	SE150233.014	SE150233.027
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes*	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX Naphthalene	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	<0.6
	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	-0.1
Dichlorodifluoromethane (CFC-12) Chloromethane	mg/kg	1 1	-	<1	-	<1	-
	mg/kg	0.1	-	<0.1	-	<0.1	-
Vinyl chloride (Chloroethene) Bromomethane	mg/kg mg/kg	1	-	<1	-	<1	-
Chloroethane	mg/kg	1		<1		<1	-
Trichlorofluoromethane	mg/kg	1		<1		<1	-
Acetone (2-propanone)	mg/kg	10	-	<10	-	<10	-
Iodomethane	mg/kg	5		<5		<5	-
1,1-dichloroethene	mg/kg	0.1	-	<0.1	-	<0.1	-
Acrylonitrile	mg/kg	0.1	-	<0.1	-	<0.1	-
Dichloromethane (Methylene chloride)	mg/kg	0.5	-	<0.5	-	<0.5	-
Allyl chloride	mg/kg	0.1	-	<0.1	-	<0.1	-
Carbon disulfide	mg/kg	0.5	-	<0.5	-	<0.5	-
trans-1,2-dichloroethene	mg/kg	0.1	-	<0.1	-	<0.1	-
MtBE (Methyl-tert-butyl ether)	mg/kg	0.1	-	<0.1	-	<0.1	-
1,1-dichloroethane	mg/kg	0.1	-	<0.1	-	<0.1	-
Vinyl acetate	mg/kg	10	-	<10	-	<10	-
MEK (2-butanone)	mg/kg	10	-	<10	-	<10	-
cis-1,2-dichloroethene	mg/kg	0.1	-	<0.1	-	<0.1	-
Bromochloromethane	mg/kg	0.1	-	<0.1	-	<0.1	-
Chloroform	mg/kg	0.1	-	<0.1	-	<0.1	-
2,2-dichloropropane	mg/kg	0.1	-	<0.1	-	<0.1	-
1,2-dichloroethane	mg/kg	0.1	-	<0.1	-	<0.1	-
1,1,1-trichloroethane	mg/kg	0.1	-	<0.1	-	<0.1	-
1,1-dichloropropene	mg/kg	0.1	-	<0.1	-	<0.1	-
Carbon tetrachloride	mg/kg	0.1	-	<0.1	-	<0.1	-
Dibromomethane	mg/kg	0.1	-	<0.1	-	<0.1	-
1,2-dichloropropane	mg/kg	0.1	-	<0.1	-	<0.1	-
Trichloroethene (Trichloroethylene -TCE)	mg/kg	0.1	-	<0.1	-	<0.1	-
2-nitropropane	mg/kg	10	-	<10	-	<10	-
Bromodichloromethane	mg/kg	0.1	-	<0.1	-	<0.1	-
MIBK (4-methyl-2-pentanone)	mg/kg	1	-	<1	-	<1	-
cis-1,3-dichloropropene	mg/kg	0.1	-	<0.1	-	<0.1	-
trans-1,3-dichloropropene	mg/kg	0.1	-	<0.1	-	<0.1	-
1,1,2-trichloroethane	mg/kg	0.1	-	<0.1	-	<0.1	-
1,3-dichloropropane	mg/kg	0.1	-	<0.1	-	<0.1	-
Chlorodibromomethane	mg/kg	0.1		<0.1		<0.1	
2-hexanone (MBK)	mg/kg	0.1	-	<5	-	<5	-
1,2-dibromoethane (EDB) Tetrachloroethene (Perchloroethylene,PCE)	mg/kg mg/kg	0.1	-	<0.1	-	<0.1	-
1,1,1,2-tetrachloroethane	mg/kg	0.1	-	<0.1	-	<0.1	-
Chlorobenzene	mg/kg	0.1	-	<0.1	-	<0.1	-
Bromoform	mg/kg	0.1	-	<0.1	-	<0.1	-
cis-1,4-dichloro-2-butene	mg/kg	1	-	<1	-	<1	-
Styrene (Vinyl benzene)	mg/kg	0.1	-	<0.1	-	<0.1	-
1,1,2,2-tetrachloroethane	mg/kg	0.1	-	<0.1	-	<0.1	-
1,2,3-trichloropropane	mg/kg	0.1		<0.1	_	<0.1	-
trans-1,4-dichloro-2-butene	mg/kg	1		<1		<1	-
	39						

			BH24 0.4-0.5	BH24 2.4-2.5	BH25 0.3-0.4	BH27 2.3-2.4	QD2
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 5012	501L	501L	- 50IL	- 5012
			17/3/2016	17/3/2016	17/3/2016	17/3/2016	17/3/2016
PARAMETER	UOM	LOR	SE150233.011	SE150233.012	SE150233.013	SE150233.014	SE150233.027
Isopropylbenzene (Cumene)	mg/kg	0.1	-	<0.1	-	<0.1	-
Bromobenzene	mg/kg	0.1	-	<0.1	-	<0.1	-
n-propylbenzene	mg/kg	0.1	-	<0.1	-	<0.1	-
2-chlorotoluene	mg/kg	0.1	-	<0.1	-	<0.1	-
4-chlorotoluene	mg/kg	0.1	-	<0.1	-	<0.1	-
1,3,5-trimethylbenzene	mg/kg	0.1	-	<0.1	-	<0.1	-
tert-butylbenzene	mg/kg	0.1	-	<0.1	-	<0.1	-
1,2,4-trimethylbenzene	mg/kg	0.1	-	<0.1	-	<0.1	-
sec-butylbenzene	mg/kg	0.1	-	<0.1	-	<0.1	-
1,3-dichlorobenzene	mg/kg	0.1	-	<0.1	-	<0.1	-
1,4-dichlorobenzene	mg/kg	0.1	-	<0.1	-	<0.1	-
p-isopropyltoluene	mg/kg	0.1	-	<0.1	-	<0.1	-
1,2-dichlorobenzene	mg/kg	0.1	-	<0.1	-	<0.1	-
n-butylbenzene	mg/kg	0.1	-	<0.1	-	<0.1	-
1,2-dibromo-3-chloropropane	mg/kg	0.1	-	<0.1	-	<0.1	-
1,2,4-trichlorobenzene	mg/kg	0.1	-	<0.1	-	<0.1	-
Hexachlorobutadiene	mg/kg	0.1	-	<0.1	-	<0.1	-
1,2,3-trichlorobenzene	mg/kg	0.1	-	<0.1	-	<0.1	-
Total VOC*	mg/kg	24	-	-	-	-	-

SE150233 R0

			QD3	QTB1
			00"	00"
			SOIL -	SOIL -
			17/3/2016	
PARAMETER	UOM	LOR	SE150233.028	SE150233.029
Benzene	mg/kg	0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1
Total Xylenes*	mg/kg	0.3	<0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6	<0.6
Naphthalene	mg/kg	0.1	<0.1	<0.1
Dichlorodifluoromethane (CFC-12)	mg/kg	1	-	-
Chloromethane	mg/kg	1	-	-
Vinyl chloride (Chloroethene)	mg/kg	0.1	-	-
Bromomethane	mg/kg	1	-	-
Chloroethane	mg/kg	1	-	-
Trichlorofluoromethane	mg/kg	1	-	-
Acetone (2-propanone)	mg/kg	10	-	-
lodomethane	mg/kg	5	-	-
1,1-dichloroethene	mg/kg	0.1	-	-
Acrylonitrile	mg/kg	0.1	-	-
Dichloromethane (Methylene chloride)	mg/kg	0.5	-	-
Allyl chloride	mg/kg	0.1	-	-
Carbon disulfide	mg/kg	0.5	-	-
trans-1,2-dichloroethene	mg/kg	0.1	-	-
MtBE (Methyl-tert-butyl ether)	mg/kg	0.1	-	-
1,1-dichloroethane	mg/kg	0.1	-	-
Vinyl acetate	mg/kg	10	-	-
MEK (2-butanone)	mg/kg	10	-	-
cis-1,2-dichloroethene	mg/kg	0.1	-	-
Bromochloromethane	mg/kg	0.1	-	-
Chloroform	mg/kg	0.1	-	-
2,2-dichloropropane	mg/kg	0.1	-	-
1,2-dichloroethane	mg/kg	0.1	-	-
1,1,1-trichloroethane	mg/kg	0.1	-	-
1,1-dichloropropene	mg/kg	0.1	-	-
Carbon tetrachloride	mg/kg	0.1	-	-
Dibromomethane	mg/kg	0.1	-	-
1,2-dichloropropane	mg/kg	0.1	-	-
Trichloroethene (Trichloroethylene -TCE)	mg/kg	0.1	-	_
2-nitropropane	mg/kg	10	-	-
Bromodichloromethane	mg/kg	0.1	_	_
MIBK (4-methyl-2-pentanone)	mg/kg	1	-	_
cis-1,3-dichloropropene	mg/kg	0.1	-	_
trans-1,3-dichloropropene	mg/kg	0.1	_	
1,1,2-trichloroethane	mg/kg	0.1		-
1,3-dichloropropane	mg/kg	0.1	-	
Chlorodibromomethane	mg/kg	0.1		-
2-hexanone (MBK)	mg/kg	5	-	-
1,2-dibromoethane (EDB)	mg/kg	0.1		
Tetrachloroethene (Perchloroethylene,PCE)	mg/kg	0.1	-	-
		0.1		-
1,1,1,2-tetrachloroethane Chlorobenzene	mg/kg	0.1	-	-
	mg/kg			
Bromoform	mg/kg	0.1	-	-
cis-1,4-dichloro-2-butene	mg/kg	1	-	-
Styrene (Vinyl benzene)	mg/kg	0.1	-	-
1,1,2,2-tetrachloroethane	mg/kg	0.1	-	-
1,2,3-trichloropropane	mg/kg	0.1	-	-
trans-1,4-dichloro-2-butene	mg/kg	1	-	_

SE150233 R0

			QD3	QTB1
			SOIL	SOIL
			17/3/2016	17/3/2016
PARAMETER	UOM	LOR	SE150233.028	SE150233.029
Isopropylbenzene (Cumene)	mg/kg	0.1	-	-
Bromobenzene	mg/kg	0.1	-	-
n-propylbenzene	mg/kg	0.1	-	-
2-chlorotoluene	mg/kg	0.1	-	-
4-chlorotoluene	mg/kg	0.1	-	-
1,3,5-trimethylbenzene	mg/kg	0.1	-	-
tert-butylbenzene	mg/kg	0.1	-	-
1,2,4-trimethylbenzene	mg/kg	0.1	-	-
sec-butylbenzene	mg/kg	0.1	-	-
1,3-dichlorobenzene	mg/kg	0.1	-	-
1,4-dichlorobenzene	mg/kg	0.1	-	-
p-isopropyltoluene	mg/kg	0.1	-	-
1,2-dichlorobenzene	mg/kg	0.1	-	-
n-butylbenzene	mg/kg	0.1	-	-
1,2-dibromo-3-chloropropane	mg/kg	0.1	-	-
1,2,4-trichlorobenzene	mg/kg	0.1	-	-
Hexachlorobutadiene	mg/kg	0.1	-	-
1,2,3-trichlorobenzene	mg/kg	0.1	-	-
Total VOC*	mg/kg	24	-	-

Volatile Petroleum Hydrocarbons in Soil [AN433/AN434/AN410] Tested: 21/3/2016

			BH16 0.4-0.5	BH17 0.9-1.0	BH18 0.4-0.5	BH20 3.3-3.4	BH21 0.4-0.5
			SOIL	SOIL	SOIL	SOIL	SOIL
			17/3/2016	17/3/2016	17/3/2016	17/3/2016	17/3/2016
PARAMETER	UOM	LOR	SE150233.001	SE150233.002	SE150233.003	SE150233.004	SE150233.005
TRH C6-C9	mg/kg	20	<20	<20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25	<25

			BH21 1.4-1.5	BH22 0.4-0.5	BH22 1.1-1.2	BH23 0.4-0.5	BH23 1.4-1.5
			SOIL	SOIL	SOIL	SOIL	SOIL
			17/3/2016	17/3/2016	17/3/2016	17/3/2016	17/3/2016
PARAMETER	UOM	LOR	SE150233.006	SE150233.007	SE150233.008	SE150233.009	SE150233.010
TRH C6-C9	mg/kg	20	<20	<20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25	<25

			BH24 0.4-0.5	BH24 2.4-2.5	BH25 0.3-0.4	BH27 2.3-2.4	QD2
			SOIL	SOIL	SOIL	SOIL	SOIL
			17/3/2016	17/3/2016	17/3/2016	17/3/2016	17/3/2016
PARAMETER	UOM	LOR	SE150233.011	SE150233.012	SE150233.013	SE150233.014	SE150233.027
TRH C6-C9	mg/kg	20	<20	<20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25	<25

			QD3
			SOIL
			- 17/3/2016
PARAMETER	UOM	LOR	SE150233.028
TRH C6-C9	mg/kg	20	<20
Benzene (F0)	mg/kg	0.1	<0.1
TRH C6-C10	mg/kg	25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25

SE150233 R0

TRH (Total Recoverable Hydrocarbons) in Soil [AN403] Tested: 21/3/2016

			BH16 0.4-0.5	BH17 0.9-1.0	BH18 0.4-0.5	BH20 3.3-3.4	BH21 0.4-0.5
			SOIL - 17/3/2016	SOIL - 17/3/2016	SOIL - 17/3/2016	SOIL - 17/3/2016	SOIL - 17/3/2016
PARAMETER	UOM	LOR	SE150233.001	SE150233.002	SE150233.003	SE150233.004	SE150233.005
TRH C10-C14	mg/kg	20	<20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	<45	<45	<45	<45	<45
TRH C29-C36	mg/kg	45	<45	<45	<45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100	<100	<100	<100
TRH >C10-C16 (F2)	mg/kg	25	<25	<25	<25	<25	<25
TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	<25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	<90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	<110	<110	<110
TRH C10-C40 Total	mg/kg	210	<210	<210	<210	<210	<210

			BH21 1.4-1.5	BH22 0.4-0.5	BH22 1.1-1.2	BH23 0.4-0.5	BH23 1.4-1.5
			SOIL	SOIL	SOIL	SOIL	SOIL
			17/3/2016			17/3/2016	17/3/2016
PARAMETER	UOM	LOR	SE150233.006	SE150233.007	SE150233.008	SE150233.009	SE150233.010
TRH C10-C14	mg/kg	20	<20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	<45	<45	<45	190	<45
TRH C29-C36	mg/kg	45	<45	<45	<45	80	<45
TRH C37-C40	mg/kg	100	<100	<100	<100	<100	<100
TRH >C10-C16 (F2)	mg/kg	25	<25	<25	<25	<25	<25
TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	<25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	<90	250	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	<110	270	<110
TRH C10-C40 Total	mg/kg	210	<210	<210	<210	270	<210

			BH24 0.4-0.5	BH24 2.4-2.5	BH25 0.3-0.4	BH27 2.3-2.4	QD2
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
			17/3/2016	17/3/2016	17/3/2016	17/3/2016	17/3/2016
PARAMETER	UOM	LOR	SE150233.011	SE150233.012	SE150233.013	SE150233.014	SE150233.027
TRH C10-C14	mg/kg	20	<20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	<45	<45	<45	<45	<45
TRH C29-C36	mg/kg	45	<45	<45	<45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100	<100	<100	<100
TRH >C10-C16 (F2)	mg/kg	25	<25	<25	<25	<25	<25
TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	<25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	<90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	<110	<110	<110
TRH C10-C40 Total	mg/kg	210	<210	<210	<210	<210	<210

TRH (Total Recoverable Hydrocarbons) in Soil [AN403] Tested: 21/3/2016 (continued)

			QD3
			SOIL
			17/3/2016
PARAMETER	UOM	LOR	SE150233.028
TRH C10-C14	mg/kg	20	<20
TRH C15-C28	mg/kg	45	<45
TRH C29-C36	mg/kg	45	<45
TRH C37-C40	mg/kg	100	<100
TRH >C10-C16 (F2)	mg/kg	25	<25
TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120
TRH C10-C36 Total	mg/kg	110	<110
TRH C10-C40 Total	mg/kg	210	<210

SE150233 R0

PAH (Polynuclear Aromatic Hydrocarbons) in Soil [AN420] Tested: 22/3/2016

			BH16 0.4-0.5	BH17 0.9-1.0	BH18 0.4-0.5	BH20 3.3-3.4	BH21 0.4-0.5
			SOIL	SOIL	SOIL	SOIL	SOIL
			17/3/2016			17/3/2016	17/3/2016
PARAMETER	UOM	LOR	SE150233.001	SE150233.002	SE150233.003	SE150233.004	SE150233.005
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	0.7
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	0.2
Fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	1.8
Pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	2.3
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	0.9
Chrysene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	0.9
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	0.8
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	0.5
Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	0.9
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	0.4
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	0.4
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td>1.3</td></lor=0<>	TEQ	0.2	<0.2	<0.2	<0.2	<0.2	1.3
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td>1.3</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	<0.3	<0.3	<0.3	1.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td>1.3</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2	1.3
Total PAH (18)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8	9.8

			BH21 1.4-1.5	BH22 0.4-0.5	BH22 1.1-1.2	BH23 0.4-0.5	BH23 1.4-1.5
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 17/3/2016	- 17/3/2016	- 17/3/2016	- 17/3/2016	- 17/3/2016
PARAMETER	UOM	LOR	SE150233.006	SE150233.007	SE150233.008	SE150233.009	SE150233.010
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	0.3	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	0.2	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	0.3	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1	1.7	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	0.3	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	1.7	<0.1
Phenanthrene	mg/kg	0.1	0.4	0.6	<0.1	14	<0.1
Anthracene	mg/kg	0.1	0.2	0.2	<0.1	2.8	<0.1
Fluoranthene	mg/kg	0.1	0.7	1.3	<0.1	24	<0.1
Pyrene	mg/kg	0.1	0.8	1.7	<0.1	26	<0.1
Benzo(a)anthracene	mg/kg	0.1	0.3	0.6	<0.1	8.8	<0.1
Chrysene	mg/kg	0.1	0.3	0.5	<0.1	7.2	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	0.3	0.5	<0.1	7.9	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	0.1	0.4	<0.1	4.7	<0.1
Benzo(a)pyrene	mg/kg	0.1	0.2	0.5	<0.1	8.3	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	0.3	<0.1	4.5	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	1.0	<0.1
Benzo(ghi)perylene	mg/kg	0.1	0.1	0.3	<0.1	4.2	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ</td><td>0.2</td><td>0.3</td><td>0.7</td><td><0.2</td><td>12</td><td><0.2</td></lor=0<>	TEQ	0.2	0.3	0.7	<0.2	12	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>0.4</td><td>0.8</td><td><0.3</td><td>12</td><td><0.3</td></lor=lor<>	TEQ (mg/kg)	0.3	0.4	0.8	<0.3	12	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>0.3</td><td>0.8</td><td><0.2</td><td>12</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	0.3	0.8	<0.2	12	<0.2
Total PAH (18)	mg/kg	0.8	3.4	6.8	<0.8	120	<0.8

PAH (Polynuclear Aromatic Hydrocarbons) in Soil [AN420] Tested: 22/3/2016 (continued)

			BH24 0.4-0.5	BH24 2.4-2.5	BH25 0.3-0.4	BH27 2.3-2.4
				00"		
			SOIL	SOIL	SOIL	SOIL
			17/3/2016	17/3/2016	17/3/2016	17/3/2016
PARAMETER	UOM	LOR	SE150233.011	SE150233.012	SE150233.013	SE150233.014
Naphthalene	mg/kg	0.1	<0.1	<0.1	0.2	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	0.1	<0.1	0.4	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	0.7	<0.1	2.2	<0.1
Anthracene	mg/kg	0.1	0.3	<0.1	0.6	<0.1
Fluoranthene	mg/kg	0.1	1.7	<0.1	4.6	<0.1
Pyrene	mg/kg	0.1	2.7	<0.1	5.5	<0.1
Benzo(a)anthracene	mg/kg	0.1	0.8	<0.1	2.5	<0.1
Chrysene	mg/kg	0.1	0.8	<0.1	2.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	0.8	<0.1	2.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	0.5	<0.1	1.6	<0.1
Benzo(a)pyrene	mg/kg	0.1	0.9	<0.1	2.4	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	0.4	<0.1	1.3	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	0.1	<0.1	0.3	<0.1
Benzo(ghi)perylene	mg/kg	0.1	0.5	<0.1	1.3	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ</td><td>0.2</td><td>1.3</td><td><0.2</td><td>3.5</td><td><0.2</td></lor=0<>	TEQ	0.2	1.3	<0.2	3.5	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>1.3</td><td><0.3</td><td>3.5</td><td><0.3</td></lor=lor<>	TEQ (mg/kg)	0.3	1.3	<0.3	3.5	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>1.3</td><td><0.2</td><td>3.5</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	1.3	<0.2	3.5	<0.2
Total PAH (18)	mg/kg	0.8	10	<0.8	27	<0.8

OC Pesticides in Soil [AN400/AN420] Tested: 22/3/2016

			BH16 0.4-0.5	BH18 0.4-0.5	BH21 0.4-0.5	BH22 0.4-0.5	BH23 0.4-0.5
			SOIL	SOIL	SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	17/3/2016 SE150233.001	17/3/2016 SE150233.003	17/3/2016 SE150233.005	17/3/2016 SE150233.007	17/3/2016 SE150233.009
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Lindane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	0.5
Beta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	0.4
Endrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Ketone	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Isodrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1

SE150233 R0

OC Pesticides in Soil [AN400/AN420] Tested: 22/3/2016 (continued)

			BH24 0.4-0.5	BH25 0.3-0.4
			SOIL	SOIL
			- 17/3/2016	- 17/3/2016
PARAMETER	UOM	LOR	SE150233.011	SE150233.013
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1	<0.1
Lindane	mg/kg	0.1	<0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1	<0.1
Aldrin	mg/kg	0.1	<0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1
o,p'-DDE	mg/kg	0.1	<0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1	<0.1
Dieldrin	mg/kg	0.2	<0.2	<0.2
Endrin	mg/kg	0.2	<0.2	<0.2
o,p'-DDD	mg/kg	0.1	<0.1	<0.1
o,p'-DDT	mg/kg	0.1	<0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1	<0.1
Endrin Ketone	mg/kg	0.1	<0.1	<0.1
Isodrin	mg/kg	0.1	<0.1	<0.1
Mirex	mg/kg	0.1	<0.1	<0.1

OP Pesticides in Soil [AN400/AN420] Tested: 22/3/2016

			BH16 0.4-0.5	BH18 0.4-0.5	BH21 0.4-0.5	BH22 0.4-0.5	BH23 0.4-0.5
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 17/3/2016	- 17/3/2016	- 17/3/2016	- 17/3/2016	- 17/3/2016
PARAMETER	UOM	LOR	SE150233.001	SE150233.003	SE150233.005	SE150233.007	SE150233.009
Dichlorvos	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dimethoate	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Fenitrothion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Malathion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Methidathion	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ethion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2

			BH24 0.4-0.5	BH25 0.3-0.4
			SOIL	SOIL
			- 17/3/2016	- 17/3/2016
PARAMETER	UOM	LOR	SE150233.011	SE150233.013
Dichlorvos	mg/kg	0.5	<0.5	<0.5
Dimethoate	mg/kg	0.5	<0.5	<0.5
Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5
Fenitrothion	mg/kg	0.2	<0.2	<0.2
Malathion	mg/kg	0.2	<0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2
Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2
Methidathion	mg/kg	0.5	<0.5	<0.5
Ethion	mg/kg	0.2	<0.2	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2

SE150233 R0

PCBs in Soil [AN400/AN420] Tested: 22/3/2016

			BH16 0.4-0.5	BH18 0.4-0.5	BH21 0.4-0.5	BH22 0.4-0.5	BH23 0.4-0.5
			SOIL	SOIL	SOIL	SOIL	SOIL
			17/3/2016	17/3/2016	17/3/2016	17/3/2016	17/3/2016
PARAMETER	UOM	LOR	SE150233.001	SE150233.003	SE150233.005	SE150233.007	SE150233.009
Arochlor 1016	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1221	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1232	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1242	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1248	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1254	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1260	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1262	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1268	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PCBs (Arochlors)	mg/kg	1	<1	<1	<1	<1	<1

			BH24 0.4-0.5	BH25 0.3-0.4
			SOIL	SOIL
			- 17/3/2016	- 17/3/2016
PARAMETER	UOM	LOR	SE150233.011	SE150233.013
Arochlor 1016		0.2	<0.2	
Alochiol 1016	mg/kg	0.2	<0.Z	0.7
Arochlor 1221	mg/kg	0.2	<0.2	<0.2
Arochlor 1232	mg/kg	0.2	<0.2	<0.2
Arochlor 1242	mg/kg	0.2	<0.2	<0.2
Arochlor 1248	mg/kg	0.2	<0.2	<0.2
Arochlor 1254	mg/kg	0.2	<0.2	<0.2
Arochlor 1260	mg/kg	0.2	<0.2	<0.2
Arochlor 1262	mg/kg	0.2	<0.2	<0.2
Arochlor 1268	mg/kg	0.2	<0.2	<0.2
Total PCBs (Arochlors)	mg/kg	1	<1	<1

SE150233 R0

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES [AN040/AN320] Tested: 23/3/2016

			BH16 0.4-0.5	BH17 0.9-1.0	BH18 0.4-0.5	BH20 3.3-3.4	BH21 0.4-0.5
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
			17/3/2016			17/3/2016	17/3/2016
PARAMETER	UOM	LOR	SE150233.001	SE150233.002	SE150233.003	SE150233.004	SE150233.005
Arsenic, As	mg/kg	3	<3	<3	4	<3	<3
Cadmium, Cd	mg/kg	0.3	0.4	0.3	<0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.3	4.8	5.1	2.1	1.3	4.2
Copper, Cu	mg/kg	0.5	58	25	19	9.8	24
Lead, Pb	mg/kg	1	16	21	7	11	44
Nickel, Ni	mg/kg	0.5	0.5	2.6	<0.5	<0.5	5.4
Zinc, Zn	mg/kg	0.5	7.8	12	3.5	2.3	35

			BH21 1.4-1.5	BH22 0.4-0.5	BH22 1.1-1.2	BH23 0.4-0.5	BH23 1.4-1.5
			SOIL	SOIL	SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	17/3/2016 SE150233.006	17/3/2016 SE150233.007	17/3/2016 SE150233.008	17/3/2016 SE150233.009	17/3/2016 SE150233.010
Arsenic, As	mg/kg	3	7	<3	10	5	3
Cadmium, Cd	mg/kg	0.3	0.7	<0.3	0.9	0.5	1.1
Chromium, Cr	mg/kg	0.3	22	0.7	23	13	18
Copper, Cu	mg/kg	0.5	16	0.7	16	21	38
Lead, Pb	mg/kg	1	30	1	27	150	32
Nickel, Ni	mg/kg	0.5	4.4	<0.5	2.4	3.6	0.6
Zinc, Zn	mg/kg	0.5	29	<0.5	12	84	12

			BH24 0.4-0.5	BH24 2.4-2.5	BH25 0.3-0.4	BH27 2.3-2.4	QD2
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
PARAMETER	UOM	LOR	17/3/2016 SE150233.011	17/3/2016 SE150233.012	17/3/2016 SE150233.013	17/3/2016 SE150233.014	17/3/2016 SE150233.027
Arsenic, As	mg/kg	3	8	5	4	18	5
Cadmium, Cd	mg/kg	0.3	0.6	0.3	0.4	<0.3	<0.3
Chromium, Cr	mg/kg	0.3	15	13	17	4.6	2.4
Copper, Cu	mg/kg	0.5	27	18	20	13	10
Lead, Pb	mg/kg	1	130	23	150	16	20
Nickel, Ni	mg/kg	0.5	7.9	1.3	12	0.6	<0.5
Zinc, Zn	mg/kg	0.5	220	15	120	5.7	2.3

			QD3
			SOIL
			- 17/3/2016
PARAMETER	UOM	LOR	SE150233.028
Arsenic, As	mg/kg	3	4
Cadmium, Cd	mg/kg	0.3	0.4
Chromium, Cr	mg/kg	0.3	16
Copper, Cu	mg/kg	0.5	22
Lead, Pb	mg/kg	1	200
Nickel, Ni	mg/kg	0.5	12
Zinc, Zn	mg/kg	0.5	170

Mercury in Soil [AN312] Tested: 23/3/2016

			BH16 0.4-0.5	BH17 0.9-1.0	BH18 0.4-0.5	BH20 3.3-3.4	BH21 0.4-0.5
			SOIL	SOIL	SOIL	SOIL	SOIL
			17/3/2016			17/3/2016	17/3/2016
PARAMETER	UOM	LOR	SE150233.001	SE150233.002	SE150233.003	SE150233.004	SE150233.005
Mercury	mg/kg	0.01	0.01	0.03	<0.01	<0.01	0.18

			BH21 1.4-1.5	BH22 0.4-0.5	BH22 1.1-1.2	BH23 0.4-0.5	BH23 1.4-1.5
			SOIL	SOIL	SOIL	SOIL	SOIL
			17/3/2016			17/3/2016	17/3/2016
PARAMETER	UOM	LOR	SE150233.006	SE150233.007	SE150233.008	SE150233.009	SE150233.010
Mercury	mg/kg	0.01	0.02	0.06	<0.01	0.10	<0.01

			BH24 0.4-0.5	BH24 2.4-2.5	BH25 0.3-0.4	BH27 2.3-2.4	QD2
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			17/3/2016			17/3/2016	17/3/2016
PARAMETER	UOM	LOR	SE150233.011	SE150233.012	SE150233.013	SE150233.014	SE150233.027
Mercury	mg/kg	0.01	0.08	<0.01	0.19	<0.01	<0.01

			QD3
			SOIL
			-
			17/3/2016
PARAMETER	UOM	LOR	SE150233.028
Mercury	mg/kg	0.01	0.13

Moisture Content [AN002] Tested: 21/3/2016

			BH16 0.4-0.5	BH17 0.9-1.0	BH18 0.4-0.5	BH20 3.3-3.4	BH21 0.4-0.5
			SOIL	SOIL	SOIL	SOIL	SOIL
			17/3/2016			17/3/2016	17/3/2016
PARAMETER	UOM	LOR	SE150233.001	SE150233.002	SE150233.003	SE150233.004	SE150233.005
% Moisture	%w/w	0.5	19	19	13	18	22

			BH21 1.4-1.5	BH22 0.4-0.5	BH22 1.1-1.2	BH23 0.4-0.5	BH23 1.4-1.5
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			17/3/2016			17/3/2016	17/3/2016
PARAMETER	UOM	LOR	SE150233.006	SE150233.007	SE150233.008	SE150233.009	SE150233.010
% Moisture	%w/w	0.5	28	26	24	24	18

			BH24 0.4-0.5	BH24 2.4-2.5	BH25 0.3-0.4	BH27 2.3-2.4	QD2
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			17/3/2016			17/3/2016	17/3/2016
PARAMETER	UOM	LOR	SE150233.011	SE150233.012	SE150233.013	SE150233.014	SE150233.027
% Moisture	%w/w	0.5	16	22	10	10	13

			QD3	QTB1
			SOIL	SOIL
			17/3/2016	
PARAMETER	UOM	LOR	SE150233.028	SE150233.029
% Moisture	%w/w	0.5	8.6	<0.5

Fibre Identification in soil [AN602] Tested: 23/3/2016

			BH16 0.4-0.5_ZLB	BH17 0.5-0.6_ZLB	BH18 0.4-0.5_ZLB	BH19 0.4-0.5_ZLB	BH20 0.4-0.5_ZLB
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			17/3/2016			17/3/2016	17/3/2016
PARAMETER	UOM	LOR	SE150233.015	SE150233.016	SE150233.017	SE150233.018	SE150233.019
Asbestos Detected	No unit	-	No	No	No	No	No
Estimated Fibres*	%w/w	0.01	<0.01	<0.01	<0.01	<0.01	<0.01

			BH21 0.4-0.5_ZLB	BH22 0.4-0.5_ZLB	BH23 0.4-0.5_ZLB	BH24 0.4-0.5_ZLB	BH25 0.3-0.4_ZLB
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			17/3/2016	17/3/2016	17/3/2016	17/3/2016	17/3/2016
PARAMETER	UOM	LOR	SE150233.020	SE150233.021	SE150233.022	SE150233.023	SE150233.024
Asbestos Detected	No unit	-	No	No	No	No	No
Estimated Fibres*	%w/w	0.01	<0.01	<0.01	<0.01	<0.01	<0.01

			BH26 0.4-0.5_ZLB	BH27 0.2-0.3_ZLB
			SOIL	SOIL
				-
			17/3/2016	17/3/2016
PARAMETER	UOM	LOR	SE150233.025	SE150233.026
Asbestos Detected	No unit	-	No	No
Estimated Fibres*	%w/w	0.01	<0.01	<0.01

METHOD	METHODOLOGY SUMMARY
METHOD	
AN002	The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.
AN040/AN320	A portion of sample is digested with nitric acid to decompose organic matter and hydrochloric acid to complete the digestion of metals. The digest is then analysed by ICP OES with metals results reported on the dried sample basis. Based on USEPA method 200.8 and 6010C.
AN040	A portion of sample is digested with Nitric acid to decompose organic matter and Hydrochloric acid to complete the digestion of metals and then filtered for analysis by ASS or ICP as per USEPA Method 200.8.
AN312	Mercury by Cold Vapour AAS in Soils: After digestion with nitric acid, hydrogen peroxide and hydrochloric acid, mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500
AN400	OC and OP Pesticides by GC-ECD: The determination of organochlorine (OC) and organophosphorus (OP) pesticides and polychlorinated biphenyls (PCBs) in soils, sludges and groundwater. (Based on USEPA methods 3510, 3550, 8140 and 8080.)
AN403	Total Recoverable Hydrocarbons: Determination of Hydrocarbons by gas chromatography after a solvent extraction. Detection is by flame ionisation detector (FID) that produces an electronic signal in proportion to the combustible matter passing through it. Total Recoverable Hydrocarbons (TRH) are routinely reported as four alkane groupings based on the carbon chain length of the compounds: C6-C9, C10-C14, C15-C28 and C29-C36 and in recognition of the NEPM 1999 (2013), >C10-C16 (F2), >C16-C34 (F3) and >C34-C40 (F4). F2 is reported directly and also corrected by subtracting Naphthalene (from VOC method AN433) where available.
AN403	Additionally, the volatile C6-C9 fraction may be determined by a purge and trap technique and GC/MS because of the potential for volatiles loss. Total Petroleum Hydrocarbons (TPH) follows the same method of analysis after silica gel cleanup of the solvent extract. Aliphatic/Aromatic Speciation follows the same method of analysis after fractionation of the solvent extract over silica with differential polarity of the eluent solvents.
AN403	The GC/FID method is not well suited to the analysis of refined high boiling point materials (ie lubricating oils or greases) but is particularly suited for measuring diesel, kerosene and petrol if care to control volatility is taken. This method will detect naturally occurring hydrocarbons, lipids, animal fats, phenols and PAHs if they are present at sufficient levels, dependent on the use of specific cleanup/fractionation techniques. Reference USEPA 3510B, 8015B.
AN420	(SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols (etc) in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN420	SVOC Compounds: Semi-Volatile Organic Compounds (SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN433/AN434/AN410	VOCs and C6-C9/C6-C10 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.
AN433/AN434	VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.
AN602	Qualitative identification of chrysotile, amosite and crocidolite in bulk samples by polarised light microscopy (PLM) in conjunction with dispersion staining (DS). AS4964 provides the basis for this document. Unequivocal identification of the asbestos minerals present is made by obtaining sufficient diagnostic `clues`, which provide a reasonable degree of certainty, dispersion staining is a mandatory `clue` for positive identification. If sufficient `clues` are absent, then positive identification of asbestos is not possible. This procedure requires removal of suspect fibres/bundles from the sample which cannot be returned.
AN602	Fibres/material that cannot be unequivocably identified as one of the three asbestos forms, will be reported as unknown mineral fibres (umf).
AN602	AS4964.2004 Method for the Qualitative Identification of Asbestos in Bulk Samples, Section 8.4, Trace Analysis Criteria, Note 4 states: "Depending upon sample condition and fibre type, the detection limit of this technique has been found to lie generally in the range of 1 in 1,000 to 1 in 10,000 parts by weight, equivalent to 1 to 0.1 g/kg."

AN602	The sample can be reported "no asbestos found at the reporting limit of 0.1 g/kg" (<0.01%w/w) where AN602 section 4.5 of this method has been followed, and if-
	 (a) no trace asbestos fibres have been detected (i.e. no 'respirable' fibres): (b) the estimated weight of non-respirable asbestos fibre bundles and/or the estimated weight of asbestos in asbestos-containing materials are found to be less than 0.1g/kg; and (c) these non-respirable asbestos fibre bundles and/or the asbestos containing materials are only visible under
<	stereo-microscope viewing conditions.

FOOTNOTES -

*	NATA accreditation does not cover	-	Not analysed.	UOM	Unit of Measure.
	the performance of this service.	NVL	Not validated.	LOR	Limit of Reporting.
**	Indicative data, theoretical holding	IS	Insufficient sample for analysis.	↑↓	Raised/lowered Limit of
	time exceeded.	LNR	Sample listed, but not received.		Reporting.

Samples analysed as received.

Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here : http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/en/terms-and-conditions. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full.

email: sydney@envirolab.com.au envirolab.com.au

Envirolab Services Pty Ltd - Sydney | ABN 37 112 535 645

	CERTIFICATE OF ANALYS	IS	14	3263
Client:				
Environmental Investigation	S			
Suite 6.01, 55 Miller Street				
Pyrmont				
NSW 2009				
Attention: M Torres				
Sample log in details:		500040		
Your Reference:		E22913		
No. of samples:		1 Soil		
Date samples received / comp	leted instructions received	14/03/2016	1	14/03/2016
Analysis Details: Please refer to the following pa	ages for results, methodology	summary and qu	ality	control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices. **Please refer to the last page of this report for any comments relating to the results.**

Report Details:

 Date results requested by: / Issue Date:
 21/03/16
 / 17/03/16

 Date of Preliminary Report:
 Not Issued

 NATA accreditation number 2901. This document shall not be reproduced except in full.

 Accredited for compliance with ISO/IEC 17025.

 Tests not covered by NATA are denoted with *.

Results Approved By:

Jacinta/Hurst

Laboratory Manager

vTRH(C6-C10)/BTEXN in Soil		
Our Reference:	UNITS	143263-1
Your Reference		QT1
	-	
Date Sampled		10/03/2016
Type of sample		Soil
Date extracted	-	15/03/2016
Date analysed	-	16/03/2016
TRHC6 - C9	mg/kg	<25
TRHC6 - C10	mg/kg	<25
vTPHC6 - C10 less BTEX (F1)	mg/kg	<25
Benzene	mg/kg	<0.2
Toluene	mg/kg	<0.5
Ethylbenzene	mg/kg	<1
m+p-xylene	mg/kg	<2
o-Xylene	mg/kg	<1
naphthalene	mg/kg	<1
Surrogate aaa-Trifluorotoluene	%	90

Client Reference:

E22913

svTRH (C10-C40) in Soil		
Our Reference:	UNITS	143263-1
Your Reference		QT1
	-	
Date Sampled		10/03/2016
Type of sample		Soil
Date extracted	-	15/03/2016
Date analysed	-	16/03/2016
TRHC 10 - C 14	mg/kg	<50
TRHC 15 - C28	mg/kg	<100
TRHC29 - C36	mg/kg	<100
TRH>C10-C16	mg/kg	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50
TRH>C16-C34	mg/kg	<100
TRH>C34-C40	mg/kg	<100
Surrogate o-Terphenyl	%	87

Client Reference:

E22913	
--------	--

Acid Extractable metals in soil		
Our Reference:	UNITS	143263-1
Your Reference		QT1
	-	
Date Sampled		10/03/2016
Type of sample		Soil
Date prepared	-	15/03/2016
Date analysed	-	15/03/2016
Arsenic	mg/kg	7
Cadmium	mg/kg	<0.4
Chromium	mg/kg	15
Copper	mg/kg	17
Lead	mg/kg	30
Mercury	mg/kg	<0.1
Nickel	mg/kg	3
Zinc	mg/kg	23

Client Reference: E22913

Moisture		
Our Reference:	UNITS	143263-1
Your Reference		QT1
	-	
Date Sampled		10/03/2016
Type of sample		Soil
Date prepared	-	15/03/2016
Date analysed	-	16/03/2016
Moisture	%	16

Client Reference: E22913

Method ID	MethodologySummary							
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.							
Org-014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.							
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.							
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.							
Metals-0201CP- AES	Determination of various metals by ICP-AES.							
Metals-021 CV- AAS	Determination of Mercury by Cold Vapour AAS.							
Inorg-008	Moisture content determined by heating at 105+/-5 deg C for a minimum of 12 hours.							
		PQL	ent Referenc		22913	Dualizata regulta	Crailes Cratt	Crail(ca.0/
------------------------------------	-------	-----	-----------------------	----------------	------------------	----------------------------	---------------	---------------------
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
vTRH(C6-C10)/BTEXN in Soil						Base II Duplicate II % RPD		
Date extracted	_			15/03/2	[NT]	[NT]	LCS-2	15/03/2016
				016				
Date analysed	-			16/03/2 016	[NT]	[TN]	LCS-2	16/03/2016
TRHC6 - C9	mg/kg	25	Org-016	<25	[NT]	[NT]	LCS-2	111%
TRHC6 - C10	mg/kg	25	Org-016	<25	[NT]	[NT]	LCS-2	111%
Benzene	mg/kg	0.2	Org-016	<0.2	[NT]	[NT]	LCS-2	104%
Toluene	mg/kg	0.5	Org-016	<0.5	[NT]	[NT]	LCS-2	101%
Ethylbenzene	mg/kg	1	Org-016	<1	[NT]	[NT]	LCS-2	113%
m+p-xylene	mg/kg	2	Org-016	<2	[NT]	[NT]	LCS-2	119%
o-Xylene	mg/kg	1	Org-016	<1	[NT]	[NT]	LCS-2	114%
naphthalene	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
Surrogate aaa- Trifluorotoluene	%		Org-016	97	[NT]	[TN]	LCS-2	101%
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
svTRH (C10-C40) in Soil						Base II Duplicate II % RPD		
Date extracted	-			15/03/2 016	[NT]	[NT]	LCS-2	15/03/2016
Date analysed	-			15/03/2 016	[NT]	[NT]	LCS-2	15/03/2016
TRHC 10 - C 14	mg/kg	50	Org-003	<50	[NT]	[NT]	LCS-2	126%
TRHC 15 - C28	mg/kg	100	Org-003	<100	[NT]	[NT]	LCS-2	128%
TRHC29 - C36	mg/kg	100	Org-003	<100	[NT]	[NT]	LCS-2	111%
TRH>C10-C16	mg/kg	50	Org-003	<50	[NT]	[NT]	LCS-2	126%
TRH>C16-C34	mg/kg	100	Org-003	<100	[NT]	[NT]	LCS-2	128%
TRH>C34-C40	mg/kg	100	Org-003	<100	[NT]	[NT]	LCS-2	111%
Surrogate o-Terphenyl	%		Org-003	91	[NT]	[NT]	LCS-2	103%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Acid Extractable metals in soil						Base II Duplicate II %RPD		
Date prepared	-			15/03/2 016	[NT]	[NT]	LCS-4	15/03/2016
Date analysed	-			15/03/2 016	[NT]	[NT]	LCS-4	15/03/2016
Arsenic	mg/kg	4	Metals-020 ICP-AES	<4	[NT]	[NT]	LCS-4	108%
Cadmium	mg/kg	0.4	Metals-020 ICP-AES	<0.4	[NT]	[NT]	LCS-4	100%
Chromium	mg/kg	1	Metals-020 ICP-AES	<1	[NT]	[NT]	LCS-4	105%
Copper	mg/kg	1	Metals-020 ICP-AES	<1	[NT]	[NT]	LCS-4	107%
Lead	mg/kg	1	Metals-020 ICP-AES	<1	[NT]	[NT]	LCS-4	101%
Mercury	mg/kg	0.1	Metals-021 CV-AAS	<0.1	[NT]	[NT]	LCS-4	82%

Client Reference: E22913								
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Acid Extractable metals in soil						Base II Duplicate II % RPD		
Nickel	mg/kg	1	Metals-020 ICP-AES	<1	[NT]	[NT]	LCS-4	98%
Zinc	mg/kg	1	Metals-020 ICP-AES	<1	[NT]	[NT]	LCS-4	100%

Report Comments:

Asbestos ID was analysed by Approved Identifier: Asbestos ID was authorised by Approved Signatory: Not applicable for this job Not applicable for this job

INS: Insufficient sample for this test NR: Test not required <: Less than PQL: Practical Quantitation Limit RPD: Relative Percent Difference >: Greater than NT: Not tested NA: Test not required LCS: Laboratory Control Sample

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike : A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample) : This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable. Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

email: sydney@envirolab.com.au envirolab.com.au

Envirolab Services Pty Ltd - Sydney | ABN 37 112 535 645

CERTIFICATE OF ANALYSIS

143540

Client: Environmental Investigations

Suite 6.01, 55 Miller Street Pyrmont NSW 2009

Attention: M Torres

Sample log in details:

Your Reference:	E22913, Pete	ershan	า
No. of samples:	2 Soils		_
Date samples received / completed instructions received	18/03/16	/	18/03/16

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices. *Please refer to the last page of this report for any comments relating to the results.*

Report Details:

 Date results requested by: / Issue Date:
 29/03/16
 / 23/03/16

 Date of Preliminary Report:
 Not Issued

 NATA accreditation number 2901. This document shall not be reproduced except in full.

 Accredited for compliance with ISO/IEC 17025.

 Tests not covered by NATA are denoted with *.

Results Approved By:

Jacinta/Hurst

Laboratory Manager

vTRH(C6-C10)/BTEXN in Soil			
Our Reference:	UNITS	143540-1	143540-2
Your Reference		QT2	QT3
	-		
Date Sampled		17/03/2016	17/03/2016
Type of sample		Soil	Soil
Date extracted	-	22/03/2016	22/03/2016
Date analysed	-	22/03/2016	22/03/2016
TRHC6 - C9	mg/kg	<25	<25
TRHC6 - C10	mg/kg	<25	<25
vTPHC6 - C10 less BTEX (F1)	mg/kg	<25	<25
Benzene	mg/kg	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1
m+p-xylene	mg/kg	<2	<2
o-Xylene	mg/kg	<1	<1
naphthalene	mg/kg	<1	<1
Surrogate aaa-Trifluorotoluene	%	87	85

Client Reference:

svTRH (C10-C40) in Soil			
Our Reference:	UNITS	143540-1	143540-2
Your Reference		QT2	QT3
	-		
Date Sampled		17/03/2016	17/03/2016
Type of sample		Soil	Soil
Date extracted	-	21/03/2016	21/03/2016
Date analysed	-	22/03/2016	22/03/2016
TRHC 10 - C14	mg/kg	<50	<50
TRHC 15 - C28	mg/kg	<100	<100
TRHC29 - C36	mg/kg	<100	<100
TRH>C 10-C 16	mg/kg	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50
TRH>C16-C34	mg/kg	<100	<100
TRH>C34-C40	mg/kg	<100	<100
Surrogate o-Terphenyl	%	86	88

r			
Acid Extractable metals in soil			
Our Reference:	UNITS	143540-1	143540-2
Your Reference		QT2	QT3
	-		
Date Sampled		17/03/2016	17/03/2016
Type of sample		Soil	Soil
Date prepared	-	21/03/2016	21/03/2016
Date analysed	-	21/03/2016	21/03/2016
Arsenic	mg/kg	13	<4
Cadmium	mg/kg	<0.4	<0.4
Chromium	mg/kg	4	39
Copper	mg/kg	17	20
Lead	mg/kg	25	75
Mercury	mg/kg	<0.1	<0.1
Nickel	mg/kg	<1	34
Zinc	mg/kg	3	81

Client Reference:

Moisture			
Our Reference:	UNITS	143540-1	143540-2
Your Reference		QT2	QT3
	-		
Date Sampled		17/03/2016	17/03/2016
Type of sample		Soil	Soil
Date prepared	-	21/03/2016	21/03/2016
Date analysed	-	22/03/2016	22/03/2016
Moisture	%	15	6.8

Client Reference: E22913, Petersham

MethodID	Methodology Summary
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Metals-020 ICP- AES	Determination of various metals by ICP-AES.
Metals-021 CV- AAS	Determination of Mercury by Cold Vapour AAS.
Inorg-008	Moisture content determined by heating at 105+/-5 deg C for a minimum of 12 hours.

QUALITYCONTROL	UNITS	PQL	ent Referenc	Blank	22913, Peters	Duplicate results	Spike Sm#	Spike %
vTRH(C6-C10)/BTEXNin	UNITS	PQL	METHOD	Biank	Sm#	Base II Duplicate II % RPD	Spike Sm#	Spike % Recovery
Soil								
Date extracted	-			22/03/2 016	[NT]	[NT]	LCS-2	22/03/2016
Date analysed	-			22/03/2 016	[NT]	[TN]	LCS-2	22/03/2016
TRHC6 - C9	mg/kg	25	Org-016	<25	[NT]	[NT]	LCS-2	122%
TRHC6 - C10	mg/kg	25	Org-016	<25	[NT]	[NT]	LCS-2	122%
Benzene	mg/kg	0.2	Org-016	<0.2	[NT]	[NT]	LCS-2	106%
Toluene	mg/kg	0.5	Org-016	<0.5	[NT]	[NT]	LCS-2	107%
Ethylbenzene	mg/kg	1	Org-016	<1	[NT]	[NT]	LCS-2	121%
m+p-xylene	mg/kg	2	Org-016	<2	[NT]	[NT]	LCS-2	137%
o-Xylene	mg/kg	1	Org-016	<1	[NT]	[NT]	LCS-2	125%
naphthalene	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
Surrogate aaa- Trifluorotoluene	%		Org-016	91	[NT]	[TN]	LCS-2	92%
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
svTRH (C10-C40) in Soil						Base II Duplicate II % RPD		
Date extracted	-			21/03/2 016	[NT]	[TN]	LCS-2	21/03/2016
Date analysed	-			21/03/2 016	[NT]	[NT]	LCS-2	21/03/2016
TRHC 10 - C 14	mg/kg	50	Org-003	<50	[NT]	[NT]	LCS-2	96%
TRHC 15 - C28	mg/kg	100	Org-003	<100	[NT]	[NT]	LCS-2	109%
TRHC29 - C36	mg/kg	100	Org-003	<100	[NT]	[NT]	LCS-2	110%
TRH>C10-C16	mg/kg	50	Org-003	<50	[NT]	[NT]	LCS-2	96%
TRH>C16-C34	mg/kg	100	Org-003	<100	[NT]	[NT]	LCS-2	109%
TRH>C34-C40	mg/kg	100	Org-003	<100	[NT]	[NT]	LCS-2	110%
Surrogate o-Terphenyl	%		Org-003	89	[NT]	[NT]	LCS-2	96%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Acid Extractable metals in soil					-	Base II Duplicate II % RPD		,
Date prepared	-			21/03/2 016	143540-1	21/03/2016 21/03/2016	LCS-3	21/03/2016
Date analysed	-			21/03/2 016	143540-1	21/03/2016 21/03/2016	LCS-3	21/03/2016
Arsenic	mg/kg	4	Metals-020 ICP-AES	<4	143540-1	13 21 RPD:47	LCS-3	116%
Cadmium	mg/kg	0.4	Metals-020 ICP-AES	<0.4	143540-1	<0.4 <0.4	LCS-3	107%
Chromium	mg/kg	1	Metals-020 ICP-AES	<1	143540-1	4 4 RPD:0	LCS-3	112%
Copper	mg/kg	1	Metals-020 ICP-AES	<1	143540-1	17 16 RPD: 6	LCS-3	115%
Lead	mg/kg	1	Metals-020 ICP-AES	<1	143540-1	25 22 RPD:13	LCS-3	106%
Mercury	mg/kg	0.1	Metals-021 CV-AAS	<0.1	143540-1	<0.1 <0.1	LCS-3	91%

	Client Reference: E22913, Petersham								
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery	
Acid Extractable metals in soil						Base II Duplicate II % RPD			
Nickel	mg/kg	1	Metals-020 ICP-AES	<1	143540-1	<1 <1	LCS-3	107%	
Zinc	mg/kg	1	Metals-020 ICP-AES	<1	143540-1	3 2 RPD:40	LCS-3	108%	

Report Comments:

Asbestos ID was analysed by Approved Identifier: Asbestos ID was authorised by Approved Signatory: Not applicable for this job Not applicable for this job

INS: Insufficient sample for this test NR: Test not required <: Less than PQL: Practical Quantitation Limit RPD: Relative Percent Difference >: Greater than NT: Not tested NA: Test not required LCS: Laboratory Control Sample

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike : A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample) : This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable. Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

ANALYTICAL REPORT

CLIENT DETAILS	·	LABORATORY DE	TAILS
Contact	Mariana Torres	Manager	Huong Crawford
Client	Environmental Investigations	Laboratory	SGS Alexandria Environmental
Address	Suite 6.01, 55 Miller Street NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	02 9516 0722	Telephone	+61 2 8594 0400
Facsimile	02 9516 0741	Facsimile	+61 2 8594 0499
Email	mariana.torres@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E22913-3-7, 13-17 Regent St Trafalgar St	SGS Reference	SE150560 R0
Order Number	E22913	Date Received	29/3/2016
Samples	11	Date Reported	5/4/2016

COMMENTS

Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562(4354).

PAH-The Limit of Reporting (LOR) has been raised due to interferences from the sample matrix.

SIGNATORIES -

Ady Sitte

Andy Sutton Senior Organic Chemist

Dong Liang Metals/Inorganics Team Leader

kmln

Ly Kim Ha Organic Section Head

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

www.sgs.com.au

SE150560 R0

VOCs in Water [AN433/AN434] Tested: 1/4/2016

			6WBH1M	6WBH4M	6WBH6M	6WBH9M	6WBH10M
			WATER	WATER	WATER	WATER	WATER
PARAMETER	UOM	LOR	- 28/3/2016 SE150560.001	- 28/3/2016 SE150560.002	- 29/3/2016 SE150560.003	- 28/3/2016 SE150560.004	- 28/3/2016 SE150560.005
Benzene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Toluene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
m/p-xylene	µg/L	1	<1	<1	<1	<1	3
o-xylene	µg/L	0.5	<0.5	<0.5	<0.5	2.3	2.8
Total Xylenes	µg/L	1.5	<1.5	<1.5	<1.5	2.3	5.5
Total BTEX	µg/L	3	<3	<3	<3	<3	6
Naphthalene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dichlorodifluoromethane (CFC-12)	µg/L	5	<5	<5	<5	<5	<5
Chloromethane	µg/L	5	<5	<5	<5	<5	<5
Vinyl chloride (Chloroethene)	µg/L	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Bromomethane	µg/L	10	<10	<10	<10	<10	<10
Chloroethane	µg/L	5	<5	<5	<5	<5	<5
Trichlorofluoromethane	μg/L	1	<1	<1	<1	<1	<1
Acetone (2-propanone)	μg/L	10	<10	<10	<10	<10	<10
lodomethane	µg/L	5	<5	<5	<5	<5	<5
1,1-dichloroethene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Acrylonitrile	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dichloromethane (Methylene chloride)	µg/L	5	<5	<5	<5	<5	<5
Allyl chloride	µg/L	2	<2	<2	<2	<2	<2
Carbon disulfide	µg/L	2	<2	<2	<2	<2	<2
trans-1,2-dichloroethene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
MtBE (Methyl-tert-butyl ether)	µg/L	2	<2	<2	<2	<2	<2
1,1-dichloroethane	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Vinyl acetate	µg/L	10	<10	<10	<10	<10	<10
MEK (2-butanone)	µg/L	10	<10	<10	<10	<10	<10
cis-1,2-dichloroethene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Bromochloromethane	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Chloroform (THM)	µg/L	0.5	42	<0.5	<0.5		
2,2-dichloropropane	µg/L	0.5	<0.5	<0.5	<0.5	11 <0.5	10 <0.5
1.2-dichloroethane	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,1,1-trichloroethane	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,1-dichloropropene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Carbon tetrachloride	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dibromomethane		0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,2-dichloropropane	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Trichloroethene (Trichloroethylene,TCE)	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2-nitropropane	µg/L	100	<100	<100	<100	<100	<100
	µg/L	0.5		<0.5	<0.5		
Bromodichloromethane (THM) MIBK (4-methyl-2-pentanone)	µg/L	5	15 <5	<0.5	<0.5	0.8 <5	0.7
cis-1,3-dichloropropene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
trans-1,3-dichloropropene 1,1,2-trichloroethane	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,3-dichloropropane Dibromochloromethane (THM)	µg/L	0.5		<0.5	<0.5	<0.5	<0.5
2-hexanone (MBK)	µg/L	5	4.0	<0.5	<0.5	<0.5	<0.5
2-nexanone (MBK) 1,2-dibromoethane (EDB)	μg/L μg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
		0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Tetrachloroethene (Perchloroethylene,PCE)	µg/L						
1,1,1,2-tetrachloroethane	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Chlorobenzene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Bromoform (THM)	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
cis-1,4-dichloro-2-butene	µg/L	1	<1	<1	<1	<1	<1
Styrene (Vinyl benzene)	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,1,2,2-tetrachloroethane	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,2,3-trichloropropane	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
trans-1,4-dichloro-2-butene	µg/L	1	<1	<1	<1	<1	<1

SE150560 R0

			6WBH1M	6WBH4M	6WBH6M	6WBH9M	6WBH10M
			WATER	WATER	WATER	WATER	WATER
			-			-	-
			28/3/2016	28/3/2016	29/3/2016	28/3/2016	28/3/2016
PARAMETER	UOM	LOR	SE150560.001	SE150560.002	SE150560.003	SE150560.004	SE150560.005
Isopropylbenzene (Cumene)	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Bromobenzene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
n-propylbenzene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2-chlorotoluene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
4-chlorotoluene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,3,5-trimethylbenzene	µg/L	0.5	<0.5	<0.5	<0.5	0.6	6.7
tert-butylbenzene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,2,4-trimethylbenzene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	2.8
sec-butylbenzene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,3-dichlorobenzene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,4-dichlorobenzene	µg/L	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
p-isopropyltoluene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	1.1
1,2-dichlorobenzene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
n-butylbenzene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,2-dibromo-3-chloropropane	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,2,4-trichlorobenzene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Hexachlorobutadiene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,2,3-trichlorobenzene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Total VOC	μg/L	10	-	-	-	-	-

SE150560 R0

			6WBH11M	6WBH15M	QR1	QD1	TB1
			WATER	WATER	WATER	WATER	WATER
PARAMETER	UOM	LOR	- 28/3/2016 SE150560.006	- 28/3/2016 SE150560.007	- 28/3/2016 SE150560.008	- 28/3/2016 SE150560.009	- 28/3/2016 SE150560.010
Benzene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Toluene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
m/p-xylene	µg/L	1	<1	<1	<1	<1	<1
o-xylene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Total Xylenes	µg/L	1.5	<1.5	<1.5	<1.5	<1.5	<1.5
Total BTEX	µg/L	3	<3	<3	<3	<3	<3
Naphthalene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dichlorodifluoromethane (CFC-12)	µg/L	5	<5	<5			-
						-	
Chloromethane	µg/L	5	<5	<5	-		-
Vinyl chloride (Chloroethene)	µg/L	0.3	<0.3	<0.3	-	-	-
Bromomethane	µg/L	10	<10	<10	-	-	-
Chloroethane	µg/L	5	<5	<5	-	-	-
Trichlorofluoromethane	µg/L	1	<1	<1	-	-	-
Acetone (2-propanone)	µg/L	10	<10	<10	-	-	-
lodomethane	µg/L	5	<5	<5	-	-	-
1,1-dichloroethene	µg/L	0.5	<0.5	<0.5	-	-	-
Acrylonitrile	µg/L	0.5	<0.5	<0.5	-	-	-
Dichloromethane (Methylene chloride)	µg/L	5	<5	<5	-	-	-
Allyl chloride	µg/L	2	<2	<2	-	-	-
Carbon disulfide	µg/L	2	<2	<2	_	-	-
trans-1,2-dichloroethene	µg/L	0.5	<0.5	<0.5	_	-	-
MtBE (Methyl-tert-butyl ether)	µg/L	2	<2	<2	-	-	-
1,1-dichloroethane	µg/L	0.5	<0.5	<0.5	-	_	_
Vinyl acetate		10	<10	<10	-	-	-
-	µg/L		<10	<10	-	-	
MEK (2-butanone)	µg/L	10					-
cis-1,2-dichloroethene	µg/L	0.5	<0.5	<0.5	-	-	-
Bromochloromethane	µg/L	0.5	<0.5	<0.5	-	-	-
Chloroform (THM)	µg/L	0.5	21	29	-	-	-
2,2-dichloropropane	µg/L	0.5	<0.5	<0.5	-	-	-
1,2-dichloroethane	µg/L	0.5	<0.5	<0.5	-	-	-
1,1,1-trichloroethane	µg/L	0.5	<0.5	<0.5	-	-	-
1,1-dichloropropene	µg/L	0.5	<0.5	<0.5	-	-	-
Carbon tetrachloride	µg/L	0.5	<0.5	<0.5	-	-	-
Dibromomethane	µg/L	0.5	<0.5	<0.5	-	-	-
1,2-dichloropropane	µg/L	0.5	<0.5	<0.5	-	-	-
Trichloroethene (Trichloroethylene, TCE)	µg/L	0.5	<0.5	<0.5	-	-	-
2-nitropropane	µg/L	100	<100	<100	-	-	-
Bromodichloromethane (THM)	µg/L	0.5	6.4	8.5	-	-	-
MIBK (4-methyl-2-pentanone)	µg/L	5	<5	<5	-	-	-
cis-1,3-dichloropropene	µg/L	0.5	<0.5	<0.5	-	-	-
trans-1,3-dichloropropene	µg/L	0.5	<0.5	<0.5		-	_
1,1,2-trichloroethane	µg/L	0.5	<0.5	<0.5			
1,3-dichloropropane	µg/L	0.5	<0.5	<0.5	-	-	
Dibromochloromethane (THM)		0.5			-	-	-
	µg/L		1.2	1.6			
2-hexanone (MBK)	µg/L	5	<5	<5	-	-	-
1,2-dibromoethane (EDB)	µg/L	0.5	<0.5	<0.5	-	-	-
Tetrachloroethene (Perchloroethylene,PCE)	µg/L	0.5	<0.5	<0.5	-	-	-
1,1,1,2-tetrachloroethane	µg/L	0.5	<0.5	<0.5	-	-	-
Chlorobenzene	µg/L	0.5	<0.5	<0.5	-	-	-
Bromoform (THM)	µg/L	0.5	<0.5	<0.5	-	-	-
cis-1,4-dichloro-2-butene	µg/L	1	<1	<1	-	-	-
Styrene (Vinyl benzene)	µg/L	0.5	<0.5	<0.5	-	-	-
1,1,2,2-tetrachloroethane	µg/L	0.5	<0.5	<0.5	-	-	-
1,2,3-trichloropropane	µg/L	0.5	<0.5	<0.5	-	-	-
trans-1,4-dichloro-2-butene	µg/L	1	<1	<1	-	-	-
L				1		1	

SE150560 R0

			6WBH11M	6WBH15M	QR1	QD1	TB1
			WATER	WATER	WATER	WATER	WATER
							-
			28/3/2016			28/3/2016	28/3/2016
PARAMETER	UOM	LOR	SE150560.006	SE150560.007	SE150560.008	SE150560.009	SE150560.010
Isopropylbenzene (Cumene)	µg/L	0.5	<0.5	<0.5	-	-	-
Bromobenzene	µg/L	0.5	<0.5	<0.5	-	-	-
n-propylbenzene	µg/L	0.5	<0.5	<0.5	-	-	-
2-chlorotoluene	µg/L	0.5	<0.5	<0.5	-	-	-
4-chlorotoluene	µg/L	0.5	<0.5	<0.5	-	-	-
1,3,5-trimethylbenzene	µg/L	0.5	<0.5	<0.5	-	-	-
tert-butylbenzene	µg/L	0.5	<0.5	<0.5	-	-	-
1,2,4-trimethylbenzene	µg/L	0.5	<0.5	<0.5	-	-	-
sec-butylbenzene	µg/L	0.5	<0.5	<0.5	-	-	-
1,3-dichlorobenzene	µg/L	0.5	<0.5	<0.5	-	-	-
1,4-dichlorobenzene	µg/L	0.3	<0.3	<0.3	-	-	-
p-isopropyltoluene	µg/L	0.5	<0.5	<0.5	-	-	-
1,2-dichlorobenzene	µg/L	0.5	<0.5	<0.5	-	-	-
n-butylbenzene	µg/L	0.5	<0.5	<0.5	-	-	-
1,2-dibromo-3-chloropropane	µg/L	0.5	<0.5	<0.5	-	-	-
1,2,4-trichlorobenzene	µg/L	0.5	<0.5	<0.5	-	-	-
Hexachlorobutadiene	µg/L	0.5	<0.5	<0.5	-	-	-
1,2,3-trichlorobenzene	µg/L	0.5	<0.5	<0.5	-	-	-
Total VOC	µg/L	10	-	-	-	-	-

SE150560 R0

			TS1
			WATER
			-
			28/3/2016
PARAMETER	UOM	LOR	SE150560.011
Benzene	µg/L	0.5	[122%]
Toluene	µg/L	0.5	[121%]
Ethylbenzene	µg/L	0.5	[116%]
m/p-xylene	µg/L	1	[114%]
o-xylene	µg/L	0.5	[117%]
Total Xylenes	µg/L	1.5	-
Total BTEX	µg/L	3	-
Naphthalene	µg/L	0.5	-
Dichlorodifluoromethane (CFC-12)	µg/L	5	-
Chloromethane	µg/L	5	-
Vinyl chloride (Chloroethene)	µg/L	0.3	-
Bromomethane	µg/L	10	-
Chloroethane	µg/L	5	-
Trichlorofluoromethane	µg/L	1	-
Acetone (2-propanone)	µg/L	10	-
lodomethane	µg/L	5	-
1,1-dichloroethene	µg/L	0.5	-
Acrylonitrile	µg/L	0.5	-
Dichloromethane (Methylene chloride)	µg/L	5	-
Allyl chloride	µg/L	2	-
Carbon disulfide	µg/L	2	-
trans-1,2-dichloroethene	µg/L	0.5	-
MtBE (Methyl-tert-butyl ether)	µg/L	2	-
1,1-dichloroethane	µg/L	0.5	-
Vinyl acetate	µg/L	10	-
MEK (2-butanone)	µg/L	10	-
cis-1,2-dichloroethene	µg/L	0.5	-
Bromochloromethane	µg/L	0.5	-
Chloroform (THM)	µg/L	0.5	-
2,2-dichloropropane	µg/L	0.5	-
1,2-dichloroethane	µg/L	0.5	_
1,1,1-trichloroethane	µg/L	0.5	-
1,1-dichloropropene	µg/L	0.5	-
Carbon tetrachloride	µg/L	0.5	-
Dibromomethane	μg/L	0.5	_
1,2-dichloropropane	µg/L	0.5	
Trichloroethene (Trichloroethylene,TCE)	μg/L	0.5	_
2-nitropropane	μg/L	100	
Bromodichloromethane (THM)	μg/L	0.5	
MIBK (4-methyl-2-pentanone)		5	-
	µg/L	0.5	-
cis-1,3-dichloropropene	µg/L		-
trans-1,3-dichloropropene	µg/L	0.5	
1,1,2-trichloroethane	µg/L	0.5	-
1,3-dichloropropane	µg/L	0.5	-
Dibromochloromethane (THM)		0.5	-
2-hexanone (MBK)	µg/L		
	µg/L	5	-
1,2-dibromoethane (EDB)	μg/L μg/L	5 0.5	-
1,2-dibromoethane (EDB) Tetrachloroethene (Perchloroethylene,PCE)	μg/L μg/L μg/L	5 0.5 0.5	-
1,2-dibromoethane (EDB) Tetrachloroethene (Perchloroethylene,PCE) 1,1,1,2-tetrachloroethane	μg/L μg/L μg/L μg/L	5 0.5 0.5 0.5	-
1,2-dibromoethane (EDB) Tetrachloroethene (Perchloroethylene,PCE)	μg/L μg/L μg/L	5 0.5 0.5	-
1,2-dibromoethane (EDB) Tetrachloroethene (Perchloroethylene,PCE) 1,1,1,2-tetrachloroethane	μg/L μg/L μg/L μg/L	5 0.5 0.5 0.5	-
1,2-dibromoethane (EDB) Tetrachloroethene (Perchloroethylene,PCE) 1,1,1,2-tetrachloroethane Chlorobenzene	μg/L μg/L μg/L μg/L μg/L	5 0.5 0.5 0.5 0.5	
1,2-dibromoethane (EDB) Tetrachloroethene (Perchloroethylene,PCE) 1,1,1,2-tetrachloroethane Chlorobenzene Bromoform (THM)	μg/L μg/L μg/L μg/L μg/L μg/L	5 0.5 0.5 0.5 0.5 0.5	• • • •
1,2-dibromoethane (EDB) Tetrachloroethene (Perchloroethylene,PCE) 1,1,1,2-tetrachloroethane Chlorobenzene Bromoform (THM) cis-1,4-dichloro-2-butene	μg/L μg/L μg/L μg/L μg/L μg/L μg/L	5 0.5 0.5 0.5 0.5 0.5 0.5 1	- - - - -
1,2-dibromoethane (EDB) Tetrachloroethene (Perchloroethylene,PCE) 1,1,1,2-tetrachloroethane Chlorobenzene Bromoform (THM) cis-1,4-dichloro-2-butene Styrene (Vinyl benzene)	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	5 0.5 0.5 0.5 0.5 0.5 0.5 1 0.5	- - - - - - - -

			TS1
			WATER
			28/3/2016
PARAMETER	UOM	LOR	SE150560.011
Isopropylbenzene (Cumene)	μg/L	0.5	-
Bromobenzene	µg/L	0.5	-
n-propylbenzene	µg/L	0.5	-
2-chlorotoluene	µg/L	0.5	-
4-chlorotoluene	µg/L	0.5	-
1,3,5-trimethylbenzene	µg/L	0.5	-
tert-butylbenzene	µg/L	0.5	-
1,2,4-trimethylbenzene	µg/L	0.5	-
sec-butylbenzene	µg/L	0.5	-
1,3-dichlorobenzene	µg/L	0.5	-
1,4-dichlorobenzene	µg/L	0.3	-
p-isopropyltoluene	µg/L	0.5	-
1,2-dichlorobenzene	µg/L	0.5	-
n-butylbenzene	µg/L	0.5	-
1,2-dibromo-3-chloropropane	µg/L	0.5	-
1,2,4-trichlorobenzene	μg/L	0.5	-
Hexachlorobutadiene	μg/L	0.5	-
1,2,3-trichlorobenzene	μg/L	0.5	-
Total VOC	μg/L	10	-

Volatile Petroleum Hydrocarbons in Water [AN433/AN434/AN410] Tested: 1/4/2016

			6WBH1M	6WBH4M	6WBH6M	6WBH9M	6WBH10M
			WATER	WATER	WATER	WATER	WATER
			-	-	-	-	-
			28/3/2016	28/3/2016	29/3/2016	28/3/2016	28/3/2016
PARAMETER	UOM	LOR	SE150560.001	SE150560.002	SE150560.003	SE150560.004	SE150560.005
TRH C6-C9	µg/L	40	<40	<40	<40	<40	100
Benzene (F0)	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
TRH C6-C10	μg/L	50	<50	<50	<50	<50	160
TRH C6-C10 minus BTEX (F1)	µg/L	50	<50	<50	<50	<50	150

			6WBH11M	6WBH15M	QR1	QD1
			WATER	WATER	WATER	WATER
			28/3/2016	28/3/2016	28/3/2016	28/3/2016
PARAMETER	UOM	LOR	SE150560.006	SE150560.007	SE150560.008	SE150560.009
TRH C6-C9	µg/L	40	<40	<40	<40	<40
Benzene (F0)	µg/L	0.5	<0.5	<0.5	<0.5	<0.5
TRH C6-C10	µg/L	50	<50	<50	<50	<50
TRH C6-C10 minus BTEX (F1)	µg/L	50	<50	<50	<50	<50

SE150560 R0

TRH (Total Recoverable Hydrocarbons) in Water [AN403] Tested: 1/4/2016

			6WBH1M	6WBH4M	6WBH6M	6WBH9M	6WBH10M
			WATER	WATER	WATER	WATER	WATER
			28/3/2016			28/3/2016	28/3/2016
PARAMETER	UOM	LOR	SE150560.001	SE150560.002	SE150560.003	SE150560.004	SE150560.005
TRH C10-C14	µg/L	50	<50	<50	<50	120	95
TRH C15-C28	µg/L	200	<200	<200	<200	<200	<200
TRH C29-C36	µg/L	200	<200	<200	<200	<200	<200
TRH C37-C40	µg/L	200	<200	<200	<200	<200	<200
TRH >C10-C16 (F2)	µg/L	60	<60	<60	<60	140	110
TRH >C16-C34 (F3)	µg/L	500	<500	<500	<500	<500	<500
TRH >C34-C40 (F4)	µg/L	500	<500	<500	<500	<500	<500
TRH C10-C36	µg/L	450	<450	<450	<450	<450	<450
TRH C10-C40	µg/L	650	<650	<650	<650	<650	<650

			6WBH11M	6WBH15M	QR1	QD1
			WATER	WATER	WATER	WATER
			-	-	-	-
			28/3/2016	28/3/2016	28/3/2016	28/3/2016
PARAMETER	UOM	LOR	SE150560.006	SE150560.007	SE150560.008	SE150560.009
TRH C10-C14	µg/L	50	<50	<50	<50	<50
TRH C15-C28	µg/L	200	<200	<200	<200	<200
TRH C29-C36	µg/L	200	<200	<200	<200	<200
TRH C37-C40	µg/L	200	<200	<200	<200	<200
TRH >C10-C16 (F2)	µg/L	60	<60	<60	<60	<60
TRH >C16-C34 (F3)	µg/L	500	<500	<500	<500	<500
TRH >C34-C40 (F4)	µg/L	500	<500	<500	<500	<500
TRH C10-C36	µg/L	450	<450	<450	<450	<450
TRH C10-C40	µg/L	650	<650	<650	<650	<650

PAH (Polynuclear Aromatic Hydrocarbons) in Water [AN420] Tested: 1/4/2016

			6WBH1M	6WBH4M	6WBH6M	6WBH9M	6WBH10M
			WATER	WATER	WATER	WATER	WATER
			- 28/3/2016	28/3/2016	- 29/3/2016	- 28/3/2016	- 28/3/2016
PARAMETER	UOM	LOR	SE150560.001	SE150560.002	SE150560.003	SE150560.004	SE150560.005
Naphthalene	µg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.3↑
2-methylnaphthalene	µg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	µg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	µg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	µg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	µg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	µg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	µg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	µg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	µg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	µg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	µg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	µg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k)fluoranthene	µg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene	µg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	µg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(ah)anthracene	µg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	µg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total PAH (18)	µg/L	1	<1	<1	<1	<1	<1

			6WBH11M	6WBH15M
			WATER	WATER
			28/3/2016	
PARAMETER	UOM	LOR	SE150560.006	SE150560.007
Naphthalene	µg/L	0.1	<0.1	<0.1
2-methylnaphthalene	µg/L	0.1	<0.1	<0.1
1-methylnaphthalene	µg/L	0.1	<0.1	<0.1
Acenaphthylene	µg/L	0.1	<0.1	<0.1
Acenaphthene	µg/L	0.1	<0.1	<0.1
Fluorene	µg/L	0.1	<0.1	<0.1
Phenanthrene	µg/L	0.1	<0.1	<0.1
Anthracene	µg/L	0.1	<0.1	<0.1
Fluoranthene	µg/L	0.1	<0.1	<0.1
Pyrene	µg/L	0.1	<0.1	<0.1
Benzo(a)anthracene	µg/L	0.1	<0.1	<0.1
Chrysene	µg/L	0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	µg/L	0.1	<0.1	<0.1
Benzo(k)fluoranthene	µg/L	0.1	<0.1	<0.1
Benzo(a)pyrene	µg/L	0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	µg/L	0.1	<0.1	<0.1
Dibenzo(ah)anthracene	µg/L	0.1	<0.1	<0.1
Benzo(ghi)perylene	µg/L	0.1	<0.1	<0.1
Total PAH (18)	µg/L	1	<1	<1

SE150560 R0

Trace Metals (Dissolved) in Water by ICPMS [AN318] Tested: 1/4/2016

			6WBH1M	6WBH4M	6WBH6M	6WBH9M	6WBH10M
			WATER	WATER	WATER	WATER	WATER
			- WATER		-		-
			28/3/2016			28/3/2016	28/3/2016
PARAMETER	UOM	LOR	SE150560.001	SE150560.002	SE150560.003	SE150560.004	SE150560.005
Arsenic, As	µg/L	1	<1	1	<1	<1	<1
Cadmium, Cd	μg/L	0.1	0.5	<0.1	<0.1	<0.1	<0.1
Chromium, Cr	μg/L	1	<1	<1	<1	<1	<1
Copper, Cu	μg/L	1	3	5	2	<1	<1
Lead, Pb	μg/L	1	<1	<1	<1	<1	<1
Nickel, Ni	μg/L	1	9	2	13	3	3
Zinc, Zn	μg/L	5	230	190	68	12	12

			6WBH11M	6WBH15M	QR1	QD1
			WATER	WATER	WATER	WATER
PARAMETER	UOM	LOR	28/3/2016 SE150560.006	28/3/2016 SE150560.007	28/3/2016 SE150560.008	28/3/2016 SE150560.009
			3E130360.006			
Arsenic, As	µg/L	1	1	3	<1	<1
Cadmium, Cd	µg/L	0.1	<0.1	<0.1	0.4	<0.1
Chromium, Cr	µg/L	1	<1	<1	<1	<1
Copper, Cu	µg/L	1	4	2	11	<1
Lead, Pb	µg/L	1	<1	<1	<1	<1
Nickel, Ni	µg/L	1	9	3	28	<1
Zinc, Zn	µg/L	5	35	330	250	100

SE150560 R0

Mercury (dissolved) in Water [AN311/AN312] Tested: 1/4/2016

			6WBH1M	6WBH4M	6WBH6M	6WBH9M	6WBH10M
			WATER	WATER	WATER	WATER	WATER
			28/3/2016			28/3/2016	28/3/2016
PARAMETER	UOM	LOR	SE150560.001	SE150560.002	SE150560.003	SE150560.004	SE150560.005
Mercury	mg/L	0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001

			6WBH11M	6WBH15M	QR1	QD1
			WATER	WATER	WATER	WATER
			- 28/3/2016			- 28/3/2016
PARAMETER	UOM	LOR	SE150560.006	SE150560.007	SE150560.008	SE150560.009
Mercury	mg/L	0.0001	<0.0001	<0.0001	<0.0001	<0.0001

METHOD	METHODOLOGY SUMMARY
AN020	Unpreserved water sample is filtered through a 0.45µm membrane filter and acidified with nitric acid similar to APHA3030B.
AN311/AN312	Mercury by Cold Vapour AAS in Waters: Mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500.
AN318	Determination of elements at trace level in waters by ICP-MS technique, in accordance with USEPA 6020A.
AN403	Total Recoverable Hydrocarbons: Determination of Hydrocarbons by gas chromatography after a solvent extraction. Detection is by flame ionisation detector (FID) that produces an electronic signal in proportion to the combustible matter passing through it. Total Recoverable Hydrocarbons (TRH) are routinely reported as four alkane groupings based on the carbon chain length of the compounds: C6-C9, C10-C14, C15-C28 and C29-C36 and in recognition of the NEPM 1999 (2013), >C10-C16 (F2), >C16-C34 (F3) and >C34-C40 (F4). F2 is not corrected for Naphthalene.
AN403	Additionally, the volatile C6-C9/C6-C10 fractions may be determined by a purge and trap technique and GC/MS because of the potential for volatiles loss. Total Petroleum Hydrocarbons (TPH) follows the same method of analysis after silica gel cleanup of the solvent extract. Aliphatic/Aromatic Speciation follows the same method of analysis after fractionation of the solvent extract over silica with differential polarity of the eluent solvents.
AN403	The GC/FID method is not well suited to the analysis of refined high boiling point materials (ie lubricating oils or greases) but is particularly suited for measuring diesel, kerosene and petrol if care to control volatility is taken. This method will detect naturally occurring hydrocarbons, lipids, animal fats, phenols and PAHs if they are present at sufficient levels, dependent on the use of specific cleanup/fractionation techniques. Reference USEPA 3510B, 8015B.
AN420	(SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols (etc) in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN433/AN434/AN410	VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.
AN433/AN434	VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.

FOOTNOTES -

NATA accreditation does not cover the performance of this service. Indicative data, theoretical holding time exceeded.

Not analysed. NVL Not validated. Insufficient sample for analysis. IS LNR

Sample listed, but not received.

UOM Unit of Measure. Limit of Reporting. LOR Raised/lowered Limit of î↓ Reporting.

Samples analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here : http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.odf

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sqs.com/en/terms-and-conditions. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full.

email: sydney@envirolab.com.au **envirolab.com.au**

Envirolab Services Pty Ltd - Sydney | ABN 37 112 535 645

	CERTIFICATE OF ANALY	SIS	14	3871
Client:				
Environmental Investigations				
Suite 6.01, 55 Miller Street				
Pyrmont				
NSW 2009				
Attention: Mariana Torres				
Sample log in details:				
Your Reference:		E22913, Reg	jent St	& Trafalgar St
No. of samples:		1 Water		
Date samples received / comple	eted instructions received	29/03/16	/	29/03/16
Analysis Details:				
Please refer to the following page	ges for results, methodology	summary and	quality	control data.
Samples were analysed as rece	eived from the client. Result	s relate specific	ally to t	he samples as received.
Results are reported on a dry w	eight basis for solids and or	an as received	d basis f	or other matrices.
Please refer to the last page of	of this report for any comn	nents relating	to the r	esults.
Report Details:				

 Date results requested by: / Issue Date:
 5/04/16
 /
 1/04/16

 Date of Preliminary Report:
 Not Issued
 Not Issued

 NATA accreditation number 2901. This document shall not be reproduced except in full.
 Accredited for compliance with ISO/IEC 17025.
 Tests not covered by NATA are denoted with *.

Results Approved By:

Jacinta Hurst Laboratory Manager

vTRH(C6-C10)/BTEXN in Water			
Our Reference:	UNITS	143871-1	
Your Reference		QT1	
	-		
Date Sampled		28/03/2016	
Type of sample		Water	
Date extracted	-	29/03/2016	
Date analysed	-	30/03/2016	
TRHC6 - C9	µg/L	<10	
TRHC6 - C10	µg/L	<10	
TRHC6 - C10 less BTEX (F1)	µg/L	<10	
Benzene	µg/L	<1	
Toluene	µg/L	<1	
Ethylbenzene	µg/L	<1	
m+p-xylene	µg/L	<2	
o-xylene	µg/L	<1	
Naphthalene	µg/L	<1	
Surrogate Dibromofluoromethane	%	106	
Surrogate toluene-d8	%	103	
Surrogate 4-BFB	%	100	

UNITS	143871-1
	QT1
-	
	28/03/2016
	Water
-	30/03/2016
-	30/03/2016
µg/L	<50
µg/L	<100
µg/L	<100
µg/L	<50
µg/L	<50
µg/L	<100
µg/L	<100
%	79
	 - μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L

HM in water - dissolved		
Our Reference:	UNITS	143871-1
Your Reference		QT1
	-	
Date Sampled		28/03/2016
Type of sample		Water
Date prepared	-	30/03/2016
Date analysed	-	30/03/2016
Arsenic-Dissolved	µg/L	<1
Cadmium-Dissolved	µg/L	<0.1
Chromium-Dissolved	µg/L	<1
Copper-Dissolved	µg/L	3
Lead-Dissolved	µg/L	<1
Mercury-Dissolved	µg/L	<0.05
Nickel-Dissolved	µg/L	1
Zinc-Dissolved	µg/L	56

Client Reference: E22913, Regent St & Trafalgar St

Method ID	Methodology Summary
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-013	Water samples are analysed directly by purge and trap GC-MS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Metals-022 ICP-MS	Determination of various metals by ICP-MS.
Metals-021 CV- AAS	Determination of Mercury by Cold Vapour AAS.

		Clie	ent Referenc	e: Eź	22913, Reger	nt St & Trafalgar St		
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
vTRH(C6-C10)/BTEXNin Water						Base II Duplicate II % RPD		
Date extracted	-			29/03/2 016	[NT]	[NT]	LCS-W2	29/03/2016
Date analysed	-			30/03/2 016	[NT]	[NT]	LCS-W2	30/03/2016
TRHC6 - C9	µg/L	10	Org-016	<10	[NT]	[NT]	LCS-W2	110%
TRHC6 - C10	µg/L	10	Org-016	<10	[NT]	[NT]	LCS-W2	110%
Benzene	µg/L	1	Org-016	<1	[NT]	[NT]	LCS-W2	112%
Toluene	µg/L	1	Org-016	<1	[NT]	[NT]	LCS-W2	111%
Ethylbenzene	µg/L	1	Org-016	<1	[NT]	[NT]	LCS-W2	106%
m+p-xylene	µg/L	2	Org-016	<2	[NT]	[NT]	LCS-W2	111%
o-xylene	µg/L	1	Org-016	<1	[NT]	[NT]	LCS-W2	110%
Naphthalene	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Surrogate Dibromofluoromethane	%		Org-016	105	[NT]	[TN]	LCS-W2	102%
Surrogate toluene-d8	%		Org-016	100	[NT]	[NT]	LCS-W2	101%
Surrogate 4-BFB	%		Org-016	104	[NT]	[NT]	LCS-W2	101%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
svTRH(C10-C40)in Water						Base II Duplicate II %RPD		,
Date extracted	-			30/03/2 016	[NT]	[NT]	LCS-W1	30/03/2016
Date analysed	-			30/03/2 016	[NT]	[NT]	LCS-W1	30/03/2016
TRHC 10 - C14	µg/L	50	Org-003	<50	[NT]	[NT]	LCS-W1	108%
TRHC 15 - C28	µg/L	100	Org-003	<100	[NT]	[NT]	LCS-W1	129%
TRHC29 - C36	µg/L	100	Org-003	<100	[NT]	[NT]	LCS-W1	100%
TRH>C10 - C16	µg/L	50	Org-003	<50	[NT]	[NT]	LCS-W1	108%
TRH>C16 - C34	µg/L	100	Org-003	<100	[NT]	[NT]	LCS-W1	129%
TRH>C34 - C40	μg/L	100	Org-003	<100	[NT]	[NT]	LCS-W1	100%
Surrogate o-Terphenyl	%		Org-003	83	[NT]	[NT]	LCS-W1	73%
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
HM in water - dissolved						Base II Duplicate II % RPD		Recovery
 Date prepared	-			30/03/2 016	143871-1	30/03/2016 30/03/2016	LCS-W1	30/03/2016
Date analysed	-			30/03/2 016	143871-1	30/03/2016 30/03/2016	LCS-W1	30/03/2016
Arsenic-Dissolved	µg/L	1	Metals-022 ICP-MS	<1	143871-1	<1 <1	LCS-W1	98%
Cadmium-Dissolved	µg/L	0.1	Metals-022 ICP-MS	<0.1	143871-1	<0.1 <0.1	LCS-W1	101%
Chromium-Dissolved	µg/L	1	Metals-022 ICP-MS	<1	143871-1	<1 <1	LCS-W1	92%
Copper-Dissolved	µg/L	1	Metals-022 ICP-MS	<1	143871-1	3 3 RPD:0	LCS-W1	102%
Lead-Dissolved	µg/L	1	Metals-022 ICP-MS	<1	143871-1	<1 <1	LCS-W1	101%

Client Reference: E22913, Regent St & Trafalgar St											
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery			
HM in water - dissolved						Base II Duplicate II % RPD					
Mercury-Dissolved	µg/L	0.05	Metals-021 CV-AAS	<0.05	143871-1	<0.05 [N/T]	LCS-W1	80%			
Nickel-Dissolved	µg/L	1	Metals-022 ICP-MS	<1	143871-1	1 1 RPD:0	LCS-W1	96%			
Zinc-Dissolved	µg/L	1	Metals-022 ICP-MS	<1	143871-1	56 58 RPD:4	LCS-W1	96%			

Report Comments:

Asbestos ID was analysed by Approved Identifier: Asbestos ID was authorised by Approved Signatory: Not applicable for this job Not applicable for this job

INS: Insufficient sample for this test NR: Test not required <: Less than PQL: Practical Quantitation Limit RPD: Relative Percent Difference >: Greater than NT: Not tested NA: Test not required LCS: Laboratory Control Sample
Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike : A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample) : This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable. Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Detailed Site Investigation 3-7 Regent Street, 13-17 Regent Street and 287-309 Trafalgar Street, Petersham, NSW Report No. E22913 AA_Rev0

> Appendix J QA/QC Assessment

J1 QUALITY CONTROL PROGRAM

J1.1 INTRODUCTION

For the purpose of assessing the quality of data presented in this Detailed Site Investigation, EI collected field QC samples for analysis. The primary laboratory, SGS Australia Pty Ltd (SGS) and secondary laboratory, Envirolab Services Pty Ltd (Envirolab) also prepared and analysed QC samples. Details of the field and laboratory QC samples are provided, with the allowable acceptance ranges for the data presented in **Table J-1**

QA/QC Measures	Data Quality Indicators
Precision – A quantitative measure of the variability (or reproducibility) of data	 Data precision would be assessed by reviewing the performance of blind field duplicate sample sets, through calculation of relative percentage differences (RPD). Data precision would be deemed acceptable if RPDs are found to be less than 30%. RPDs that exceed this range may be considered acceptable where: Results are less than 10 times the limits of reporting (LOR); Results are less than 20 times the LOR and the RPD is less than 50%; or
	 Heterogeneous materials or volatile compounds are encountered.
Accuracy – A quantitative measure of the closeness of reported data to the "true" value	 Data accuracy would be assessed through the analysis of: Method blanks, which are analysed for the analytes targeted in the primary samples; Matrix spike and matrix spike duplicate sample sets; Laboratory control samples; and Calibration of instruments against known standards.
Representativeness – The confidence (expressed qualitatively)	To ensure the data produced by the laboratory is representative of conditions encountered in the field, the laboratory would carry out the following:
that data are representative of each medium present onsite	 Blank samples will be run in parallel with field samples to confirm there are no unacceptable instances of laboratory artefacts;
	• Review of relative percentage differences (RPD) values for field and laboratory duplicates to provide an indication that the samples are generally homogeneous, with no unacceptable instances of significant sample matrix heterogeneities; and
	• The appropriateness of collection methodologies, handling, storage and preservation techniques will be assessed to ensure/confirm there was minimal opportunity for sample interference or degradation (i.e. volatile loss during transport due to incorrect preservation / transport methods).
Completeness – A measure of the amount of useable data from a data	Analytical data sets acquired during the assessment will be evaluated as complete, upon confirmation that:
collection activity	Standard operating procedures (SOPs) for sampling protocols were adhered to; and
	 Copies of all COC documentation are presented, reviewed and found to be properly completed.
	It can therefore be considered whether the proportion of "useable data" generated in the data collection activities is sufficient for the purposes of the land use assessment.

 Table J-1
 Sampling Data Quality Indicators

QA/QC Measures	Data Quality Indicators
Comparability – The confidence (expressed qualitatively) that data may be considered to be equivalent for each sampling and analytical	Given that a reported data set can comprise several data sets from separate sampling episodes, issues of comparability between data sets are reduced through adherence to SOPs and regulator-endorsed or published guidelines and standards on each data gathering activity.
event	In addition the data will be collected by experienced samplers and NATA-accredited laboratory methodologies will be employed in all laboratory testing programs.

J1.2 CALCULATION OF RELATIVE PERCENTAGE DIFFERENCE (RPD)

The RPD values were calculated using the following equation:

$$RPD = \frac{|C_0 - C_R|}{[(C_0 + C_R)/2]} \times 100$$

Where:

C₀ = Concentration obtained for the primary sample; and

C_R = Concentration obtained for the blind replicate or split duplicate sample.

J2 FIELD QA/QC DATA EVALUATION

The field quality assurance/quality control (QA/QC) soil samples collected during the soil investigation works were as follows:

- Blind field duplicate;
- Inter-laboratory duplicate;
- Trip blank;
- Trip spike; and
- Rinsate blank.

Analytical results for tested soil QA/QC samples, including the calculated RPD values between primary and duplicate samples, are presented in Table J-2

J2.1 SOIL INVESTIGATION

J2.1.1 Blind Field Duplicate

Three blind field duplicate sample (QD1, QD2 and QD3) were collected from primary samples BH107_0.20-0.4, BH18_0.4-0.5 and BH25_0.3-0.4 respectively during the soil investigation. The preparation of the duplicate samples involved the collection of a bulk quantity of soil from the same sampling point without mixing, before dividing the material into identical sampling vessels. The duplicate sample was then presented blind to the primary laboratory

Detailed Site Investigation 3-7 Regent Street, 13-17 Regent Street and 287-309 Trafalgar Street, Petersham, NSW Report No. E22913 AA_Rev0

(SGS) to avoid any potential analytical bias. The BFD was analysed for TRH, BTEX and selected heavy metals. The RPD values calculated were found to be within the Data Acceptance Criteria (**Appendix K**, **Table QC5**), with the exception of mercury (100%) for duplicate QD1 and copper (62.07%) and lead (96.30%) for duplicate QD2. Although noticeable differences were noted on concentrations between the primary sample and the BFD (mercury and lead in particular), given the concentrations in both samples were within the adopted criteria, the conclusion drawn in this report concerning condition of site soil would not be affected.

J2.1.3 Inter-Laboratory Duplicate

Three samples QT-1, QT-1 and QT-3 were collected as an inter-laboratory duplicate (ILD) of the primary samples BH7_0.2-0.4, BH18_0.4-0.5 and BH25_0.3-0.4 respectively. The preparation of the ILD samples were identical to the BFD samples, as described above, and was analysed for TRHs, BTEX, and selected heavy metals. The calculated RPD values were within the Data Acceptance Criteria, with the exception of mercury (300%) for QT1, arsenic (105.88 %), chromium (62.3 %) and lead (112.50%) for QT2 and chromium (78.57%), lead (66.67%), mercury (75%) and nickel (95.65%). Although noticeable differences were noted on concentrations between the primary sample and the BFD (mercury and lead in particular), given the concentrations in both samples were within the adopted criteria, the conclusion drawn in this report concerning condition of site soil would not be affected.

Furthermore, soil samples were placed immediately into jars following sampling to reduce the loss of volatiles from samples. Analytical results indicated that the samples collected were representative of the soils present at respective sampling locations.

J2.1.3 Trip Blank

One trip blank (TB-1) sample was prepared and analysed by the primary laboratory (SGS) for BTEX. Analytical results for this sample were below the laboratory LOR, indicating that satisfactory sample transport and handling conditions were achieved.

J2.1.5 Rinsate Blank

One rinsate blank (QR-1) sample was submitted to the primary laboratory for TRHs, BTEX and selected heavy metals, the results for which were reported below laboratory LOR with the exception of zinc. Zinc (78 ug/L). Given other heavy metals present in the primary soil samples are not reported in the rinsate blank, it is unlikely the zinc detected is a result of cross contamination between sampling points, and is more likely related to contamination of laboratory supplied rinsate water. In addition, given the low concentrations detected, the validity of the soil data was not considered affected. Decontamination procedures were satisfactory.

J2.2 GROUNDWATER INVESTIGATION

J2.2.1 Blind Field Duplicate (BFD)

One blind field duplicate sample (GWQD1) was collected from the primary sample BH11M. The preparation of the duplicate sample involved the decanting of the groundwater collected from the respective groundwater monitoring well into two separate groups of appropriately labelled sampling containers. Volumes were split equally between the groups of sampling bottles such that the sample contained in each individual bottle, contained a similar proportion of each water volume. It should be noted that the sample was not mixed prior to decanting, in order to preserve the concentrations of volatiles potentially present within the sample. The duplicate sample was then presented blind to the

primary laboratory (SGS) to avoid any potential analytical bias. The sample was analysed for TRH, BTEX and selected heavy metals. The RPD values calculated for the analytes tested were found to be generally within the Data Acceptance Criteria (DAC), except copper (133.33%), nickel (168.42%) and zinc (96.30%). Given the higher results were reported in the primary sample for copper and nickel, the conclusion drawn in regard to prevailing groundwater conditions onsite are not considered to be affected.

J2.2.2 Inter Laboratory Duplicate (ILD)

One inter-laboratory duplicate sample (GWQT1) was collected from the primary sample GWBH11M. The preparation of the duplicate sample was identical to the blind field duplicate described above, and was analysed for TRH, BTEX and selected heavy metals. The RPD values calculated for the analytes tested were found to be within the Data Acceptance Criteria (DAC), with the exception of nickel (160%). As discussed in the section above, the differences in TRH concentrations were not considered to affect the validity of the drawn conclusion, as higher concentrations were used in the assessment.

J2.2.3 Trip Blank

One trip blank sample (TB1), prepared with de-ionised water supplied by the primary laboratory, was analysed for BTEX by the primary laboratory. The TB1 sample results were reported below the laboratory LOR, suggesting the sample transportation and storage procedure was satisfactory.

J2.2.4 Rinsate Blank

One rinsate blank (GWQR1) was submitted to the primary laboratory for TRH, BTEX and selected heavy metals analyses. The QR1 sample results were reported below the laboratory LOR, with the exception of copper (11 μ g/L), nickel (28 μ g/L) and zinc (250 μ g/L).

It is unlikely the concentration detected was a result of cross contamination between sampling points, and is more likely related to contamination of laboratory supplied rinsate water. Therefore it was considered the decontamination procedure of the sampling equipment was satisfactory.

J2.3 ASSESSMENT OF FIELD QA/QC DATA

All samples were classified in the field with respect to soil/fill characteristics and any observable signs of contamination based on visual and odour assessment, in regards to soil and groundwater.

All samples, including field QC samples, were transported to the primary and secondary laboratories under strict Chainof-Custody conditions and appropriate copies of relevant documentation were included in the respective reports.

The overall completeness of documentation produced under the field program of the subject assessment was considered to be adequate for the purposes of drawing valid conclusions regarding the environmental condition of the site.

Based on the results of the field QA/QC data, EI considered the field QA/QC programme carried out during the investigation works to be appropriate and the results to be acceptable.

J3 LABORATORY QA/QC

J3.1 LABORATORY ACCREDITATION

To undertake all analytical testing, EI commissioned SGS as the primary laboratory and Envirolab as the secondary laboratory. SGS and Envirolab, both established analytical laboratories which operate in accordance with the guidelines set out in ISO/IEC Guide 25 "General requirements for the competence of calibration and testing laboratories", conducted all respective analyses using National Association Testing Authorities (NATA)-registered procedures.

In relation to contingencies, should the pre-determined DQOs not be achieved, in accordance with each laboratory's QC policy (**Appendix G**), respective tests are accordingly repeated. Should the results again fall outside the DQOs, then sample heterogeneity may be assumed and written comment will be provided to this effect on the final laboratory certificate. The laboratory QA/QC reports are included in **Appendix G**.

J3.2 SAMPLE HOLDING TIMES

All sample holding times were within standard environmental protocols as tabulated in **Appendix G**, **Tables QC1** and **QC2**.

J3.3 TEST METHODS AND PRACTICAL QUANTITATION LIMITS (PQLS)

Practical Quantitation Limits for the tested parameters during the assessments of soils are presented in **Appendix K**, **Tables QC3** and **QC4**.

J3.4 METHOD BLANKS

Concentrations of all parameters in method blanks during the assessment were below the laboratory PQLs and were therefore within the DAC.

J3.5 LABORATORY DUPLICATE SAMPLES

The Laboratory Duplicate Samples for the analysis batches were within acceptable ranges and conformed to the DAC, except for:

- Lead in the sample SE149887.005, which was attributed to sample heterogeneity;
- Zinc in sample SE150249.014 attributed to sample heterogeneity.

J3.6 LABORATORY CONTROL SAMPLES

The Laboratory Control Samples (LCS) for the analysis batches were within acceptable ranges and conformed to the DAC.

J3.7 MATRIX SPIKES

The matrix spikes of the analysis batches were within acceptable ranges and conformed to the DAC, with the exception of:

• TRH C15-C28, TRH C29-C36 and TRH >C16-C34 (F3) in sample SE149945.001 which was attributed to sample heterogeneity

- Copper, lead, and zinc in sample SE150039.005 Recovery attributed to matrix interference.
- Copper and lead in sample SE150225.024 attributed to sample heterogeneity.

zinc for sample SE 148935.026 due to matrix interference. Further investigation of this exceedance revealed that the sample SE 148935.026 formed part of a different project and was analysed within this report as part of the analysis batch number required by NATA quality procedures.

J3.8 CONCLUDING REMARK

Based on the laboratory QA/QC results, EI considers that although a small number of discrepancies were identified, the data generally confirms that the analytical results for soil and groundwater laboratory testing were valid and useable for interpretation purposes.

_			TF	RH				BTEX					Heavy	Metals			
Sample identification	Description	F1*	F2**	F3 (>C ₁₆ - C ₃₄)	F4 (>C ₃₄ - C ₄₀)	Benzene	Toluene	Ethylbenzene	Xylene (total)	Arsenic	Cadmium	Chromium (Total)	Copper	Lead	Mercury	Nickel	Zinc
Intra-laboratory	Duplicate	· · · · · · · · · · · · · · · · · · ·															
BH7_0.2-0.4	Fill Materials	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	6	<0.3	15	18	26	0.01	3	18
QD1	Duplicate of BH7_0.2-0.4	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	7	0.4	13	21	34	0.03	2.3	27
	RPD	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	15.38	36.36	14.29	15.38	26.67	100.00	12.24	40.00
BH18_0.4-0.5	Fill Materials	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	4	<0.3	2	19	7	<0.01	<0.5	4
QD2	Duplicate of BH18_0.4-0.5	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	5	<0.3	2	10	20	<0.01	<0.5	2
	RPD	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	22.22	0.00	13.33	62.07	96.30	0.00	0.00	41.38
BH25_0.3-0.4	Fill Materials	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	4	0	17	20	150	0.19	12	120
QD3	Duplicate of BH25_0.3-0.4	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	4	0.4	16	22	200	0.13	12.0	170
	RPD	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	6.06	9.52	28.57	37.50	0.00	34.48
Inter-laboratory	Duplicate						-								_		
BH7_0.2-0.4	Fill Materials	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	6	<0.3	15	18	26	0.01	3	18
QT1	Duplicate of BH7_0.2-0.4	<25	<50	<100	<100	<0.2	<0.5	<1	<1	7	0.4	15	17	30	<0.1	3.0	23
	RPD	0.00	NA	NA	NA	NA	NA	NA	NA	15.38	36.36	0.00	5.71	14.29	300.00	14.29	24.39
BH18_0.4-0.5	Fill Materials	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	4	< 0.3	2	19	7	< 0.01	< 0.5	4
QT2	Duplicate of BH18_0.4-0.5	<25	<50	<100	<100	< 0.2	< 0.5	<1	<1	13	< 0.4	4	17	25	<0.1	<1	3
BH25 0.3-0.4	RPD Fill Materials	<i>0.00</i> <25	NA	NA	NA	NA	NA	NA	NA	105.88	NA	62.30 17	11.11	112.50	NA 0.19	NA 12	15.38 120
			<25	<90	<120	< 0.1	<0.1	<0.1	<0.3	4	0	• •	20	150			
QT3	Duplicate of BH25_0.3-0.4	<25	<50	<100	<100	<0.2	<0.5	<1	<0.3	<4	<0.4	39	20	75	<0.1	34.0	81
	RPD	0.00	NA	NA	NA	NA	NA	NA	0.00	0.00	0.00	78.57	0.00	66.67	75.00	95.65	38.81
Trip Blank							1										
TB1	Soil Sample Prepared by SGS	NA	NA	NA	NA	<0.1	<0.1	<0.1	<0.3	NA	NA	NA	NA	NA	NA	NA	NA
QTB1	Soil Sample Prepared by SGS	NA	NA	NA	NA	<0.1	<0.1	<0.1	<0.3	NA	NA	NA	NA	NA	NA	NA	NA
Rinsate Blank	De las las di Mata	50	(0	500	500	0.5	1	0.5	1 5	1	0.1	1	1	1	0.0001	1	70
QR1	De-ionised Water	<50	<60	<500	<500	<0.5	1	<0.5	<1.5	<1	<0.1	<1	<1	<1	< 0.0001	<1	78

Indicates values where a single result is found to be less than detection, with the duplicate sample found to be over the detection limit.

RPD exceeds 30-50% range referenced from AS4482.1 (2005)

Notes:

*

All soil results are reported in mg/kg .

- F1 was obtained by subtracting the sum of BTEX concentrations from the C6-C10 fraction.
- ** F2 was obtained by subtracting naphthalene from the > C10-C16 fraction.

_ c			TI	RH			BT	ΈX					Heavy	Metals			
Sample identification	Description	F1*	F2**	F3 (>C ₁₆ - C ₃₄)	F4 (>C ₃₄ - C ₄₀)	Benzene	Toluene	Ethylbenzene	Xylene (total)	Arsenic	Cadmium	Chromium (Total)	Copper	Lead	Mercury	Nickel	Zinc
Intra-laborat	Intra-laboratory Duplicate																
GWBH11M	Groundwater	<50	<60	<500	<500	<0.5	<0.5	<0.5	<1.5	1	<0.1	<1	4	<1	<0.0001	9	35
GWQD1	Duplicate of BH11M	<50	<60	<500	<500	<0.5	<0.5	<0.5	<1.5	<1	<0.1	<1	<1	<1	<0.0001	<1	100
	RPD	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	133.33	0.00	0.00	168.42	96.30
GWBH11M	Groundwater	<50	<60	<500	<500	<0.5	<0.5	<0.5	<1.5	1	<0.1	<1	4	<1	<0.0001	9	35
GWQT1	Duplicate of BH11M	<10	<50	<100	<100	<1	<1	<1	<2	<1	<0.1	<1	3	<1	< 0.05	1	56
	RPD	NA	NA	NA	NA	NA	NA	NA	NA	0.00	0.00	0.00	28.57	0.00	NA	160.00	46.15
Trip Blank																	
TB1	De-ionised water	-	-	-	-	<0.5	<0.5	<0.5	<1.5	-	-	-	-	-	-	-	-
Rinsate Blar	ık																
GWQR1	De-ionised water	<50	<60	<500	<500	<0.5	<0.5	<0.5	<1.5	<1	0.4	<1	11	<1	<0.0001	28	250
Spike																	
TS1	Sample Prepared by SGS					122%	121%	166%	117%								

52.17 Indicates values where a single result is found to be less than detection, with the duplicate sample found to be over the detection limit.

82.35 RPD exceeds 30-50% range referenced from AS4482.1 (2005)

Notes:

All water results are reported in μ g/L.

* F1 was obtained by subtracting the sum of BTEX concentrations from the C6-C10 fraction.

** F2 was obtained by subtracting naphthalene from the > C10-C16 fraction.

Detailed Site Investigation 3-7 Regent Street, 13-17 Regent Street and 287-309 Trafalgar Street, Petersham, NSW Report No. E22913 AA_Rev0

> Appendix K Laboratory QA/QC Policies and DQOs

STATEMENT OF QA/QC PERFORMANCE

CLIENT DETAILS	·	LABORATORY DETAI	ILS
Contact	Mariana Torres	Manager	Huong Crawford
Client	Environmental Investigations	Laboratory	SGS Alexandria Environmental
Address	Suite 6.01, 55 Miller Street NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	02 9516 0722	Telephone	+61 2 8594 0400
Facsimile	02 9516 0741	Facsimile	+61 2 8594 0499
Email	mariana.torres@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E22913 Regent St&Trafalgar St Petersham	SGS Reference	SE149872 R0
Order Number	E22913	Date Received	08 Mar 2016
Samples	8	Date Reported	15 Mar 2016

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document and was supplied by the Client. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met with the exception of the following:

Duplicate

Total Recoverable Metals in Soil by ICPOES

1 item

Sample counts by matrix	8 Soils	Type of documentation received	COC	
Date documentation received	8/3/2016	Samples received in good order	Yes	
Samples received without headspace	Yes	Sample temperature upon receipt	10.5°C	
Sample container provider	SGS	Turnaround time requested	Standard	
Samples received in correct containers	Yes	Sufficient sample for analysis	Yes	
Sample cooling method	Ice Bricks	Samples clearly labelled	Yes	
Complete documentation received	Yes			

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St Alexandria NSW 2015 PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Australia t +6 Australia f +6

t +61 2 8594 0400 www.sgs.com.au f +61 2 8594 0499

Member of the SGS Group

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Fibre Identification in soil		0.0 -						ME-(AU)-[ENV]AN6
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1M_0.5-0.6	SE149872.006	LB097035	04 Mar 2016	08 Mar 2016	04 Mar 2017	14 Mar 2016	04 Mar 2017	15 Mar 2016
BH4_0.2-0.4	SE149872.007	LB097035	07 Mar 2016	08 Mar 2016	07 Mar 2017	14 Mar 2016	07 Mar 2017	15 Mar 2016
BH15_0.2-0.4	SE149872.008	LB097035	07 Mar 2016	08 Mar 2016	07 Mar 2017	14 Mar 2016	07 Mar 2017	15 Mar 2016
fercury in Soil							Method:	ME-(AU)-[ENV]AN:
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1M_0.5-0.6	SE149872.001	LB096999	04 Mar 2016	08 Mar 2016	01 Apr 2016	14 Mar 2016	01 Apr 2016	14 Mar 2016
BH4_0.2-0.4	SE149872.002	LB096999	07 Mar 2016	08 Mar 2016	04 Apr 2016	14 Mar 2016	04 Apr 2016	14 Mar 2016
BH4_1.5-1.95	SE149872.003	LB096999	07 Mar 2016	08 Mar 2016	04 Apr 2016	14 Mar 2016	04 Apr 2016	14 Mar 2016
BH15_0.2-0.4	SE149872.004	LB096999	07 Mar 2016	08 Mar 2016	04 Apr 2016	14 Mar 2016	04 Apr 2016	14 Mar 2016
BH15_1.8-2.0	SE149872.005	LB096999	07 Mar 2016	08 Mar 2016	04 Apr 2016	14 Mar 2016	04 Apr 2016	14 Mar 2016
loisture Content							Method: I	ME-(AU)-[ENV]AN
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1M_0.5-0.6	SE149872.001	LB096778	04 Mar 2016	08 Mar 2016	18 Mar 2016	09 Mar 2016	14 Mar 2016	14 Mar 2016
BH4_0.2-0.4	SE149872.002	LB096778	07 Mar 2016	08 Mar 2016	21 Mar 2016	09 Mar 2016	14 Mar 2016	14 Mar 2016
BH4_1.5-1.95	SE149872.003	LB096778	07 Mar 2016	08 Mar 2016	21 Mar 2016	09 Mar 2016	14 Mar 2016	14 Mar 2016
3H15_0.2-0.4	SE149872.004	LB096778	07 Mar 2016	08 Mar 2016	21 Mar 2016	09 Mar 2016	14 Mar 2016	14 Mar 2016
	SE149872.005	LB096778	07 Mar 2016	08 Mar 2016	21 Mar 2016	09 Mar 2016	14 Mar 2016	14 Mar 2016
C Pesticides in Soil							Method: ME-(AU)-[ENV]AN400/AN
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
3H1M_0.5-0.6	SE149872.001	LB096814	04 Mar 2016	08 Mar 2016	18 Mar 2016	10 Mar 2016	19 Apr 2016	15 Mar 2016
BH4_0.2-0.4	SE149872.002	LB096814	07 Mar 2016	08 Mar 2016	21 Mar 2016	10 Mar 2016	19 Apr 2016	15 Mar 2016
BH4_1.5-1.95	SE149872.003	LB096814	07 Mar 2016	08 Mar 2016	21 Mar 2016	10 Mar 2016	19 Apr 2016	15 Mar 2016
BH15_0.2-0.4	SE149872.004	LB096814	07 Mar 2016	08 Mar 2016	21 Mar 2016	10 Mar 2016	19 Apr 2016	15 Mar 2016
3H15_1.8-2.0	SE149872.004	LB096814	07 Mar 2016	08 Mar 2016	21 Mar 2016	10 Mar 2016	19 Apr 2016	15 Mar 2016
P Pesticides in Soil	02140012.000	LB000014	07 1110 2010	00 Mar 2010	21 Mar 2010	10 Mai 2010	· · · · · · · · · · · · · · · · · · ·)-[ENV]AN400/AN
	O a munita Mia	00 0-6	O a man la d	Dessived	Esturation Due	Eutor stad	•	
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1M_0.5-0.6	SE149872.001	LB096814	04 Mar 2016	08 Mar 2016	18 Mar 2016	10 Mar 2016	19 Apr 2016	14 Mar 2016
BH4_0.2-0.4	SE149872.002	LB096814	07 Mar 2016	08 Mar 2016	21 Mar 2016	10 Mar 2016	19 Apr 2016	14 Mar 2016
BH4_1.5-1.95	SE149872.003	LB096814	07 Mar 2016	08 Mar 2016	21 Mar 2016	10 Mar 2016	19 Apr 2016	14 Mar 2016
BH15_0.2-0.4	SE149872.004	LB096814	07 Mar 2016	08 Mar 2016	21 Mar 2016	10 Mar 2016	19 Apr 2016	14 Mar 2016
BH15_1.8-2.0	SE149872.005	LB096814	07 Mar 2016	08 Mar 2016	21 Mar 2016	10 Mar 2016	19 Apr 2016	14 Mar 2016
AH (Polynuclear Aromatic	Hydrocarbons) in Soil						Method: I	ME-(AU)-[ENV]AN
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1M_0.5-0.6	SE149872.001	LB096814	04 Mar 2016	08 Mar 2016	18 Mar 2016	10 Mar 2016	19 Apr 2016	14 Mar 2016
BH4_0.2-0.4	SE149872.002	LB096814	07 Mar 2016	08 Mar 2016	21 Mar 2016	10 Mar 2016	19 Apr 2016	14 Mar 2016
BH4_1.5-1.95	SE149872.003	LB096814	07 Mar 2016	08 Mar 2016	21 Mar 2016	10 Mar 2016	19 Apr 2016	14 Mar 2016
BH15_0.2-0.4	SE149872.004	LB096814	07 Mar 2016	08 Mar 2016	21 Mar 2016	10 Mar 2016	19 Apr 2016	14 Mar 2016
BH15_1.8-2.0	SE149872.005	LB096814	07 Mar 2016	08 Mar 2016	21 Mar 2016	10 Mar 2016	19 Apr 2016	14 Mar 2016
CBs in Soil							Method: ME-(AU)-[ENV]AN400/AN
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
3H1M_0.5-0.6	SE149872.001	LB096814	04 Mar 2016	08 Mar 2016	18 Mar 2016	10 Mar 2016	19 Apr 2016	15 Mar 2016
BH4_0.2-0.4	SE149872.002	LB096814	07 Mar 2016	08 Mar 2016	21 Mar 2016	10 Mar 2016	19 Apr 2016	15 Mar 2016
BH4_1.5-1.95	SE149872.003	LB096814	07 Mar 2016	08 Mar 2016	21 Mar 2016	10 Mar 2016	19 Apr 2016	15 Mar 2016
BH15_0.2-0.4	SE149872.004	LB096814	07 Mar 2016	08 Mar 2016	21 Mar 2016	10 Mar 2016	19 Apr 2016	15 Mar 2016
BH15_1.8-2.0	SE149872.005	LB096814	07 Mar 2016	08 Mar 2016	21 Mar 2016	10 Mar 2016	19 Apr 2016	15 Mar 2016
otal Recoverable Metals in	Soil by ICPOES						Method: ME-(AU)-[ENV]AN040/AN
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
3H1M_0.5-0.6	SE149872.001	LB097014	04 Mar 2016	08 Mar 2016	31 Aug 2016	14 Mar 2016	31 Aug 2016	15 Mar 2016
3H4_0.2-0.4	SE149872.002	LB097014	07 Mar 2016	08 Mar 2016	03 Sep 2016	14 Mar 2016	03 Sep 2016	15 Mar 2016
3H4_1.5-1.95	SE149872.003	LB097014	07 Mar 2016	08 Mar 2016	03 Sep 2016	14 Mar 2016	03 Sep 2016	15 Mar 2016
BH15_0.2-0.4	SE149872.004	LB097014	07 Mar 2016	08 Mar 2016	03 Sep 2016	14 Mar 2016	03 Sep 2016	15 Mar 2016
BH15_1.8-2.0	SE149872.005	LB097014	07 Mar 2016	08 Mar 2016	03 Sep 2016	14 Mar 2016	03 Sep 2016	15 Mar 2016
RH (Total Recoverable Hy	drocarbons) in Soil						Method: I	ME-(AU)-[ENV]AN
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
	SE149872.001	LB096814	04 Mar 2016	08 Mar 2016	18 Mar 2016	10 Mar 2016	19 Apr 2016	14 Mar 2016
BH1M_0.5-0.6								

15/3/2016

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

TRH (Total Recoverable H	RH (Total Recoverable Hydrocarbons) in Soil (continued) Method: ME-(AU)-[ENV]AN403											
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed				
BH4_1.5-1.95	SE149872.003	LB096814	07 Mar 2016	08 Mar 2016	21 Mar 2016	10 Mar 2016	19 Apr 2016	14 Mar 2016				
BH15_0.2-0.4	SE149872.004	LB096814	07 Mar 2016	08 Mar 2016	21 Mar 2016	10 Mar 2016	19 Apr 2016	14 Mar 2016				
BH15_1.8-2.0	SE149872.005	LB096814	07 Mar 2016	08 Mar 2016	21 Mar 2016	10 Mar 2016	19 Apr 2016	14 Mar 2016				
VOC's in Soil Method: ME-(AU)-[ENV]AN433/AN43												
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed				
BH1M_0.5-0.6	SE149872.001	LB096808	04 Mar 2016	08 Mar 2016	18 Mar 2016	10 Mar 2016	19 Apr 2016	14 Mar 2016				
BH4_0.2-0.4	SE149872.002	LB096808	07 Mar 2016	08 Mar 2016	21 Mar 2016	10 Mar 2016	19 Apr 2016	14 Mar 2016				
BH4_1.5-1.95	SE149872.003	LB096808	07 Mar 2016	08 Mar 2016	21 Mar 2016	10 Mar 2016	19 Apr 2016	14 Mar 2016				
BH15_0.2-0.4	SE149872.004	LB096808	07 Mar 2016	08 Mar 2016	21 Mar 2016	10 Mar 2016	19 Apr 2016	14 Mar 2016				
BH15_1.8-2.0	SE149872.005	LB096808	07 Mar 2016	08 Mar 2016	21 Mar 2016	10 Mar 2016	19 Apr 2016	14 Mar 2016				
Volatile Petroleum Hydroca	arbons in Soil						Method: ME-(AU)-[ENV]	AN433/AN434/AN410				
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed				
BH1M_0.5-0.6	SE149872.001	LB096808	04 Mar 2016	08 Mar 2016	18 Mar 2016	10 Mar 2016	19 Apr 2016	14 Mar 2016				
BH4_0.2-0.4	SE149872.002	LB096808	07 Mar 2016	08 Mar 2016	21 Mar 2016	10 Mar 2016	19 Apr 2016	14 Mar 2016				
BH4_1.5-1.95	SE149872.003	LB096808	07 Mar 2016	08 Mar 2016	21 Mar 2016	10 Mar 2016	19 Apr 2016	14 Mar 2016				
BH15_0.2-0.4	SE149872.004	LB096808	07 Mar 2016	08 Mar 2016	21 Mar 2016	10 Mar 2016	19 Apr 2016	14 Mar 2016				
BH15_1.8-2.0	SE149872.005	LB096808	07 Mar 2016	08 Mar 2016	21 Mar 2016	10 Mar 2016	19 Apr 2016	14 Mar 2016				

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

OC Pesticides in Soil				Method: ME-(AU)-[I	INVJAN400/AN
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Tetrachloro-m-xylene (TCMX) (Surrogate)	BH1M_0.5-0.6	SE149872.001	%	60 - 130%	103
	BH4_0.2-0.4	SE149872.002	%	60 - 130%	95
	BH15_0.2-0.4	SE149872.004	%	60 - 130%	86
P Pesticides in Soil				Method: ME-(AU)-[I	ENVIAN400/AN
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
2-fluorobiphenyl (Surrogate)	BH1M_0.5-0.6	SE149872.001	%	60 - 130%	96
	BH4_0.2-0.4	SE149872.002	%	60 - 130%	92
	BH15_0.2-0.4	SE149872.004	%	60 - 130%	100
d14-p-terphenyl (Surrogate)	BH1M_0.5-0.6	SE149872.001	%	60 - 130%	118
u 14-p-terphenyi (Sunogate)	BH4 0.2-0.4	SE149872.001	%	60 - 130%	118
	BH15_0.2-0.4	SE149872.002	%	60 - 130%	114
	BH15_0.2-0.4	3E 149672.004	/6		
AH (Polynuclear Aromatic Hydrocarbons) in Soil					-(AU)-[ENV]AI
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery 9
2-fluorobiphenyl (Surrogate)	BH1M_0.5-0.6	SE149872.001	%	70 - 130%	96
	BH4_0.2-0.4	SE149872.002	%	70 - 130%	92
	BH4_1.5-1.95	SE149872.003	%	70 - 130%	84
	BH15_0.2-0.4	SE149872.004	%	70 - 130%	100
	BH15_1.8-2.0	SE149872.005	%	70 - 130%	92
d14-p-terphenyl (Surrogate)	BH1M_0.5-0.6	SE149872.001	%	70 - 130%	118
	BH4_0.2-0.4	SE149872.002	%	70 - 130%	114
	BH4_1.5-1.95	SE149872.003	%	70 - 130%	116
	BH15_0.2-0.4	SE149872.004	%	70 - 130%	120
	BH15_1.8-2.0	SE149872.005	%	70 - 130%	108
d5-nitrobenzene (Surrogate)	BH1M_0.5-0.6	SE149872.001	%	70 - 130%	80
	BH4_0.2-0.4	SE149872.002	%	70 - 130%	82
	BH4_1.5-1.95	SE149872.003	%	70 - 130%	74
	BH15_0.2-0.4	SE149872.004	%	70 - 130%	88
	BH15_1.8-2.0	SE149872.005	%	70 - 130%	90
CBs in Soil				Method: ME-(AU)-[I	ENVJAN400/A
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery
Tetrachloro-m-xylene (TCMX) (Surrogate)	BH1M_0.5-0.6	SE149872.001	%	60 - 130%	103
	BH4_0.2-0.4	SE149872.002	%	60 - 130%	95
	BH15_0.2-0.4	SE149872.004	%	60 - 130%	86
'OC's in Soil				Method: ME-(AU)-[I	
	Sample Name	Sample Number	Units	Criteria	
Parameter	Sample Name				Recovery
Bromofluorobenzene (Surrogate)	BH1M_0.5-0.6	SE149872.001	%	60 - 130%	99
	BH4_0.2-0.4	SE149872.002	%	60 - 130%	96
	BH4_1.5-1.95	SE149872.003	%	60 - 130%	90
	BH15_0.2-0.4	SE149872.004	%	60 - 130%	98
	BH15_1.8-2.0	SE149872.005	%	60 - 130%	84
d4-1,2-dichloroethane (Surrogate)	BH1M_0.5-0.6	SE149872.001	%	60 - 130%	72
	BH4_0.2-0.4	SE149872.002	%	60 - 130%	73
	BH4_1.5-1.95	SE149872.003	%	60 - 130%	70
	BH15_0.2-0.4	SE149872.004	%	60 - 130%	77
	BH15_1.8-2.0	SE149872.005	%	60 - 130%	73
d8-toluene (Surrogate)	BH1M_0.5-0.6	SE149872.001	%	60 - 130%	71
	BH4_0.2-0.4	SE149872.002	%	60 - 130%	72
	BH4_1.5-1.95	SE149872.003	%	60 - 130%	85
	BH15_0.2-0.4	SE149872.004	%	60 - 130%	72
	BH15_1.8-2.0	SE149872.005	%	60 - 130%	78
Diharan (haran (0)	BH1M_0.5-0.6	SE149872.001	%	60 - 130%	70
Dibromofluoromethane (Surrogate)	BH4 0.2-0.4	SE149872.002	%	60 - 130%	75
Dibromotiuoromethane (Surrogate)	BH4_0.2-0.4			60 - 130%	74
Dipromotiuoromethane (Surrogate)	BH4_0.2-0.4 BH4_1.5-1.95	SE149872.003	%	00 - 130 %	
Dibromonuorometnane (Surrogate)		SE149872.003 SE149872.004	%	60 - 130%	71
Dioromonuoromethane (Surrogate)	BH4_1.5-1.95				
Dipromonuorometnane (Surrogate)	BH4_1.5-1.95 BH15_0.2-0.4	SE149872.004	%	60 - 130%	71 77

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Volatile Petroleum Hydrocarbons in Soil (continued)

Method: ME-(AU)-[ENV]AN433/AN434/AN410

Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	BH1M_0.5-0.6	SE149872.001	%	60 - 130%	99
	BH4_0.2-0.4	SE149872.002	%	60 - 130%	96
	BH4_1.5-1.95	SE149872.003	%	60 - 130%	95
	BH15_0.2-0.4	SE149872.004	%	60 - 130%	98
	BH15_1.8-2.0	SE149872.005	%	60 - 130%	91
d4-1,2-dichloroethane (Surrogate)	BH1M_0.5-0.6	SE149872.001	%	60 - 130%	72
	BH4_0.2-0.4	SE149872.002	%	60 - 130%	73
	BH4_1.5-1.95	SE149872.003	%	60 - 130%	72
	BH15_0.2-0.4	SE149872.004	%	60 - 130%	77
	BH15_1.8-2.0	SE149872.005	%	60 - 130%	70
d8-toluene (Surrogate)	BH1M_0.5-0.6	SE149872.001	%	60 - 130%	71
	BH4_0.2-0.4	SE149872.002	%	60 - 130%	72
	BH4_1.5-1.95	SE149872.003	%	60 - 130%	71
	BH15_0.2-0.4	SE149872.004	%	60 - 130%	72
	BH15_1.8-2.0	SE149872.005	%	60 - 130%	72
Dibromofluoromethane (Surrogate)	BH1M_0.5-0.6	SE149872.001	%	60 - 130%	70
	BH4_0.2-0.4	SE149872.002	%	60 - 130%	75
	BH4_1.5-1.95	SE149872.003	%	60 - 130%	71
	BH15_0.2-0.4	SE149872.004	%	60 - 130%	71
	BH15_1.8-2.0	SE149872.005	%	60 - 130%	76

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Mercury in Soil			Meth	od: ME-(AU)-[ENV]AN312
Sample Number	Parameter	Units	LOR	Result
LB096999.001	Mercury	mg/kg	0.01	<0.01

OC Pesticides in Soil

OC Pesticides in Soil				Method: ME-	(AU)-[ENV]AN400/AN
Sample Number		Parameter	Units	LOR	Result
B096814.001		Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1
		Alpha BHC	mg/kg	0.1	<0.1
		Lindane	mg/kg	0.1	<0.1
		Heptachlor	mg/kg	0.1	<0.1
		Aldrin	mg/kg	0.1	<0.1
		Beta BHC	mg/kg	0.1	<0.1
		Delta BHC	mg/kg	0.1	<0.1
		Heptachlor epoxide	mg/kg	0.1	<0.1
		Alpha Endosulfan	mg/kg	0.2	<0.2
		Gamma Chlordane	mg/kg	0.1	<0.1
		Alpha Chlordane	mg/kg	0.1	<0.1
		p,p'-DDE	mg/kg	0.1	<0.1
		Dieldrin	mg/kg	0.2	<0.2
		Endrin	mg/kg	0.2	<0.2
		Beta Endosulfan	mg/kg	0.2	<0.2
		p,p'-DDD	mg/kg	0.1	<0.1
		p,p'-DDT	mg/kg	0.1	<0.1
		Endosulfan sulphate	mg/kg	0.1	<0.1
		Endrin Aldehyde	mg/kg	0.1	<0.1
		Methoxychlor	mg/kg	0.1	<0.1
		Endrin Ketone	mg/kg	0.1	<0.1
		Isodrin	mg/kg	0.1	<0.1
		Mirex	mg/kg	0.1	<0.1
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	97
P Pesticides in Soil				Method: ME-	(AU)-[ENV]AN400/AN
ample Number		Parameter	Units	LOR	Result
3096814.001		Dichlorvos	mg/kg	0.5	<0.5
		Dimethoate	mg/kg	0.5	<0.5
		Diazinon (Dimpylate)	mg/kg	0.5	<0.5
		Fenitrothion	mg/kg	0.2	<0.2
		Malathion	mg/kg	0.2	<0.2
		Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2
		Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2
		Bromophos Ethyl	mg/kg	0.2	<0.2
		Methidathion	mg/kg	0.5	<0.2
		Ethion	mg/kg	0.2	<0.2
		Azinphos-methyl (Guthion)		0.2	<0.2
			mg/kg	0.2	NU.2

PAH (Polynuclear Aromatic Hydrocarb	ons) in Soil		Metho	od: ME-(AU)-[ENV]AN420
Sample Number	Parameter	Units	LOR	Result
LB096814.001	Naphthalene	mg/kg	0.1	<0.1
	2-methylnaphthalene	mg/kg	0.1	<0.1
	1-methylnaphthalene	mg/kg	0.1	<0.1
	Acenaphthylene	mg/kg	0.1	<0.1
	Acenaphthene	mg/kg	0.1	<0.1
	Fluorene	mg/kg	0.1	<0.1
	Phenanthrene	mg/kg	0.1	<0.1
	Anthracene	mg/kg	0.1	<0.1
	Fluoranthene	mg/kg	0.1	<0.1
	Pyrene	mg/kg	0.1	<0.1
	Benzo(a)anthracene	mg/kg	0.1	<0.1
	Chrysene	mg/kg	0.1	<0.1
	Benzo(a)pyrene	mg/kg	0.1	<0.1

%

%

Surrogates

2-fluorobiphenyl (Surrogate)

d14-p-terphenyl (Surrogate)

86

108

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

	natic Hydrocarbons) in Soil (con	andedy		Metho	od: ME-(AU)-[ENV]AN
Sample Number		Parameter	Units	LOR	Result
LB096814.001		Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1
		Dibenzo(ah)anthracene	mg/kg	0.1	<0.1
		Benzo(ghi)perylene	mg/kg	0.1	<0.1
		Total PAH (18)	mg/kg	0.8	<0.8
	Surrogates	d5-nitrobenzene (Surrogate)	%	-	74
	Carrogatoo	2-fluorobiphenyl (Surrogate)	%	-	86
		d14-p-terphenyl (Surrogate)	%		108
			70		
PCBs in Soil					(AU)-[ENV]AN400/AN
Sample Number		Parameter	Units	LOR	Result
LB096814.001		Arochlor 1016	mg/kg	0.2	<0.2
		Arochlor 1221	mg/kg	0.2	<0.2
		Arochlor 1232	mg/kg	0.2	<0.2
		Arochlor 1242	mg/kg	0.2	<0.2
		Arochlor 1248	mg/kg	0.2	<0.2
		Arochlor 1254	mg/kg	0.2	<0.2
		Arochlor 1260	mg/kg	0.2	<0.2
		Arochlor 1262	mg/kg	0.2	<0.2
		Arochlor 1268	mg/kg	0.2	<0.2
		Total PCBs (Arochlors)	mg/kg	1	<1
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	97
Fotal Recoverable Met				Mothod: ME	(AU)-[ENV]AN040/AN
		Demonster	Hatta		
Sample Number		Parameter	Units	LOR	Result
LB097014.001		Arsenic, As	mg/kg	3	<3
		Cadmium, Cd	mg/kg	0.3	<0.3
		Chromium, Cr	mg/kg	0.3	<0.3
		Copper, Cu	mg/kg	0.5	<0.5
		Lead, Pb	mg/kg	1	<1
		Nickel, Ni	mg/kg	0.5	<0.5
		Zinc, Zn	mg/kg	0.5	<0.5
TRH (Total Recoverabl	e Hydrocarbons) in Soil			Metho	od: ME-(AU)-[ENV]AN
Sample Number		Parameter	Units	LOR	Result
LB096814.001		TRH C10-C14	mg/kg	20	<20
		TRH C15-C28	mg/kg	45	<45
		TRH C29-C36	mg/kg	45	<45
		TRH C37-C40	mg/kg	100	<100
				100	
			ma/ka	110	<110
		TRH C10-C36 Total	mg/kg	110	<110
/OC's in Soil				Method: ME-	(AU)-[ENV]AN433/AN
Sample Number			mg/kg Units	Method: ME- LOR	(AU)-[ENV]AN433/AN Result
Sample Number	Fumigants	TRH C10-C36 Total		Method: ME-	(AU)-[ENV]AN433/AN
Sample Number	Fumigants	TRH C10-C36 Total Parameter	Units	Method: ME- LOR	(AU)-[ENV]AN433/AN Result
/OC's in Soil Sample Number LB096808.001	Fumigants	TRH C10-C36 Total Parameter 2,2-dichloropropane	Units mg/kg	Method: ME- LOR 0.1	(AU)-[ENV]AN433/AN Result <0.1
Sample Number	Fumigants	TRH C10-C36 Total Parameter 2,2-dichloropropane 1,2-dichloropropane	Units mg/kg mg/kg	Method: ME- LOR 0.1 0.1	(AU)-[ENV]AN433/AN Result <0.1 <0.1
Sample Number	Fumigants	TRH C10-C36 Total Parameter 2,2-dichloropropane 1,2-dichloropropane cis-1,3-dichloropropene	Units mg/kg mg/kg mg/kg	Method: ME- LOR 0.1 0.1 0.1	(AU)-[ENV]AN433/AN Result <0.1 <0.1 <0.1
Sample Number	Fumigants Halogenated Aliphatics	TRH C10-C36 Total Parameter 2,2-dichloropropane 1,2-dichloropropane cis-1,3-dichloropropene trans-1,3-dichloropropene	Units mg/kg mg/kg mg/kg mg/kg	Method: ME- LOR 0.1 0.1 0.1 0.1 0.1	(AU)-[ENV]AN433/AN Result <0.1 <0.1 <0.1 <0.1 <0.1
Sample Number		TRH C10-C36 Total Parameter 2,2-dichloropropane 1,2-dichloropropane cis-1,3-dichloropropene trans-1,3-dichloropropene 1,2-dibromoethane (EDB)	Units mg/kg mg/kg mg/kg mg/kg mg/kg	Method: ME- LOR 0.1 0.1 0.1 0.1 0.1 0.1 0.1	(AU)-[ENV]AN433/AN Result <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1
Sample Number		TRH C10-C36 Total Parameter 2,2-dichloropropane 1,2-dichloropropane cis-1,3-dichloropropene trans-1,3-dichloropropene 1,2-dibromoethane (EDB) Dichlorodifluoromethane (CFC-12) Chloromethane	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Method: ME- LOR 0.1 0.1 0.1 0.1 0.1 0.1 1	(AU)-[ENV]AN433/AN Result <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <1
Sample Number		TRH C10-C36 Total Parameter 2,2-dichloropropane 1,2-dichloropropane cis-1,3-dichloropropene trans-1,3-dichloropropene 1,2-dibromoethane (EDB) Dichlorodifluoromethane (CFC-12) Chloromethane Vinyl chloride (Chloroethene)	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Method: ME- LOR 0.1 0.1 0.1 0.1 0.1 1 1 1 0.1	(AU)-[ENV]AN433/AN Result <0.1 <0.1 <0.1 <0.1 <0.1 <1 <1 <1 <0.1
Sample Number		TRH C10-C36 Total Parameter 2,2-dichloropropane 1,2-dichloropropane cis-1,3-dichloropropene trans-1,3-dichloropropene 1,2-dibromoethane (EDB) Dichlorodifluoromethane (CFC-12) Chloromethane Vinyl chloride (Chloroethene) Bromomethane	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Method: ME- LOR 0.1 0.1 0.1 0.1 0.1 1 1 0.1 1 1 0.1 1 1 1 1 1	(AU)-[ENV]AN433/AN Result <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <1 <1 <1 <1 <1 <1 <1
Sample Number		TRH C10-C36 Total Parameter 2,2-dichloropropane 1,2-dichloropropane cis-1,3-dichloropropene trans-1,3-dichloropropene 1,2-dibromoethane (EDB) Dichlorodifluoromethane (CFC-12) Chloromethane Vinyl chloride (Chloroethene) Bromomethane Chloroethane	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Method: ME- LOR 0.1 0.1 0.1 0.1 0.1 1 1 0.1 1 1 1 1 1 1 1 1 1 1 1 1 1	(AU)-[ENV]AN433/AN Result <0.1 <0.1 <0.1 <0.1 <0.1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <
Sample Number		TRH C10-C36 Total Parameter 2,2-dichloropropane 1,2-dichloropropane cis-1,3-dichloropropene trans-1,3-dichloropropene 1,2-dibromoethane (EDB) Dichlorodifluoromethane (CFC-12) Chloromethane Vinyl chloride (Chloroethene) Bromomethane Chloroethane Trichlorofluoromethane	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Method: ME- LOR 0.1 0.1 0.1 0.1 0.1 1 1 0.1 1 1 1 1 1 1 1 1 1 1 1 1 1	(AU)-[ENV]AN433/AN Result <0.1 <0.1 <0.1 <0.1 <0.1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <
Sample Number		TRH C10-C36 Total Parameter 2,2-dichloropropane 1,2-dichloropropane cis-1,3-dichloropropene trans-1,3-dichloropropene 1,2-dibromoethane (EDB) Dichlorodifluoromethane (CFC-12) Chloromethane Vinyl chloride (Chloroethene) Bromomethane Chloroethane Trichlorofluoromethane Iodomethane	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Method: ME- LOR 0.1 0.1 0.1 0.1 1 1 0.1 1 1 0.1 1 1 1 5	(AU)-[ENV]AN433/AN Result <0.1 <0.1 <0.1 <0.1 <0.1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <
Sample Number		TRH C10-C36 Total Parameter 2,2-dichloropropane 1,2-dichloropropane cis-1,3-dichloropropene trans-1,3-dichloropropene 1,2-dibromoethane (EDB) Dichlorodifluoromethane (CFC-12) Chloromethane Vinyl chloride (Chloroethene) Bromomethane Chloroethane Trichlorofluoromethane Iodomethane 1,1-dichloroethene	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Method: ME- LOR 0.1 0.1 0.1 0.1 1 1 0.1 1 1 1 1 5 0.1	(AU)-[ENV]AN433/AN Result <0.1 <0.1 <0.1 <0.1 <0.1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <
Sample Number		TRH C10-C36 Total Parameter 2.2-dichloropropane 1.2-dichloropropane cis-1,3-dichloropropene trans-1,3-dichloropropene 1.2-dibromoethane (EDB) Dichlorodifluoromethane (CFC-12) Chloromethane Vinyl chloride (Chloroethene) Bromomethane Chloromethane Trichlorofluoromethane Iodomethane 1,1-dichloroptuorethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Method: ME- LOR 0.1 0.1 0.1 0.1 0.1 1 1 0.1 1 1 1 1 5 0.1 0.5	(AU)-[ENV]AN433/AN Result <0.1 <0.1 <0.1 <0.1 <0.1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <
Sample Number		TRH C10-C36 Total Parameter 2,2-dichloropropane 1,2-dichloropropane cis-1,3-dichloropropene trans-1,3-dichloropropene 1,2-dibromoethane (EDB) Dichlorodifluoromethane (CFC-12) Chloromethane Vinyl chloride (Chloroethene) Bromomethane Chloroethane Trichlorofluoromethane Iodomethane 1,1-dichloroethene Dichloroethene Jichloromethane 1,1-dichloroethene Dichloromethane 1,1-dichloroethene Dichloromethane Allyl chloride	Units mg/kg	Method: ME- LOR 0.1 0.1 0.1 0.1 0.1 1 1 1 1 1 1 1 1 1 5 0.1 0.5 0.1 0.5 0.1	(AU)-[ENV]AN433/AN Result <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <
Sample Number		TRH C10-C36 Total Parameter 2,2-dichloropropane 1,2-dichloropropane cis-1,3-dichloropropene trans-1,3-dichloropropene 1,2-dibromoethane (EDB) Dichlorodifluoromethane (CFC-12) Chloromethane Vinyl chloride (Chloroethene) Bromomethane Chloroethane Trichlorofluoromethane Iodomethane 1,1-dichloroethene Dichloromethane 1,1-dichloroethene Dichloromethane 1,1-dichloroethene Dichloroethene Allyl chloride trans-1,2-dichloroethene	Units mg/kg	Method: ME- LOR 0.1 0.1 0.1 0.1 1 1 1 1 1 1 1 1 1 5 0.1 0.5 0.1 0.1 0.1 0.5 0.1 0.1 0.1 0.1 0.5 0.1 0.5 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	(AU)-[ENV]AN433/AN Result <0.1 <0.1 <0.1 <0.1 <0.1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <
Sample Number		TRH C10-C36 Total Parameter 2,2-dichloropropane 1,2-dichloropropane cis-1,3-dichloropropene trans-1,3-dichloropropene 1,2-dibromoethane (EDB) Dichlorodifluoromethane (CFC-12) Chloromethane Vinyl chloride (Chloroethene) Bromomethane Chloroethane Trichlorofluoromethane Iodomethane 1,1-dichloroethene Dichloromethane (Methylene chloride) Allyl chloride trans-1,2-dichloroethene 1,1-dichloroethene	Units mg/kg	Method: ME- LOR 0.1 0.1 0.1 0.1 1 1 1 1 1 1 1 1 5 0.1 0.5 0.1 0.1 0.1 0.1 0.5 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	(AU)-[ENV]AN433/AN Result <0.1 <0.1 <0.1 <0.1 <0.1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <
Sample Number		TRH C10-C36 Total Parameter 2,2-dichloropropane 1,2-dichloropropane cis-1,3-dichloropropene trans-1,3-dichloropropene 1,2-dibromoethane (EDB) Dichlorodifluoromethane (CFC-12) Chloromethane Vinyl chloride (Chloroethene) Bromomethane Chloroethane Trichlorofluoromethane Iodomethane 1,1-dichloroethene Dichloromethane (Methylene chloride) Allyl chloride trans-1,2-dichloroethene 1,1-dichloroethene internet 1,2-dichloroethene cis-1,2-dichloroethene internet internet Allyl chloride trans-1,2-dichloroethene internet internet	Units mg/kg	Method: ME- LOR 0.1 0.1 0.1 0.1 1 1 1 1 1 5 0.1 0.5 0.1 0.1 0.1 0.5 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	(AU)-[ENV]AN433/AN Result <0.1 <0.1 <0.1 <0.1 <0.1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <
Sample Number		TRH C10-C36 Total Parameter 2,2-dichloropropane 1,2-dichloropropane cis-1,3-dichloropropene trans-1,3-dichloropropene 1,2-dibromoethane (EDB) Dichlorodifluoromethane (CFC-12) Chloromethane Vinyl chloride (Chloroethene) Bromomethane Chloroethane Trichlorofluoromethane Iodomethane 1,1-dichloroethene Dichloromethane (Methylene chloride) Allyl chloride trans-1,2-dichloroethene 1,1-dichloroethene	Units mg/kg	Method: ME- LOR 0.1 0.1 0.1 0.1 1 1 1 1 1 1 1 1 5 0.1 0.5 0.1 0.1 0.1 0.1 0.5 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	(AU)-[ENV]AN433/AN Result <0.1 <0.1 <0.1 <0.1 <0.1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <
Sample Number		TRH C10-C36 Total Parameter 2,2-dichloropropane 1,2-dichloropropane cis-1,3-dichloropropene trans-1,3-dichloropropene 1,2-dibromoethane (EDB) Dichlorodifluoromethane (CFC-12) Chloromethane Vinyl chloride (Chloroethene) Bromomethane Chloroethane Trichlorofluoromethane Iodomethane 1,1-dichloroethene Dichloromethane (Methylene chloride) Allyl chloride trans-1,2-dichloroethene 1,1-dichloroethene internet 1,2-dichloroethene cis-1,2-dichloroethene internet internet Allyl chloride trans-1,2-dichloroethene internet internet	Units mg/kg mg/kg g/kg mg/kg	Method: ME- LOR 0.1 0.1 0.1 0.1 1 1 1 1 1 5 0.1 0.5 0.1 0.1 0.1 0.5 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	(AU)-[ENV]AN433/AN Result <0.1 <0.1 <0.1 <0.1 <0.1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

ole Number		Parameter	Units	LOR	Result
808.001	Halogenated Aliphatics	1,1-dichloropropene	mg/kg	0.1	<0.1
	··g-··	Carbon tetrachloride	mg/kg	0.1	<0.1
		Dibromomethane	mg/kg	0.1	<0.1
		Trichloroethene (Trichloroethylene -TCE)	mg/kg	0.1	<0.1
		1,1,2-trichloroethane	mg/kg	0.1	<0.1
		1,3-dichloropropane	mg/kg	0.1	<0.1
				0.1	<0.1
		Tetrachloroethene (Perchloroethylene,PCE) 1,1,1,2-tetrachloroethane	mg/kg	0.1	<0.1
			mg/kg		
		cis-1,4-dichloro-2-butene	mg/kg	1	<1
		1,1,2,2-tetrachloroethane	mg/kg	0.1	<0.1
		1,2,3-trichloropropane	mg/kg	0.1	<0.1
		trans-1,4-dichloro-2-butene	mg/kg	1	<1
		1,2-dibromo-3-chloropropane	mg/kg	0.1	<0.1
		Hexachlorobutadiene	mg/kg	0.1	<0.1
	Halogenated Aromatics	Chlorobenzene	mg/kg	0.1	<0.1
		Bromobenzene	mg/kg	0.1	<0.1
		2-chlorotoluene	mg/kg	0.1	<0.1
		4-chlorotoluene	mg/kg	0.1	<0.1
		1,3-dichlorobenzene	mg/kg	0.1	<0.1
		1,4-dichlorobenzene	mg/kg	0.1	<0.1
		1,2-dichlorobenzene	mg/kg	0.1	<0.1
		1,2,4-trichlorobenzene	mg/kg	0.1	<0.1
		1,2,3-trichlorobenzene	mg/kg	0.1	<0.1
	Monocyclic Aromatic	Benzene	mg/kg	0.1	<0.1
	Hydrocarbons	Toluene	mg/kg	0.1	<0.1
	Tyurocarbons	Ethylbenzene	mg/kg	0.1	<0.1
				0.2	<0.1
		m/p-xylene	mg/kg		
		o-xylene	mg/kg	0.1	<0.1
		Styrene (Vinyl benzene)	mg/kg	0.1	<0.1
		Isopropylbenzene (Cumene)	mg/kg	0.1	<0.1
		n-propylbenzene	mg/kg	0.1	<0.1
		1,3,5-trimethylbenzene	mg/kg	0.1	<0.1
		tert-butylbenzene	mg/kg	0.1	<0.1
		1,2,4-trimethylbenzene	mg/kg	0.1	<0.1
		sec-butylbenzene	mg/kg	0.1	<0.1
		p-isopropyltoluene	mg/kg	0.1	<0.1
		n-butylbenzene	mg/kg	0.1	<0.1
	Nitrogenous Compounds	Acrylonitrile	mg/kg	0.1	<0.1
		2-nitropropane	mg/kg	10	<10
	Oxygenated Compounds	Acetone (2-propanone)	mg/kg	10	<10
		MtBE (Methyl-tert-butyl ether)	mg/kg	0.1	<0.1
		Vinyl acetate	mg/kg	10	<10
		MEK (2-butanone)	mg/kg	10	<10
		MIBK (4-methyl-2-pentanone)	mg/kg	1	<1
		2-hexanone (MBK)	mg/kg	5	<5
	Polycyclic VOCs	Naphthalene	mg/kg	0.1	<0.1
	Sulphonated	Carbon disulfide	mg/kg	0.5	<0.1
				-	74
	Surrogates	Dibromofluoromethane (Surrogate)			
		d4-1,2-dichloroethane (Surrogate)	%	-	74
		d8-toluene (Surrogate)	%	-	85
		Bromofluorobenzene (Surrogate)	%	-	89
	Totals	Total BTEX	mg/kg	0.6	<0.6
	Trihalomethanes	Chloroform	mg/kg	0.1	<0.1
		Bromodichloromethane	mg/kg	0.1	<0.1
		Chlorodibromomethane	mg/kg	0.1	<0.1
		Bromoform	mg/kg	0.1	<0.1

SE149872 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Volatile Petroleum Hydrocarbons in Soil (continued)

Method: ME-(AU)-[ENV]AN433/AN434/AN410

Sample Number		Parameter	Units	LOR	Result
LB096808.001		TRH C6-C9	mg/kg	20	<20
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	73
		d4-1,2-dichloroethane (Surrogate)	%	-	73
		d8-toluene (Surrogate)	%	-	71

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury in Soil

Mercury in Soil Method: ME-(AU)-[EN							ENVJAN312
Original	Duplicate	Parameter	Units LO	R Original	Duplicate	Criteria %	RPD %
SE149872.004	LB096999.014	Mercury	mg/kg 0.0	0.10	0.08	88	22
SE149889.002	LB096999.024	Mercury	mg/kg 0.0	0.023745786	80.0191470981	200	0

Moisture Content

Moisture Content Method: ME-(AU)-[ENV						ENVJAN002		
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE149872.001	LB096778.011	% Moisture	%w/w	0.5	19	17	36	9
SE149887.005	LB096778.022	% Moisture	%w/w	0.5	22.711864406	21.5170278637	35	5
SE149889.007	LB096778.030	% Moisture	%w/w	0.5	13.525179856	13.3223684210	37	2

OC Pesticides in Soil

riginal	Duplicate		Parameter	Units	LOR	Original	Duplica te	Criteria %	RPD %
E149919.003	LB096814.026		Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	0	200	0
			Alpha BHC	mg/kg	0.1	<0.1	0	200	0
			Lindane	mg/kg	0.1	<0.1	0	200	0
			Heptachlor	mg/kg	0.1	<0.1	0	200	0
			Aldrin	mg/kg	0.1	<0.1	0	200	0
			Beta BHC	mg/kg	0.1	<0.1	0	200	0
			Delta BHC	mg/kg	0.1	<0.1	0	200	0
			Heptachlor epoxide	mg/kg	0.1	<0.1	0	200	0
			o,p'-DDE	mg/kg	0.1	<0.1	0	200	0
			Alpha Endosulfan	mg/kg	0.2	<0.2	0	200	0
			Gamma Chlordane	mg/kg	0.1	<0.1	0	200	0
			Alpha Chlordane	mg/kg	0.1	<0.1	0	200	0
			trans-Nonachlor	mg/kg	0.1	<0.1	0	200	0
			p,p'-DDE	mg/kg	0.1	<0.1	0	200	0
			Dieldrin	mg/kg	0.2	<0.2	0	200	0
			Endrin	mg/kg	0.2	<0.2	0	200	0
			o,p'-DDD	mg/kg	0.1	<0.1	0	200	0
			o,p'-DDT	mg/kg	0.1	<0.1	0	200	0
			Beta Endosulfan	mg/kg	0.2	<0.2	0	200	0
			p,p'-DDD	mg/kg	0.1	<0.1	0	200	0
			p,p'-DDT	mg/kg	0.1	<0.1	0	200	0
			Endosulfan sulphate	mg/kg	0.1	<0.1	0	200	0
			Endrin Aldehyde	mg/kg	0.1	<0.1	0	200	0
			Methoxychlor	mg/kg	0.1	<0.1	0	200	0
			Endrin Ketone	mg/kg	0.1	<0.1	0	200	0
			Isodrin	mg/kg	0.1	<0.1	0	200	0
			Mirex	mg/kg	0.1	<0.1	0	200	0
	Su	irrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.13	0.133	30	1

Original Duplicate Parameter Units Original Duplicate Criteria % RPD % SE149917.004 LB096814.028 Dichlorvos mg/kg 0.5 < 0.5 0.05 200 0 Dimethoate 0.5 <0.5 0 200 0 mg/kg Diazinon (Dimpylate) 0.5 <0.5 0.02 200 0 mg/kg Fenitrothion mg/kg 0.2 < 0.2 0 200 0 Malathion 0.2 <0.2 0 200 0 mg/kg Chlorpyrifos (Chlorpyrifos Ethyl) 0.2 <0.2 0.01 200 0 mg/kg Parathion-ethyl (Parathion) mg/kg 0.2 <0.2 0.08 200 0 Bromophos Ethyl 0.2 <0.2 0 200 0 mg/kg Methidathion 0.5 <0.5 0 200 0 mg/kg Ethion mg/kg 0.2 <0.2 0.01 200 0 Azinphos-methyl (Guthion) 0.2 <0.2 0 200 0 mg/kg Surrogates 2-fluorobiphenyl (Surrogate) 0.5 0.43 30 mg/kg 5 0.6 0.56 30 d14-p-terphenyl (Surrogate) mg/kg 0 LB096814 026 SE149919.003 Dichlorvos 0.5 <0.5 0.05 200 0 mg/kg Dimethoate 0.5 <0.5 0 200 0 mg/kg 0.5 <0.5 0.08 200 Diazinon (Dimpylate) mg/kg 0 Fenitrothion mg/kg 0.2 <0.2 0 200 0 Malathion 0.2 <0.2 200 mg/kg 0 0

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

or resucides in c	oil (continued)						Method: ME	-(AU)-[ENV]A	N400/AN4
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE149919.003	LB096814.026		Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	0.01	200	0
			Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	0	200	0
			Bromophos Ethyl	mg/kg	0.2	<0.2	0	200	0
			Methidathion	mg/kg	0.5	<0.5	0	200	0
			Ethion	mg/kg	0.2	<0.2	0	200	0
			Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	0	200	0
		Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.43	30	2
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.54	30	0
AH (Polynuclear	Aromatic Hydrocarb	ons) in Soil					Mett	nod: ME-(AU)-	[ENV]AN4
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE149874.005	LB096814.014		Naphthalene	mg/kg	0.1	<0.1	<0.1	200	0
			2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	200	0
			1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	200	0
			Acenaphthylene	mg/kg	0.1	<0.1	<0.1	200	0
			Acenaphthene	mg/kg	0.1	<0.1	<0.1	200	0
			Fluorene	mg/kg	0.1	<0.1	<0.1	200	0
			Phenanthrene	mg/kg	0.1	<0.1	<0.1	200	0
			Anthracene	mg/kg	0.1	<0.1	<0.1	200	0
			Fluoranthene	mg/kg	0.1	<0.1	<0.1	200	0
			Pyrene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	200	0
			Chrysene	mg/kg	0.1	<0.1	<0.1	200	0
					0.1	<0.1	<0.1	200	0
			Benzo(b&j)fluoranthene	mg/kg					0
			Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	200	
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	200	0
			Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	200	0
			Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td>200</td><td>0</td></lor=0<>	TEQ (mg/kg)	0.2	<0.2	<0.2	200	0
			Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td><td>134</td><td>0</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	<0.3	134	0
			Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td>175</td><td>0</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	175	0
		-	Total PAH (18)	mg/kg	0.8	<0.8	<0.8	200	0
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.4	0.4	30	0
			2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.5	30	2
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.6	0.5	30	4
SE149919.003	LB096814.026		Naphthalene	mg/kg	0.1	<0.1	0	200	0
			2-methylnaphthalene	mg/kg	0.1	<0.1	0	200	0
			1-methylnaphthalene	mg/kg	0.1	<0.1	0	200	0
			Acenaphthylene	mg/kg	0.1	<0.1	0	200	0
			Acenaphthene	mg/kg	0.1	<0.1	0	200	0
			Fluorene	mg/kg	0.1	<0.1	0	200	0
			Phenanthrene	mg/kg	0.1	<0.1	0	200	0
			Anthracene	mg/kg	0.1	<0.1	0	200	0
			Fluoranthene	mg/kg	0.1	<0.1	0	200	0
			Pyrene	mg/kg	0.1	<0.1	0	200	0
			Benzo(a)anthracene	mg/kg	0.1	<0.1	0	200	0
			Chrysene	mg/kg	0.1	<0.1	0	200	0
			Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	0	200	0
			Benzo(k)fluoranthene	mg/kg	0.1	<0.1	0	200	0
			Benzo(a)pyrene	mg/kg	0.1	<0.1	0	200	0
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	0	200	0
			Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	0	200	0
			Benzo(ghi)perylene	mg/kg	0.1	<0.1	0	200	0
			Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td>0</td><td>200</td><td>0</td></lor=0<>	TEQ (mg/kg)	0.2	<0.2	0	200	0
			-	TEQ (mg/kg)	0.3	<0.3	0.242	134	0
			Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td></td><td></td><td></td><td></td><td></td><td>•</td></lor=lor<>						•
			Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td></td><td>0.2</td><td></td><td></td><td>175</td><td>0</td></lor=lor<>		0.2			175	0
			Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td>0.121</td><td>175</td><td>0</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	0.121	175	0
		Surrogates	Carcinogenic PAHs, BaP TEQ <lor=lor 2<br="">Total PAH (18)</lor=lor>	TEQ (mg/kg) mg/kg	0.8	<0.2 <0.8	0.121 0	200	0
		Surrogates	Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td></td><td><0.2</td><td>0.121</td><td></td><td></td></lor=lor>	TEQ (mg/kg)		<0.2	0.121		

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

PCBs in Soil							Method: ME-(/	AU)-[ENV]A	. <mark>N400/A</mark> N
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD
SE149919.003	LB096814.026		Arochlor 1016	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1221	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1232	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1242	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1248	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1254	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1260		0.2	<0.2	0	200	0
				mg/kg					
			Arochlor 1262	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1268	mg/kg	0.2	<0.2	0	200	0
			Total PCBs (Arochlors)	mg/kg	1	<1	0	200	0
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0	0.133	30	1
otal Recoverable	Metals in Soil by ICP	POES					Method: ME-(/	AU)-[ENV]A	N040/A
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD
SE149872.003	LB097014.014		Arsenic, As	mg/kg	3	10	11	40	15
			Cadmium, Cd	mg/kg	0.3	0.4	0.5	95	24
			Chromium, Cr	mg/kg	0.3	6.9	8.0	37	14
			Copper, Cu	mg/kg	0.5	31	35	32	12
			Lead, Pb	mg/kg	1	21	21	35	0
			Nickel, Ni	mg/kg	0.5	<0.5	<0.5	200	0
			Zinc, Zn	mg/kg	0.5	5.7	6.2	64	9
SE149887.005	LB097014.023		Arsenic, As	mg/kg	3		77.3036309855	36	3
			Cadmium, Cd	mg/kg	0.3	0.794436261	60.7420641514	69	7
			Chromium, Cr	mg/kg	0.3	28.251972593	25.7827077028	32	9
			Copper, Cu	mg/kg	0.5	13.43576525	207.4716122463	30	15
			Lead, Pb	mg/kg	1	43.70683315	340.708247826	30	33 (
			Nickel, Ni	mg/kg	0.5	18.814714803	1 8.8973157391	33	0
			Zinc, Zn	mg/kg	0.5	05.86198393	38.842406521	31	10
RH (Total Recov	erable Hydrocarbons)) in Soil					Metho	d: ME-(AU)-	IENVIA
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate		
SE149874.005	LB096814.014		TRH C10-C14		20	<20	<20	200	0
SE149674.005	LD090014.014			mg/kg					
			TRH C15-C28	mg/kg	45	<45	<45	200	0
			TRH C29-C36	mg/kg	45	<45	<45	200	0
			TRH C37-C40						
				mg/kg	100	<100	<100	200	
			TRH C10-C36 Total	mg/kg	100	<100 <110	<100 <110	200 200	
			TRH C10-C36 Total TRH C10-C40 Total						0
		TRH F Bands		mg/kg	110	<110	<110	200	0 0 0
		TRH F Bands	TRH C10-C40 Total	mg/kg mg/kg	110 210	<110 <210	<110 <210	200 200	0
		TRH F Bands	TRH C10-C40 Total TRH >C10-C16 (F2)	mg/kg mg/kg mg/kg	110 210 25	<110 <210 <25	<110 <210 <25	200 200 200	0 0 0
		TRH F Bands	TRH C10-C40 Total TRH >C10-C16 (F2) TRH >C10-C16 (F2) - Naphthalene	mg/kg mg/kg mg/kg mg/kg	110 210 25 25	<110 <210 <25 <25	<110 <210 <25 <25	200 200 200 200	0 0 0
SE149919.003	LB096814.026	TRH F Bands	TRH C10-C40 Total TRH >C10-C16 (F2) TRH >C10-C16 (F2) - Naphthalene TRH >C16-C34 (F3) TRH >C34-C40 (F4)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	110 210 25 25 90 120	<110 <210 <25 <25 <90 <120	<110 <210 <25 <25 <90 <120	200 200 200 200 200 200 200	0 0 0 0
SE149919.003	LB096814.026	TRH F Bands	TRH C10-C40 Total TRH >C10-C16 (F2) TRH >C10-C16 (F2) - Naphthalene TRH >C16-C34 (F3) TRH >C34-C40 (F4) TRH C10-C14	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	110 210 25 25 90 120 20	<110 <210 <25 <25 <90 <120 <20	<110 <210 <25 <25 <90 <120 0	200 200 200 200 200 200 200 200	0 0 0 0 0 0 0
SE149919.003	LB096814.026	TRH F Bands	TRH C10-C40 Total TRH >C10-C16 (F2) TRH >C10-C16 (F2) - Naphthalene TRH >C16-C34 (F3) TRH >C34-C40 (F4) TRH C10-C14 TRH C15-C28	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	110 210 25 25 90 120 20 45	<110 <210 <25 <25 <90 <120 <20 <45	<110 <210 <25 <25 <90 <120 0 0	200 200 200 200 200 200 200 200 200	0 0 0 0 0 0 0 0 0
SE149919.003	LB096814.026	TRH F Bands	TRH C10-C40 Total TRH >C10-C16 (F2) TRH >C10-C16 (F2) - Naphthalene TRH >C16-C34 (F3) TRH >C34-C40 (F4) TRH C10-C14 TRH C15-C28 TRH C29-C36	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	110 210 25 25 90 120 20 45 45	<110 <210 <25 <25 <90 <120 <20 <45 <45	<110 <210 <25 <25 <90 <120 0 0 0 0	200 200 200 200 200 200 200 200 200 200	0 0 0 0 0 0 0 0 0 0
SE149919.003	LB096814.026	TRH F Bands	TRH C10-C40 Total TRH >C10-C16 (F2) TRH >C10-C16 (F2) - Naphthalene TRH >C16-C34 (F3) TRH >C34-C40 (F4) TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	110 210 25 25 90 120 20 45 45 45	<110 <210 <25 <25 <90 <120 <20 <45 <45 <100	<110 <210 <25 <25 <90 <120 0 0 0 0 0 0	200 200 200 200 200 200 200 200 200 200	0 0 0 0 0 0 0 0 0 0 0 0
SE149919.003	LB096814.026	TRH F Bands	TRH C10-C40 Total TRH >C10-C16 (F2) TRH >C10-C16 (F2) - Naphthalene TRH >C16-C34 (F3) TRH >C34-C40 (F4) TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	110 210 25 25 90 120 20 45 45 45 100 110	<110 <210 <25 <25 <90 <120 <20 <45 <45 <100 <110	<110 <210 <25 <25 <90 <120 0 0 0 0 0 0 0 0 0	200 200 200 200 200 200 200 200 200 200	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SE149919.003	LB096814.026		TRH C10-C40 Total TRH >C10-C16 (F2) TRH >C10-C16 (F2) - Naphthalene TRH >C16-C34 (F3) TRH >C34-C40 (F4) TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH C10-C40 Total	mg/kg	110 210 25 25 90 120 20 45 45 100 110 210	<110 <210 <25 <25 <90 <120 <20 <45 <45 <100 <110 <210	<110 <210 <25 <25 <90 <120 0 0 0 0 0 0 0 0 0 0 0 0 0	200 200 200 200 200 200 200 200 200 200	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SE149919.003	LB096814.026	TRH F Bands	TRH C10-C40 Total TRH >C10-C16 (F2) TRH >C10-C16 (F2) - Naphthalene TRH >C16-C34 (F3) TRH >C34-C40 (F4) TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C10-C36 Total TRH C10-C40 Total TRH C10-C40 Total TRH C10-C40 Total	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	110 210 25 25 90 120 20 45 45 100 110 210 25	<110 <210 <25 <25 <90 <120 <20 <45 <45 <100 <110 <210 <25	<110 <210 <25 <25 <90 <120 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	200 200 200 200 200 200 200 200 200 200	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SE149919.003	LB096814.026		TRH C10-C40 Total TRH >C10-C16 (F2) TRH >C10-C16 (F2) - Naphthalene TRH >C16-C34 (F3) TRH >C34-C40 (F4) TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH C10-C26 (F2) TRH C10-C26 (F2)	mg/kg	110 210 25 25 90 120 20 45 45 100 110 210 25 25	<110 <210 <25 <25 <90 <120 <20 <45 <45 <100 <110 <210 <25 <25	<110 <210 <25 <25 <90 <120 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	200 200 200 200 200 200 200 200 200 200	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SE149919.003	LB096814.026		TRH C10-C40 Total TRH >C10-C16 (F2) TRH >C10-C16 (F2) - Naphthalene TRH >C16-C34 (F3) TRH >C34-C40 (F4) TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C10-C36 Total TRH C10-C40 Total TRH C10-C40 Total TRH C10-C40 Total	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	110 210 25 25 90 120 20 45 45 100 110 210 25	<110 <210 <25 <25 <90 <120 <20 <45 <45 <100 <110 <210 <25	<110 <210 <25 <25 <90 <120 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	200 200 200 200 200 200 200 200 200 200	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SE149919.003	LB096814.026		TRH C10-C40 Total TRH >C10-C16 (F2) TRH >C10-C16 (F2) - Naphthalene TRH >C16-C34 (F3) TRH >C34-C40 (F4) TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH C10-C26 (F2) TRH C10-C26 (F2)	mg/kg	110 210 25 25 90 120 20 45 45 100 110 210 25 25	<110 <210 <25 <25 <90 <120 <20 <45 <45 <100 <110 <210 <25 <25	<110 <210 <25 <25 <90 <120 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	200 200 200 200 200 200 200 200 200 200	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	LB096814.026		TRH C10-C40 Total TRH >C10-C16 (F2) TRH >C10-C16 (F2) - Naphthalene TRH >C16-C34 (F3) TRH >C34-C40 (F4) TRH C10-C14 TRH C15-C28 TRH C37-C40 TRH C10-C36 Total TRH >C10-C16 (F2) TRH >C10-C16 (F2) TRH >C10-C16 (F2) TRH >C10-C34 (F3)	mg/kg	110 210 25 25 90 120 20 45 45 45 400 110 210 25 25 90	<110 <210 <25 <25 <90 <120 <20 <45 <45 <100 <110 <210 <25 <25 <90	<110 <210 <25 <25 <90 <120 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	200 200 200 200 200 200 200 200 200 200	
'OC's in Soil			TRH C10-C40 Total TRH >C10-C16 (F2) TRH >C10-C16 (F2) - Naphthalene TRH >C16-C34 (F3) TRH >C34-C40 (F4) TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C10-C36 Total TRH C10-C40 Total TRH >C10-C40 Total TRH >C10-C16 (F2) TRH >C10-C16 (F2) - Naphthalene TRH >C16-C34 (F3) TRH >C34-C40 (F4)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	110 210 25 25 90 120 20 45 45 45 100 110 210 25 25 90 120	<110 <210 <25 <25 <90 <120 <20 <45 <45 <100 <110 <210 <25 <25 <25 <90 <120	<110 <210 <25 <90 <120 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	200 002 002 002 002 002 002 002 002 002	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
' <mark>'OC's in Soil</mark> Original	Duplicate	TRH F Bands	TRH C10-C40 Total TRH >C10-C16 (F2) TRH >C10-C16 (F2) - Naphthalene TRH >C16-C34 (F3) TRH >C34-C40 (F4) TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C10-C36 Total TRH C10-C40 Total TRH C10-C40 Total TRH C10-C46 (F2) TRH C10-C46 (F2) TRH C10-C46 (F2) TRH >C10-C46 (F2) TRH >C10-C40 (F4)	mg/kg	110 210 25 25 90 120 20 45 45 45 45 100 110 210 25 25 90 120 LOR	<110 <210 <25 <25 <90 <120 <20 <45 <45 <100 <110 <210 <25 <25 <90 <120 <720 <725 <725 <90 <720	<110 <210 <25 <90 <120 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	200 200 200 200 200 200 200 200 200 200	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
' <mark>'OC's in Soil</mark> Original			TRH C10-C40 Total TRH >C10-C16 (F2) TRH >C10-C16 (F2) - Naphthalene TRH >C16-C34 (F3) TRH >C34-C40 (F4) TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C10-C36 Total TRH C10-C616 (F2) TRH C10-C616 (F2) TRH >C10-C16 (F2) TRH >C10-C616 (F2) Z,2-dichloropropane	mg/kg	110 210 25 25 90 120 20 45 45 45 100 110 210 25 25 90 120 LOR 0.1	<110 <210 <25 <25 <90 <120 <20 <45 <45 <100 <110 <210 <25 <25 <90 <120	<110 <210 <25 <90 <120 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	200 200 200 200 200 200 200 200 200 200	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SE149919.003 'OC's in Soil Original SE149876.001	Duplicate	TRH F Bands	TRH C10-C40 Total TRH >C10-C16 (F2) TRH >C10-C16 (F2) - Naphthalene TRH >C16-C34 (F3) TRH >C34-C40 (F4) TRH C10-C14 TRH C15-C28 TRH C37-C40 TRH C10-C36 Total TRH >C10-C16 (F2) TRH C10-C36 Total TRH >C10-C16 (F2) TRH >C10-C16 (F2) TRH >C10-C34 (F3) TRH >C10-C40 Total	mg/kg	110 210 25 25 90 120 20 45 45 45 100 100 210 25 25 90 120 120 20 45 45 45 100 100 20 45 45 45 100 100 100 100 100 100 100 10	<110 <210 <25 <25 <90 <120 <20 <45 <45 <100 <110 <210 <25 <25 <90 <120 < Original <0.1 <0.1	<110 <210 <25 <90 <120 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	200 200 200 200 200 200 200 200 200 200	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
' <mark>'OC's in Soil</mark> Original	Duplicate	TRH F Bands	TRH C10-C40 Total TRH >C10-C16 (F2) TRH >C10-C16 (F2) - Naphthalene TRH >C16-C34 (F3) TRH >C16-C34 (F3) TRH C10-C14 TRH C15-C28 TRH C37-C40 TRH C10-C36 Total TRH >C10-C16 (F2) TRH >C10-C16 (F2) TRH >C10-C16 (F2) TRH >C10-C34 (F3) TRH >C10-C40 (F4)	mg/kg	110 210 25 25 90 120 20 45 45 45 100 110 210 25 25 90 120 120 0.1 0.1 0.1	<110 <210 <25 <25 <90 <120 <20 <45 <45 <100 <110 <2210 <25 <25 <90 <120	<110 <210 <25 <90 <120 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	200 200 200 200 200 200 200 200 200 200	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
' <mark>'OC's in Soil</mark> Original	Duplicate	TRH F Bands	TRH C10-C40 Total TRH >C10-C16 (F2) TRH >C10-C16 (F2) - Naphthalene TRH >C16-C34 (F3) TRH >C34-C40 (F4) TRH C10-C14 TRH C15-C28 TRH C37-C40 TRH C10-C36 Total TRH >C10-C16 (F2) TRH C10-C36 Total TRH >C10-C16 (F2) TRH >C10-C16 (F2) TRH >C10-C34 (F3) TRH >C10-C40 Total	mg/kg	110 210 25 25 90 120 20 45 45 45 100 100 210 25 25 90 120 120 20 45 45 45 100 100 20 45 45 45 100 100 100 100 100 100 100 10	<110 <210 <25 <25 <90 <120 <20 <45 <45 <100 <110 <210 <25 <25 <90 <120 < Original <0.1 <0.1	<110 <210 <25 <90 <120 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	200 200 200 200 200 200 200 200 200 200	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
' <mark>OC's in Soll</mark> Driginal	Duplicate	TRH F Bands	TRH C10-C40 Total TRH >C10-C16 (F2) TRH >C10-C16 (F2) - Naphthalene TRH >C16-C34 (F3) TRH >C16-C34 (F3) TRH C10-C14 TRH C15-C28 TRH C37-C40 TRH C10-C36 Total TRH >C10-C16 (F2) TRH >C10-C16 (F2) TRH >C10-C16 (F2) TRH >C10-C34 (F3) TRH >C10-C40 (F4)	mg/kg	110 210 25 25 90 120 20 45 45 45 100 110 210 25 25 90 120 120 0.1 0.1 0.1	<110 <210 <25 <25 <90 <120 <20 <45 <45 <100 <110 <2210 <25 <25 <90 <120	<110 <210 <25 <90 <120 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	200 200 200 200 200 200 200 200 200 200	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
' <mark>OC's in Soll</mark> Driginal	Duplicate	TRH F Bands	TRH C10-C40 Total TRH >C10-C16 (F2) TRH >C10-C16 (F2) - Naphthalene TRH >C16-C34 (F3) TRH >C16-C34 (F3) TRH C10-C14 TRH C19-C36 TRH C37-C40 TRH C10-C36 Total TRH >C10-C16 (F2) TRH >C10-C16 (F2) TRH >C10-C16 (F2) TRH >C10-C34 (F3) TRH >C10-C40 (F4)	mg/kg	110 210 25 25 90 120 20 45 45 45 100 210 25 25 90 120 LOR 0.1 0.1 0.1 0.1	<110 <210 <25 <25 <90 <120 <20 <45 <100 <110 <210 <25 <25 <90 <120 Original <0.1 <0.1 <0.1 <0.1	<110 <210 <25 <25 <90 <120 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	200 200 200 200 200 200 200 200 200 200	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
<mark>OC's in Soil</mark> Driginal	Duplicate	TRH F Bands	TRH C10-C40 Total TRH >C10-C16 (F2) TRH >C10-C16 (F2) - Naphthalene TRH >C16-C34 (F3) TRH >C16-C34 (F3) TRH C10-C14 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH >C10-C16 (F2) TRH >C10-C40 Total TRH >C10-C16 (F2) TRH >C10-C16 (F2) TRH >C10-C40 (F4)	mg/kg	110 210 25 25 90 120 20 45 45 100 110 210 25 25 90 120 LOR 0.1 0.1 0.1 0.1	<110 <210 <25 <25 <90 <120 <20 <45 <120 <120 <110 <210 <210 <25 <25 <90 <120	<110 <210 <25 <25 <90 <120 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	200 200 200 200 200 200 200 200 200 200	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
<mark>OC's in Soll</mark> Driginal	Duplicate	TRH F Bands Fumigants Halogenated	TRH C10-C40 Total TRH >C10-C16 (F2) TRH >C10-C16 (F2) - Naphthalene TRH >C16-C34 (F3) TRH >C16-C34 (F3) TRH C10-C14 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH >C10-C16 (F2) TRH C10-C36 Total TRH >C10-C16 (F2) TRH >C10-C16 (F2) - Naphthalene TRH >C10-C16 (F2) - Naphthalene TRH >C10-C40 Total TRH >C10-C16 (F2) - Naphthalene TRH >C10-C40 (F4) Parameter 2.2-dichloropropane 1.2-dichloropropane cis-1.3-dichloropropene trans-1.3-dichloropropene 1.2-dibromoethane (EDB) Dichlorodifluoromethane (CFC-12)	mg/kg mg/kg	110 210 25 25 90 120 20 45 45 100 110 210 25 25 90 120 LOR 0.1 0.1 0.1 0.1 10.1 10 11 0.1 10 11 10 10 10 10 10 10 10 1	<110 <210 <25 <25 <90 <120 <20 <45 <120 <120 <110 <210 <25 <25 <90 <120	<110 <210 <25 <90 <120 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	200 200 200 200 200 200 200 200 200 200	() () () () () () () () () () () () () (

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD ^o
SE149876.001	LB096808.010	Halogenated	Bromomethane	mg/kg	1	<1	<1	200	0
52143070.001	22000000.010	Aliphatics	Chloroethane	mg/kg	1	<1	<1	200	0
		hiphadoo	Trichlorofluoromethane	mg/kg	1	<1	<1	200	0
			Iodomethane	mg/kg	5	<5	<5	200	0
			1,1-dichloroethene	mg/kg	0.1	<0.1	<0.1	200	0
			Dichloromethane (Methylene chloride)	mg/kg	0.5	<0.5	<0.5	200	0
			Allyl chloride	mg/kg	0.1	<0.1	<0.1	200	0
			trans-1,2-dichloroethene	mg/kg	0.1	<0.1	<0.1	200	0
			1,1-dichloroethane	mg/kg	0.1	<0.1	<0.1	200	0
			cis-1,2-dichloroethene	mg/kg	0.1	<0.1	<0.1	200	0
			Bromochloromethane	mg/kg	0.1	<0.1	<0.1	200	0
			1,2-dichloroethane	mg/kg	0.1	<0.1	<0.1	200	0
			1,1,1-trichloroethane	mg/kg	0.1	<0.1	<0.1	200	0
			1,1-dichloropropene	mg/kg	0.1	<0.1	<0.1	200	0
			Carbon tetrachloride	mg/kg	0.1	<0.1	<0.1	200	0
			Dibromomethane	mg/kg	0.1	<0.1	<0.1	200	0
			Trichloroethene (Trichloroethylene -TCE)	mg/kg	0.1	<0.1	<0.1	200	0
			1,1,2-trichloroethane	mg/kg	0.1	<0.1	<0.1	200	0
			1,3-dichloropropane	mg/kg	0.1	<0.1	<0.1	200	0
			Tetrachloroethene (Perchloroethylene,PCE)	mg/kg	0.1	<0.1	<0.1	200	0
			1,1,1,2-tetrachloroethane	mg/kg	0.1	<0.1	<0.1	200	0
			cis-1,4-dichloro-2-butene	mg/kg	1	<1	<1	200	0
			1,1,2,2-tetrachloroethane	mg/kg	0.1	<0.1	<0.1	200	0
			1,2,3-trichloropropane	mg/kg	0.1	<0.1	<0.1	200	C
			trans-1,4-dichloro-2-butene	mg/kg	1	<1	<1	200	0
			1,2-dibromo-3-chloropropane	mg/kg	0.1	<0.1	<0.1	200	0
			Hexachlorobutadiene	mg/kg	0.1	<0.1	<0.1	200	0
		Halogenated	Chlorobenzene	mg/kg	0.1	<0.1	<0.1	200	0
		Aromatics	Bromobenzene	mg/kg	0.1	<0.1	<0.1	200	0
		, a official of	2-chlorotoluene	mg/kg	0.1	<0.1	<0.1	200	0
			4-chlorotoluene	mg/kg	0.1	<0.1	<0.1	200	0
			1,3-dichlorobenzene	mg/kg	0.1	<0.1	<0.1	200	0
			1,4-dichlorobenzene	mg/kg	0.1	<0.1	<0.1	200	
			1,2-dichlorobenzene	mg/kg	0.1	<0.1	<0.1	200	
			1,2,4-trichlorobenzene	mg/kg	0.1	<0.1	<0.1	200	
			1,2,3-trichlorobenzene		0.1	<0.1	<0.1	200	
		Monocyclic	Benzene	mg/kg	0.1	<0.1	<0.1	200	
		Aromatic		mg/kg		<0.1	<0.1	200	
		Aromatic	Toluene	mg/kg	0.1		<0.1	200	
			Ethylbenzene	mg/kg	0.1	<0.1	<0.1	200	
			m/p-xylene	mg/kg	0.2	<0.2	<0.2	200	
			o-xylene	mg/kg					
			Styrene (Vinyl benzene)	mg/kg	0.1	<0.1	<0.1	200	
			Isopropylbenzene (Cumene)	mg/kg	0.1	<0.1	<0.1	200	(
			n-propylbenzene	mg/kg	0.1	<0.1	<0.1	200	
			1,3,5-trimethylbenzene	mg/kg	0.1	<0.1	<0.1	200	(
			tert-butylbenzene	mg/kg	0.1	<0.1	<0.1	200	(
			1,2,4-trimethylbenzene	mg/kg	0.1	<0.1	<0.1	200	0
			sec-butylbenzene	mg/kg	0.1	<0.1	<0.1	200	0
			p-isopropyltoluene	mg/kg	0.1	<0.1	<0.1	200	(
			n-butylbenzene	mg/kg	0.1	<0.1	<0.1	200	(
		Nitrogenous	Acrylonitrile	mg/kg	0.1	<0.1	<0.1	200	0
		Compounds	2-nitropropane	mg/kg	10	<10	<10	200	(
		Oxygenated	Acetone (2-propanone)	mg/kg	10	<10	<10	200	0
		Compounds	MtBE (Methyl-tert-butyl ether)	mg/kg	0.1	<0.1	<0.1	200	(
			Vinyl acetate	mg/kg	10	<10	<10	200	(
			MEK (2-butanone)	mg/kg	10	<10	<10	200	0
			MIBK (4-methyl-2-pentanone)	mg/kg	1	<1	<1	200	C
			2-hexanone (MBK)	mg/kg	5	<5	<5	200	C
		Polycyclic	Naphthalene	mg/kg	0.1	<0.1	<0.1	200	0
		Sulphonated	Carbon disulfide	mg/kg	0.5	<0.5	<0.5	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	3.7	3.6	50	:

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

OC's in Soil (con	tinuea)						Method: ME-	-(AU)-[ENV]AN	N433/AN43
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE149876.001	LB096808.010	Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	3.6	3.6	50	0
			d8-toluene (Surrogate)	mg/kg	-	3.8	4.2	50	9
			Bromofluorobenzene (Surrogate)	mg/kg	-	4.1	4.6	50	11
		Totals	Total Xylenes*	mg/kg	0.3	<0.3	<0.3	200	0
			Total BTEX	mg/kg	0.6	<0.6	<0.6	200	0
		Trihalomethan	Chloroform	mg/kg	0.1	<0.1	<0.1	200	0
		es	Bromodichloromethane	mg/kg	0.1	<0.1	<0.1	200	0
			Chlorodibromomethane	mg/kg	0.1	<0.1	<0.1	200	0
			Bromoform	mg/kg	0.1	<0.1	<0.1	200	0

Method: ME-(AU)-[ENV]AN400/AN420

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Mercury in Soil Method: ME-(AU)-[ENV]							
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB096999.002	Mercury	mg/kg	0.01	0.20	0.2	70 - 130	99

OC Pesticides in Soil

Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery
_B096814.002		Heptachlor	mg/kg	0.1	0.2	0.2	60 - 140	85
		Aldrin	mg/kg	0.1	0.2	0.2	60 - 140	85
		Delta BHC	mg/kg	0.1	0.2	0.2	60 - 140	91
		Dieldrin	mg/kg	0.2	<0.2	0.2	60 - 140	87
		Endrin	mg/kg	0.2	<0.2	0.2	60 - 140	84
		p,p'-DDT	mg/kg	0.1	0.2	0.2	60 - 140	91
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.12	0.15	40 - 130	83
P Pesticides in So	lic					Method:	ME-(AU)-[EN\	/JAN400/AN
Sample Number		Parameter	Units	LOR	Result	Expected	Recovery	
LB096814.002		Dichlorvos	mg/kg	0.5	1.5	2	60 - 140	73
		Diazinon (Dimpylate)	mg/kg	0.5	2.1	2	60 - 140	107
		Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	2.2	2	60 - 140	109
		Ethion	mg/kg	0.2	1.8	2	60 - 140	92
	Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.5	40 - 130	88
	Surrogates	2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate)	mg/kg mg/kg	-	0.4 0.5	0.5	40 - 130 40 - 130	88 104
AH (Polynuclear A		d14-p-terphenyl (Surrogate)				0.5		104
' <mark>AH (Polynuclear A</mark> Sample Number		d14-p-terphenyl (Surrogate)				0.5	40 - 130	104 U)-[ENV]AN
		d14-p-terphenyl (Surrogate) arbons) in Soil	mg/kg	-	0.5	0.5	40 - 130 Method: ME-(A	104 U)-[ENV]A N
Sample Number		d14-p-terphenyl (Surrogate) arbons) in Soll Parameter	mg/kg Units	LOR	0.5 Result	0.5 Expected	40 - 130 Method: ME-(A Criteria %	104 U)-[ENV]AN Recovery
Sample Number		d14-p-terphenyl (Surrogate) arbons) in Soll Parameter Naphthalene	mg/kg Units mg/kg	- LOR 0.1	0.5 Result 4.7	0.5 Expected 4	40 - 130 Method: ME-(A Criteria % 60 - 140	104 U)-[ENV]AN Recovery 117
Sample Number		d14-p-terphenyl (Surrogate) arbons) in Soll Parameter Naphthalene Acenaphthylene	mg/kg Units mg/kg mg/kg	LOR 0.1 0.1	0.5 Result 4.7 4.7	0.5 Expected 4 4	40 - 130 Method: ME-(A Criteria % 60 - 140 60 - 140	104 U)-[ENV]AN Recovery 117 119
Sample Number		d14-p-terphenyl (Surrogate) arbons) in Soll Parameter Naphthalene Acenaphthylene Acenaphthene	mg/kg Units mg/kg mg/kg mg/kg	LOR 0.1 0.1 0.1	0.5 Result 4.7 4.7 4.5	0.5 Expected 4 4 4	40 - 130 Method: ME-(A Criteria % 60 - 140 60 - 140 60 - 140	104 U)-[ENV]AN Recovery 117 119 112
Sample Number		d14-p-terphenyl (Surrogate) arbons) in Soli Parameter Naphthalene Acenaphthylene Acenaphthene Phenanthrene	mg/kg Units mg/kg mg/kg mg/kg mg/kg	LOR 0.1 0.1 0.1 0.1	0.5 Result 4.7 4.7 4.5 4.6	0.5 Expected 4 4 4 4 4	40 - 130 Method: ME-(A Criteria % 60 - 140 60 - 140 60 - 140 60 - 140	104 U)-[ENV]AN Recovery 117 119 112 116
Sample Number		d14-p-terphenyl (Surrogate) arbons) In Soll Parameter Naphthalene Acenaphthylene Acenaphthene Phenanthrene Anthracene	mg/kg Units mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 0.1 0.1 0.1 0.1 0.1	0.5 Result 4.7 4.7 4.5 4.6 4.8	0.5 Expected 4 4 4 4 4 4 4 4	40 - 130 Method: ME-(A Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	104 U)-[ENV]AN Recovery 117 119 112 116 120
Sample Number		d14-p-terphenyl (Surrogate) arbons) In Soll Parameter Naphthalene Acenaphthylene Acenaphthene Phenanthrene Anthracene Fluoranthene	mg/kg Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.5 Result 4.7 4.7 4.5 4.6 4.8 4.8 4.4	0.5 Expected 4 4 4 4 4 4 4 4	40 - 130 Vethod: ME-(A Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	104 U)-[ENV]AN Recovery 117 119 112 116 120 111
Sample Number		d14-p-terphenyl (Surrogate) arbons) In Soll Parameter Naphthalene Acenaphthylene Acenaphthylene Phenanthrene Phenanthrene Fluoranthene Pyrene	mg/kg Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	- LOR 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.5 Result 4.7 4.7 4.5 4.6 4.8 4.4 4.3	0.5 Expected 4 4 4 4 4 4 4 4 4 4	40 - 130 Method: ME-(A Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	104 U)-[ENV]AN Recovery 117 119 112 116 120 111 107
Sample Number	Aromatic Hydroca	d14-p-terphenyl (Surrogate) arbons) In Soll Parameter Naphthalene Acenaphthylene Acenaphthene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)pyrene	mg/kg Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	- LOR 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.5 Result 4.7 4.5 4.6 4.8 4.4 4.3 5.2	0.5 Expected 4 4 4 4 4 4 4 4 4 4 4	40 - 130 Method: ME-(A Criteria % 60 - 140 60 - 140	104 U)-[ENV]AN Recovery 117 119 112 116 120 111 107 130
Sample Number	Aromatic Hydroca	d14-p-terphenyl (Surrogate) arbons) In Soll Parameter Naphthalene Acenaphthylene Acenaphthene Phenanthrene Phenanthrene Fluoranthene Pyrene Benzo(a)pyrene d5-nitrobenzene (Surrogate)	mg/kg Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.5 Result 4.7 4.5 4.6 4.8 4.4 4.3 5.2 0.4	0.5 Expected 4 4 4 4 4 4 4 4 4 4 0.5	40 - 130 Method: ME-(A Criteria % 60 - 140 60 - 140 40 - 130	104 U)-[ENV]AN Recovery 117 119 112 116 120 111 107 130 82
Sample Number	Aromatic Hydroca	d14-p-terphenyl (Surrogate) arbons) In Soll Parameter Naphthalene Acenaphthylene Acenaphthene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)pyrene d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate)	mg/kg Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	- 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 - -	0.5 Result 4.7 4.7 4.5 4.6 4.8 4.4 4.3 5.2 0.4 0.4	0.5 Expected 4 4 4 4 4 4 4 4 0.5 0.5 0.5 0.5	40 - 130 Method: ME-(A Criteria % 60 - 140 60 - 140 40 - 130 40 - 130	104 Recovery 117 119 112 116 120 111 107 130 82 88 104
Sample Number LB096814.002	Aromatic Hydroca	d14-p-terphenyl (Surrogate) arbons) In Soll Parameter Naphthalene Acenaphthylene Acenaphthene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)pyrene d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate)	mg/kg Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	- 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 - -	0.5 Result 4.7 4.7 4.5 4.6 4.8 4.4 4.3 5.2 0.4 0.4	0.5 Expected 4 4 4 4 4 4 4 4 0.5 0.5 0.5 0.5	40 - 130 Method: ME-(A Criteria % 60 - 140 60 - 140 40 - 130 40 - 130 40 - 130	104 U)-[ENV]AN Recovery 117 119 112 116 120 111 107 130 82 88 104

Total Recoverable Metals in Soil by ICPOES

Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB097014.002		Arsenic, As	mg/kg	3	57	50	80 - 120	115
		Cadmium, Cd	mg/kg	0.3	56	50	80 - 120	112
		Chromium, Cr	mg/kg	0.3	50	50	80 - 120	100
		Copper, Cu	mg/kg	0.5	54	50	80 - 120	108
		Lead, Pb	mg/kg	1	56	50	80 - 120	112
		Nickel, Ni	mg/kg	0.5	52	50	80 - 120	104
		Zinc, Zn	mg/kg	0.5	54	50	80 - 120	109
TRH (Total Recover	rable Hydrocarbor	is) in Soil				N	lethod: ME-(A	J)-[ENV]AN40
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB096814.002		TRH C10-C14	mg/kg	20	49	40	60 - 140	123
LB096814.002		TRH C10-C14 TRH C15-C28	mg/kg mg/kg	20 45	49 48	40 40	60 - 140 60 - 140	123 120
LB096814.002								
LB096814.002	TRH F Bands	TRH C15-C28	mg/kg	45	48	40	60 - 140	120
LB096814.002	TRH F Bands	TRH C15-C28 TRH C29-C36	mg/kg mg/kg	45 45	48 <45	40 40	60 - 140 60 - 140	120 108

15/3/2016

Method: ME_(ALI)_TENVIAN040/AN320

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

					-			
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	,
LB096808.002	Halogenated	1,1-dichloroethene	mg/kg	0.1	1.9	2.56	60 - 140	75
	Aliphatics	1,2-dichloroethane	mg/kg	0.1	2.8	2.56	60 - 140	111
		Trichloroethene (Trichloroethylene -TCE)	mg/kg	0.1	2.7	2.56	60 - 140	105
	Halogenated	Chlorobenzene	mg/kg	0.1	3.0	2.56	60 - 140	115
	Monocyclic	Benzene	mg/kg	0.1	2.9	2.9	60 - 140	100
	Aromatic	Toluene	mg/kg	0.1	2.8	2.9	60 - 140	97
		Ethylbenzene	mg/kg	0.1	2.7	2.9	60 - 140	94
		m/p-xylene	mg/kg	0.2	5.6	5.8	60 - 140	97
		o-xylene	mg/kg	0.1	2.9	2.9	60 - 140	101
	Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	4.4	5	60 - 140	87
		d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.2	5	60 - 140	84
		d8-toluene (Surrogate)	mg/kg	-	4.9	5	60 - 140	97
		Bromofluorobenzene (Surrogate)	mg/kg	-	4.7	5	60 - 140	95
	Trihalomethan	Chloroform	mg/kg	0.1	2.6	2.56	60 - 140	100
olatile Petroleum I	-lydrocarbons in S	oil				Nethod: ME-(Al	J)-[ENV]AN43	3/AN434/AN4
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery
_B096808.002		TRH C6-C10	mg/kg	25	<25	24.65	60 - 140	81
		TRH C6-C9	mg/kg	20	<20	23.2	60 - 140	65
	Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	3.9	5	60 - 140	78
		d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.0	5	60 - 140	80
		d8-toluene (Surrogate)	mg/kg	-	4.4	5	60 - 140	87
		Bromofluorobenzene (Surrogate)	mg/kg	-	5.2	5	60 - 140	104
	VPH F Bands	TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	7.25	60 - 140	82

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury in Soil						Met	nod: ME-(Al	J)-[ENV]AN312
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE149841.001	LB096999.004	Mercury	mg/kg	0.01	0.25	0.06	0.2	93

OP Pesticides in Soil

PAH (Polynuclear Aromatic Hydrocarbons) in Soil

OP Pesticides in Soil Method: ME-(AU)-[ENV]AN400/AN									
QC Sample	Sample Number		Parameter	Units	LOR	Original	Spike	Recovery%	
SE149872.001	LB096814.029		Dichlorvos	mg/kg	0.5	<0.5	2	90	
			Dimethoate	mg/kg	0.5	<0.5	-	-	
			Diazinon (Dimpylate)	mg/kg	0.5	<0.5	2	116	
			Fenitrothion	mg/kg	0.2	<0.2	-	-	
			Malathion	mg/kg	0.2	<0.2	-	-	
			Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	2	117	
			Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	-	-	
			Bromophos Ethyl	mg/kg	0.2	<0.2	-	-	
			Methidathion	mg/kg	0.5	<0.5	-	-	
			Ethion	mg/kg	0.2	<0.2	2	108	
			Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	-	-	
		Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	-	102	
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.6	-	108	

Spike Recovery% QC Sample Sample Number LOR Original Parameter Units SE149872.001 LB096814.029 Naphthalene mg/kg 0.1 <0.1 4 117 0.1 <0.1 2-methylnaphthalene mg/kg 1-methylnaphthalene 0.1 <0.1 mg/kg -Acenaphthylene mg/kg 0.1 <0.1 4 102 Acenaphthene 0.1 <0.1 4 119 mg/kg Fluorene <0.1 mg/kg 0.1 Phenanthrene mg/kg 0.1 <0.1 4 122 <0.1 123 Anthracene 0.1 4 mg/kg Fluoranthene <0.1 126 mg/kg 0.1 4 Pyrene mg/kg 0.1 <0.1 4 127 Benzo(a)anthracene 0.1 <0.1 mg/kg Chrysene mg/kg 0.1 < 0.1 --Benzo(b&j)fluoranthene 0.1 <0.1 mg/kg <0.1 Benzo(k)fluoranthene 0.1 mg/kg <0.1 Benzo(a)pyrene mg/kg 0.1 4 123 Indeno(1,2,3-cd)pyrene mg/kg 0.1 <0.1 0.1 <0.1 Dibenzo(ah)anthracene mg/kg Benzo(ghi)perylene mg/kg 0.1 <0.1 -Carcinogenic PAHs, BaP TEQ <LOR=0 TEQ 02 <0.2 -Carcinogenic PAHs, BaP TEQ <LOR=LOR 0.3 <0.3 TEQ (mg/kg) Carcinogenic PAHs, BaP TEQ <LOR=LOR/2 TEQ (ma/ka) 0.2 <0.2 Total PAH (18) mg/kg 0.8 <0.8 Surrogates 0.4 88 d5-nitrobenzene (Surrogate) mg/kg 2-fluorobiphenyl (Surrogate) 0.5 102 mg/kg d14-p-terphenyl (Surrogate) mg/kg -0.6 108 Total Recoverable Metals in Soil by ICPOES Method: ME-(AU)-[ENV]AN040/AN320

	•							
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE149739A.14	LB097014.004	Lead, Pb	mg/kg	1	55	6	50	98

TRH (Total Recoverable Hydrocarbons) in Soil

Method: ME-(AU)-[ENV]AN420

Sample Number	Parameter	Units	LOR	Original	Spike	Recovery%
LB096814.027	TRH C10-C14	mg/kg	20	<20	40	123
	TRH C15-C28	mg/kg	45	<45	40	118
	TRH C29-C36	mg/kg	45	<45	40	100
	TRH C37-C40	mg/kg	100	<100	-	-
	TRH C10-C36 Total	mg/kg	110	<110	-	-
	TRH C10-C40 Total	mg/kg	210	<210	-	-
		LB096814.027 TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total	LB096814.027 TRH C10-C14 mg/kg TRH C15-C28 mg/kg TRH C29-C36 mg/kg TRH C37-C40 mg/kg TRH C10-C36 Total mg/kg	LB096814.027 TRH C10-C14 mg/kg 20 TRH C15-C28 mg/kg 45 TRH C29-C36 mg/kg 45 TRH C37-C40 mg/kg 100 TRH C10-C36 Total mg/kg 110	LB096814.027 TRH C10-C14 mg/kg 20 <20 TRH C15-C28 mg/kg 45 <45	LB096814.027 TRH C10-C14 mg/kg 20 <20 40 TRH C15-C28 mg/kg 45 <45

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

TRH (Total Recoverable Hydrocarbons) in Soli (continued) QC Sample Sample Number Parameter

Method: ME-(AU)-[ENV]AN403

Sample Number		Parameter	Units	LOR	Original	Spike	Recovery%	
LB096814.027	TRH F Bands	TRH >C10-C16 (F2)	mg/kg	25	<25	40	120	
		TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	<25	-	-	
		TRH >C16-C34 (F3)	mg/kg	90	<90	40	110	
		TRH >C34-C40 (F4)	mg/kg	120	<120	-	-	
n Hydrocarbons in So	ii				Method: ME-(AU)-[ENV]AN433/AN43			
Sample Number		Parameter	Units	LOR	Original	Spike	Recovery%	
LB096808.011		TRH C6-C10	mg/kg	25	<25	24.65	82	
		TRH C6-C9	mg/kg	20	<20	23.2	66	
	Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	3.6	-	92	
		d4-1,2-dichloroethane (Surrogate)	mg/kg	-	3.6	-	97	
		d8-toluene (Surrogate)	mg/kg	-	3.5	-	88	
		Bromofluorobenzene (Surrogate)	mg/kg	-	4.8	-	91	
	VPH F	Benzene (F0)	mg/kg	0.1	<0.1	-	-	
	Bands	TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	7.25	98	
 	LB096814.027 n Hydrocarbons in Sc Sample Number	LB096814.027 TRH F Bands TRH F Bands TRH F Bands LB096808.011 Surrogates VPH F	LB096814.027 TRH F Bands TRH >C10-C16 (F2) TRH >C10-C16 (F2) - Naphthalene TRH >C10-C16 (F2) - Naphthalene TRH >C10-C16 (F2) - Naphthalene TRH >C10-C16 (F2) - Naphthalene TRH >C10-C16 (F2) - Naphthalene TRH >C10-C16 (F2) - Naphthalene TRH >C10-C16 (F2) - Naphthalene TRH >C10-C16 (F2) - Naphthalene TRH >C10-C16 (F2) - Naphthalene TRH >C10-C16 (F2) - Naphthalene TRH >C10-C16 (F2) - Naphthalene TRH >C10-C10 (F2) - Naphthalene LB096808.011 TRH >C6-C10 (F2) - Naphthalene Surrogates Dibromofluoromethane (Surrogate) (F2) - Naphthalene d4-1,2-dichloroethane (Surrogate) (F2) - Naphthalene Marcolume (Surrogate) (F2) (F2) - Naphthalene VPH F Benzene (F0) Marcolume (Surrogate) (F2) - Naphthalene	LB096814.027 TRH F Bands TRH >C10-C16 (F2) mg/kg TRH >C10-C16 (F2) Naphthalene mg/kg LB096808.011 FRH C6-C10 mg/kg Surrogates Dibromofluoromethane (Surrogate) mg/kg d4-1,2-dichloroethane (Surrogate) mg/kg mg/kg Bromofluorobenzene (Surrogate) mg/kg mg/kg VPH F Benzene (F0) mg/kg	LB096814.027 TRH F Bands TRH >C10-C16 (F2) mg/kg 25 TRH >C10-C16 (F2) Naphthalene mg/kg 25 TRH >C10-C16 (F2) Naphthalene mg/kg 25 TRH >C10-C16 (F2) Naphthalene mg/kg 90 TRH >C10-C16 (F2) Naphthalene mg/kg 120 Mydrocarbons in Soli TRH >C10-C10 mg/kg 25 LB096808.011 TRH C6-C10 mg/kg 20 Surrogates Dibromofluoromethane (Surrogate) mg/kg 20 G8-toluene (Surrogate) mg/kg - - d8-toluene (Surrogate) mg/kg - - Bromofluorobenzene (Surrogate) mg/kg - - <	LB096814.027 TRH F Bands TRH >C10-C16 (F2) mg/kg 25 <25 TRH >C10-C16 (F2) Naphthalene mg/kg 25 <25	LB096814.027 TRH F Bands TRH > C10-C16 (F2) mg/kg 25 <25 40 TRH > C10-C16 (F2) Naphthalene mg/kg 25 <25	LB096814.027 TRH F Bands TRH >C10-C16 (F2) mg/kg 25 <25 40 120 TRH >C10-C16 (F2) Naphthalene mg/kg 25 <25

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spike duplicates were required for this job.

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover the performance of this service.
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- ② RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ④ Recovery failed acceptance criteria due to matrix interference.
- Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- O LOR was raised due to dilution of significantly high concentration of analyte in sample.
- Image: Image:
- Recovery failed acceptance criteria due to sample heterogeneity.
- [®] LOR was raised due to high conductivity of the sample (required dilution).
- t Refer to Analytical Report comments for further information.

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service, available on request and accessible at http://www.sgs.com/en/terms-and-conditions. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained herein reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This test report shall not be reproduced, except in full.

STATEMENT OF QA/QC PERFORMANCE

CLIENT DETAILS	·	LABORATORY DETAI	LS
Contact	Mariana Torres	Manager	Huong Crawford
Client	Environmental Investigations	Laboratory	SGS Alexandria Environmental
Address	Suite 6.01, 55 Miller Street NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	02 9516 0722	Telephone	+61 2 8594 0400
Facsimile	02 9516 0741	Facsimile	+61 2 8594 0499
Email	mariana.torres@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E22913 Regent St & Trafalgar St	SGS Reference	SE149963 R0
Order Number	E22913	Date Received	10 Mar 2016
Samples	12	Date Reported	17 Mar 2016

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document and was supplied by the Client. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met with the exception of the following:

Matrix Spike

TRH (Total Recoverable Hydrocarbons) in Soil

3 items

Sample counts by matrix	12 Soil	Type of documentation received	COC	
Date documentation received	10/3/2016	Samples received in good order	Yes	
Samples received without headspace	Yes	Sample temperature upon receipt	7.0°C	
Sample container provider	SGS	Turnaround time requested	Standard	
Samples received in correct containers	Yes	Sufficient sample for analysis	Yes	
Sample cooling method	Ice Bricks	Samples clearly labelled	Yes	
Complete documentation received	Yes			

Unit 16 33 Maddox St

SGS Australia Pty Ltd ABN 44 000 964 278

SAMPLE SUMMARY

Environment, Health and Safety

Alexandria NSW 2015 PO Box 6432 Bourke Rd BC Alexandria NSW 2015

Australia Australia

t +61 2 8594 0400 www.sgs.com.au f +61 2 8594 0499

Member of the SGS Group

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Fibre Identification in soil Method: ME-(AU)-[ENV]AN602 Analysed Sample Name Sample No. QC Ref Sampled Received Extraction Due Extracted Analysis Due BH2 1.2-1.5 SE149963 002 I B097135 09 Mar 2016 10 Mar 2016 09 Mar 2017 15 Mar 2016 09 Mar 2017 17 Mar 2016 BH3_0.8-1.0 SE149963.004 LB097135 09 Mar 2016 10 Mar 2016 09 Mar 2017 15 Mar 2016 09 Mar 2017 17 Mar 2016 BH9M 2.0-2.1 SE149963.006 LB097135 09 Mar 2016 10 Mar 2016 09 Mar 2017 15 Mar 2016 09 Mar 2017 17 Mar 2016 BH11M_1.0-1.1 SE149963.008 LB097135 09 Mar 2016 10 Mar 2016 09 Mar 2017 15 Mar 2016 09 Mar 2017 17 Mar 2016 BH2 0.2-0.4 10 Mar 2016 SE149963.009 LB097135 09 Mar 2016 09 Mar 2017 15 Mar 2016 09 Mar 2017 17 Mar 2016 17 Mar 2016 BH3 0.2-0.4 SE149963.010 LB097135 09 Mar 2016 10 Mar 2016 09 Mar 2017 15 Mar 2016 09 Mar 2017 BH9M 0.2-0.3 SE149963.011 LB097135 09 Mar 2016 10 Mar 2016 09 Mar 2017 15 Mar 2016 09 Mar 2017 17 Mar 2016 BH11M 0.1-0.2 SE149963.012 LB097135 09 Mar 2016 10 Mar 2016 09 Mar 2017 15 Mar 2016 09 Mar 2017 17 Mar 2016 Mercury in Soil Method: ME-(AU)-[ENV]AN312 Sample Name Sample No. QC Ref Sampled Received Extraction Due Extracted Analysis Due Analysed BH2_0.2-0.4 SE149963.001 LB097090 09 Mar 2016 10 Mar 2016 06 Apr 2016 15 Mar 2016 16 Mar 2016 06 Apr 2016 SE149963.002 LB097090 09 Mar 2016 10 Mar 2016 06 Apr 2016 15 Mar 2016 06 Apr 2016 16 Mar 2016 BH2_1.2-1.5 BH3 0.2-0.4 SE149963.003 LB097090 09 Mar 2016 10 Mar 2016 06 Apr 2016 16 Mar 2016 06 Apr 2016 15 Mar 2016 BH3 0.8-1.0 SE149963.004 LB097090 09 Mar 2016 10 Mar 2016 06 Apr 2016 15 Mar 2016 06 Apr 2016 16 Mar 2016 BH9M_0.2-0.3 SE149963.005 LB097090 09 Mar 2016 10 Mar 2016 06 Apr 2016 15 Mar 2016 06 Apr 2016 16 Mar 2016 BH9M_2.0-2.1 10 Mar 2016 SE149963.006 16 Mar 2016 LB097090 09 Mar 2016 06 Apr 2016 15 Mar 2016 06 Apr 2016 BH11M 0 1-0 2 SE149963 007 I B097090 09 Mar 2016 10 Mar 2016 06 Apr 2016 15 Mar 2016 06 Apr 2016 16 Mar 2016 BH11M_1.0-1.1 SE149963.008 LB097090 09 Mar 2016 10 Mar 2016 06 Apr 2016 15 Mar 2016 06 Apr 2016 16 Mar 2016 Method: ME-(AU)-[ENV]AN002 Moisture Content Analysis Due Sample Name Sampled Analysed Sample No. QC Ref Received Extraction Due Extracted SE149963.001 09 Mar 2016 10 Mar 2016 23 Mar 2016 BH2 0.2-0.4 LB096947 11 Mar 2016 16 Mar 2016 16 Mar 2016 BH2_1.2-1.5 SE149963.002 LB096947 10 Mar 2016 16 Mar 2016 09 Mar 2016 23 Mar 2016 11 Mar 2016 16 Mar 2016 BH3 0.2-0.4 SE149963.003 LB096947 09 Mar 2016 10 Mar 2016 23 Mar 2016 11 Mar 2016 16 Mar 2016 16 Mar 2016 BH3_0.8-1.0 SE149963.004 LB096947 09 Mar 2016 10 Mar 2016 23 Mar 2016 11 Mar 2016 16 Mar 2016 16 Mar 2016 BH9M 0.2-0.3 SE149963.005 LB096947 09 Mar 2016 10 Mar 2016 23 Mar 2016 11 Mar 2016 16 Mar 2016 16 Mar 2016 10 Mar 2016 BH9M 2.0-2.1 SE149963.006 LB096947 09 Mar 2016 23 Mar 2016 11 Mar 2016 16 Mar 2016 16 Mar 2016 BH11M 0.1-0.2 SE149963.007 LB096947 09 Mar 2016 10 Mar 2016 23 Mar 2016 11 Mar 2016 16 Mar 2016 16 Mar 2016 BH11M_1.0-1.1 SE149963 008 I B096947 09 Mar 2016 10 Mar 2016 23 Mar 2016 11 Mar 2016 16 Mar 2016 16 Mar 2016 OC Pesticides in Soil Method: ME-(AU)-[ENV]AN400/AN420 Sample Name Analysis Due Sample No. QC Ref Sampled Received Extraction Due Extracted Analysed BH2_0.2-0.4 SE149963.001 I B096968 09 Mar 2016 10 Mar 2016 23 Mar 2016 11 Mar 2016 20 Apr 2016 17 Mar 2016 10 Mar 2016 BH2 1.2-1.5 SE149963.002 LB096968 09 Mar 2016 23 Mar 2016 11 Mar 2016 20 Apr 2016 17 Mar 2016 BH3_0.2-0.4 SE149963.003 LB096968 09 Mar 2016 10 Mar 2016 23 Mar 2016 11 Mar 2016 20 Apr 2016 17 Mar 2016 BH3 0.8-1.0 SE149963.004 LB096968 09 Mar 2016 10 Mar 2016 23 Mar 2016 11 Mar 2016 20 Apr 2016 17 Mar 2016 BH9M_0.2-0.3 SE149963.005 LB096968 09 Mar 2016 10 Mar 2016 23 Mar 2016 11 Mar 2016 20 Apr 2016 17 Mar 2016 BH9M 2.0-2.1 SE149963.006 LB096968 09 Mar 2016 10 Mar 2016 23 Mar 2016 11 Mar 2016 20 Apr 2016 17 Mar 2016 BH11M 0.1-0.2 SE149963 007 I B096968 09 Mar 2016 10 Mar 2016 23 Mar 2016 11 Mar 2016 20 Apr 2016 17 Mar 2016 BH11M_1.0-1.1 SE149963.008 LB096968 09 Mar 2016 10 Mar 2016 23 Mar 2016 11 Mar 2016 20 Apr 2016 17 Mar 2016 Method: ME-(AU)-IENVIAN400/AN420 **OP** Pesticides in Soi Sample Name Sample No. QC Ref Sampled Received Extraction Due Extracted Analysis Due Analysed BH2 0.2-0.4 SE149963.001 LB096968 09 Mar 2016 10 Mar 2016 23 Mar 2016 11 Mar 2016 20 Apr 2016 16 Mar 2016 BH2 1.2-1.5 SE149963.002 LB096968 09 Mar 2016 10 Mar 2016 23 Mar 2016 16 Mar 2016 11 Mar 2016 20 Apr 2016 BH3 0.2-0.4 SE149963.003 LB096968 09 Mar 2016 10 Mar 2016 23 Mar 2016 11 Mar 2016 20 Apr 2016 16 Mar 2016 BH3_0.8-1.0 SE149963.004 LB096968 09 Mar 2016 10 Mar 2016 23 Mar 2016 11 Mar 2016 20 Apr 2016 16 Mar 2016 BH9M 0.2-0.3 SE149963.005 LB096968 09 Mar 2016 10 Mar 2016 23 Mar 2016 11 Mar 2016 20 Apr 2016 16 Mar 2016 BH9M_2.0-2.1 SE149963.006 LB096968 09 Mar 2016 10 Mar 2016 23 Mar 2016 11 Mar 2016 20 Apr 2016 16 Mar 2016 10 Mar 2016 20 Apr 2016 BH11M 0.1-0.2 SE149963.007 LB096968 09 Mar 2016 23 Mar 2016 11 Mar 2016 16 Mar 2016 SE149963.008 I B096968 09 Mar 2016 10 Mar 2016 23 Mar 2016 11 Mar 2016 16 Mar 2016 BH11M 1.0-1.1 20 Apr 2016 Method: ME-(AU)-[ENV]AN420 PAH (Polynuclear Aromatic Hydrocarbons) in Soi Sample Name Extraction Due Analysis Due Analysed Sample No. QC Ref Sampled Received Extracted BH2 0.2-0.4 SE149963.001 LB096968 09 Mar 2016 10 Mar 2016 23 Mar 2016 11 Mar 2016 20 Apr 2016 16 Mar 2016 BH2_1.2-1.5 SE149963.002 LB096968 09 Mar 2016 10 Mar 2016 23 Mar 2016 11 Mar 2016 20 Apr 2016 16 Mar 2016 BH3 0.2-0.4 SE149963.003 LB096968 10 Mar 2016 23 Mar 2016 16 Mar 2016 09 Mar 2016 11 Mar 2016 20 Apr 2016 BH3 0.8-1.0 SE149963.004 LB096968 09 Mar 2016 10 Mar 2016 23 Mar 2016 11 Mar 2016 20 Apr 2016 16 Mar 2016 BH9M_0.2-0.3 SE149963.005 LB096968 09 Mar 2016 10 Mar 2016 23 Mar 2016 11 Mar 2016 20 Apr 2016 16 Mar 2016 BH9M 2.0-2.1 SE149963.006 LB096968 09 Mar 2016 10 Mar 2016 11 Mar 2016 20 Apr 2016 23 Mar 2016 16 Mar 2016

BH11M_0.1-0.2

SE149963.007

LB096968

09 Mar 2016

10 Mar 2016

23 Mar 2016

11 Mar 2016

20 Apr 2016

16 Mar 2016

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

PAH (Polynuclear Aromat	ic Hydrocarbons) in Soil (co	ntinued)					Method: I	ME-(AU)-[ENV]AN42
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH11M_1.0-1.1	SE149963.008	LB096968	09 Mar 2016	10 Mar 2016	23 Mar 2016	11 Mar 2016	20 Apr 2016	16 Mar 2016
CBs in Soil							Method: ME-(AU)-[ENV]AN400/AN42
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH2_0.2-0.4	SE149963.001	LB096968	09 Mar 2016	10 Mar 2016	23 Mar 2016	11 Mar 2016	20 Apr 2016	17 Mar 2016
BH2_1.2-1.5	SE149963.002	LB096968	09 Mar 2016	10 Mar 2016	23 Mar 2016	11 Mar 2016	20 Apr 2016	17 Mar 2016
BH3_0.2-0.4	SE149963.003	LB096968	09 Mar 2016	10 Mar 2016	23 Mar 2016	11 Mar 2016	20 Apr 2016	17 Mar 2016
BH3_0.8-1.0	SE149963.004	LB096968	09 Mar 2016	10 Mar 2016	23 Mar 2016	11 Mar 2016	20 Apr 2016	17 Mar 2016
BH9M_0.2-0.3	SE149963.005	LB096968	09 Mar 2016	10 Mar 2016	23 Mar 2016	11 Mar 2016	20 Apr 2016	17 Mar 2016
BH9M_2.0-2.1	SE149963.006	LB096968	09 Mar 2016	10 Mar 2016	23 Mar 2016	11 Mar 2016	20 Apr 2016	17 Mar 2016
BH11M_0.1-0.2	SE149963.007	LB096968	09 Mar 2016	10 Mar 2016	23 Mar 2016	11 Mar 2016	20 Apr 2016	17 Mar 2016
BH11M_1.0-1.1	SE149963.008	LB096968	09 Mar 2016	10 Mar 2016	23 Mar 2016	11 Mar 2016	20 Apr 2016	17 Mar 2016
rotal Recoverable Metals	in Soil/Waste Solids/Mater	als by ICPOES					Method: ME-(AU)-[ENV]AN040/AN32
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH2_0.2-0.4	SE149963.001	LB097056	09 Mar 2016	10 Mar 2016	05 Sep 2016	15 Mar 2016	05 Sep 2016	16 Mar 2016
BH2_1.2-1.5	SE149963.002	LB097056	09 Mar 2016	10 Mar 2016	05 Sep 2016	15 Mar 2016	05 Sep 2016	16 Mar 2016
BH3_0.2-0.4	SE149963.003	LB097056	09 Mar 2016	10 Mar 2016	05 Sep 2016	15 Mar 2016	05 Sep 2016	16 Mar 2016
BH3_0.8-1.0	SE149963.004	LB097056	09 Mar 2016	10 Mar 2016	05 Sep 2016	15 Mar 2016	05 Sep 2016	16 Mar 2016
BH9M_0.2-0.3	SE149963.005	LB097056	09 Mar 2016	10 Mar 2016	05 Sep 2016	15 Mar 2016	05 Sep 2016	16 Mar 2016
BH9M_2.0-2.1	SE149963.006	LB097056	09 Mar 2016	10 Mar 2016	05 Sep 2016	15 Mar 2016	05 Sep 2016	16 Mar 2016
BH11M_0.1-0.2	SE149963.007	LB097056	09 Mar 2016	10 Mar 2016	05 Sep 2016	15 Mar 2016	05 Sep 2016	16 Mar 2016
BH11M_1.0-1.1	SE149963.008	LB097056	09 Mar 2016	10 Mar 2016	05 Sep 2016	15 Mar 2016	05 Sep 2016	16 Mar 2016
RH (Total Recoverable H	lydrocarbons) in Soil						Method: I	ME-(AU)-[ENV]AN4(
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH2_0.2-0.4	SE149963.001	LB096968	09 Mar 2016	10 Mar 2016	23 Mar 2016	11 Mar 2016	20 Apr 2016	16 Mar 2016
BH2_1.2-1.5	SE149963.002	LB096968	09 Mar 2016	10 Mar 2016	23 Mar 2016	11 Mar 2016	20 Apr 2016	16 Mar 2016
BH3_0.2-0.4	SE149963.003	LB096968	09 Mar 2016	10 Mar 2016	23 Mar 2016	11 Mar 2016	20 Apr 2016	16 Mar 2016
BH3_0.8-1.0	SE149963.004	LB096968	09 Mar 2016	10 Mar 2016	23 Mar 2016	11 Mar 2016	20 Apr 2016	16 Mar 2016
BH9M_0.2-0.3	SE149963.005	LB096968	09 Mar 2016	10 Mar 2016	23 Mar 2016	11 Mar 2016	20 Apr 2016	16 Mar 2016
BH9M_2.0-2.1	SE149963.006	LB096968	09 Mar 2016	10 Mar 2016	23 Mar 2016	11 Mar 2016	20 Apr 2016	16 Mar 2016
BH11M_0.1-0.2	SE149963.007	LB096968	09 Mar 2016	10 Mar 2016	23 Mar 2016	11 Mar 2016	20 Apr 2016	16 Mar 2016
BH11M_1.0-1.1	SE149963.008	LB096968	09 Mar 2016	10 Mar 2016	23 Mar 2016	11 Mar 2016	20 Apr 2016	16 Mar 2016
/OC's in Soil							Method: ME-(AU)-[ENV]AN433/AN43
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH2_0.2-0.4	SE149963.001	LB096949	09 Mar 2016	10 Mar 2016	23 Mar 2016	11 Mar 2016	20 Apr 2016	16 Mar 2016
BH2_1.2-1.5	SE149963.002	LB096949	09 Mar 2016	10 Mar 2016	23 Mar 2016	11 Mar 2016	20 Apr 2016	16 Mar 2016
BH3_0.2-0.4	SE149963.003	LB096949	09 Mar 2016	10 Mar 2016	23 Mar 2016	11 Mar 2016	20 Apr 2016	16 Mar 2016
BH3_0.8-1.0	SE149963.004	LB096949	09 Mar 2016	10 Mar 2016	23 Mar 2016	11 Mar 2016	20 Apr 2016	16 Mar 2016
BH9M_0.2-0.3	SE149963.005	LB096949	09 Mar 2016	10 Mar 2016	23 Mar 2016	11 Mar 2016	20 Apr 2016	16 Mar 2016
BH9M_2.0-2.1	SE149963.006	LB096949	09 Mar 2016	10 Mar 2016	23 Mar 2016	11 Mar 2016	20 Apr 2016	16 Mar 2016
BH11M_0.1-0.2	SE149963.007	LB096949	09 Mar 2016	10 Mar 2016	23 Mar 2016	11 Mar 2016	20 Apr 2016	16 Mar 2016
BH11M_1.0-1.1	SE149963.008	LB096949	09 Mar 2016	10 Mar 2016	23 Mar 2016	11 Mar 2016	20 Apr 2016	16 Mar 2016
olatile Petroleum Hydroc	arbons in Soil						Method: ME-(AU)-[ENV]	AN433/AN434/AN4
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH2_0.2-0.4	SE149963.001	LB096949	09 Mar 2016	10 Mar 2016	23 Mar 2016	11 Mar 2016	20 Apr 2016	16 Mar 2016
BH2_1.2-1.5	SE149963.002	LB096949	09 Mar 2016	10 Mar 2016	23 Mar 2016	11 Mar 2016	20 Apr 2016	16 Mar 2016
BH3_0.2-0.4	SE149963.003	LB096949	09 Mar 2016	10 Mar 2016	23 Mar 2016	11 Mar 2016	20 Apr 2016	16 Mar 2016
BH3_0.8-1.0	SE149963.004	LB096949	09 Mar 2016	10 Mar 2016	23 Mar 2016	11 Mar 2016	20 Apr 2016	16 Mar 2016
BH9M_0.2-0.3	SE149963.005	LB096949	09 Mar 2016	10 Mar 2016	23 Mar 2016	11 Mar 2016	20 Apr 2016	16 Mar 2016
BH9M_2.0-2.1	SE149963.006	LB096949	09 Mar 2016	10 Mar 2016	23 Mar 2016	11 Mar 2016	20 Apr 2016	16 Mar 2016
BH11M_0.1-0.2	SE149963.007	LB096949	09 Mar 2016	10 Mar 2016	23 Mar 2016	11 Mar 2016	20 Apr 2016	16 Mar 2016
BH11M_1.0-1.1	SE149963.008	LB096949	09 Mar 2016	10 Mar 2016	23 Mar 2016	11 Mar 2016	20 Apr 2016	16 Mar 2016

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

DC Pesticides in Soil				Method: ME-(AU)-	[ENV]AN400/AN
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Tetrachloro-m-xylene (TCMX) (Surrogate)	BH2_0.2-0.4	SE149963.001	%	60 - 130%	105
	BH3_0.2-0.4	SE149963.003	%	60 - 130%	93
	BH9M_0.2-0.3	SE149963.005	%	60 - 130%	95
	BH11M_0.1-0.2	SE149963.007	%	60 - 130%	105
DP Pesticides in Soil				Method: ME-(AU)-	ENVJAN400/AN
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
2-fluorobiphenyl (Surrogate)	BH2_0.2-0.4	SE149963.001	%	60 - 130%	90
	BH3_0.2-0.4	SE149963.003	%	60 - 130%	102
	BH9M_0.2-0.3	SE149963.005	%	60 - 130%	98
	BH11M_0.1-0.2	SE149963.007	%	60 - 130%	108
d14-p-terphenyl (Surrogate)	BH2_0.2-0.4	SE149963.001	%	60 - 130%	110
	BH3_0.2-0.4	SE149963.003	%	60 - 130%	118
	BH9M_0.2-0.3	SE149963.005	%	60 - 130%	102
	BH11M_0.1-0.2	SE149963.007	%	60 - 130%	104
PAH (Polynuclear Aromatic Hydrocarbons) in Soil				Method: M	E-(AU)-[ENV]AN
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
2-fluorobiphenyl (Surrogate)	BH2_0.2-0.4	SE149963.001	%	70 - 130%	90
	BH2_1.2-1.5	SE149963.002	%	70 - 130%	94
	BH3_0.2-0.4	SE149963.003	%	70 - 130%	102
	BH3_0.8-1.0	SE149963.004	%	70 - 130%	100
	BH9M_0.2-0.3	SE149963.005	%	70 - 130%	98
	BH9M_2.0-2.1	SE149963.006	%	70 - 130%	94
	BH11M_0.1-0.2	SE149963.007	%	70 - 130%	108
	BH11M_1.0-1.1	SE149963.008	%	70 - 130%	94
d14-p-terphenyl (Surrogate)	BH2_0.2-0.4	SE149963.001	%	70 - 130%	110
	BH2_1.2-1.5	SE149963.002	%	70 - 130%	104
	BH3_0.2-0.4	SE149963.003	%	70 - 130%	118
	BH3_0.8-1.0	SE149963.004	%	70 - 130%	110
	BH9M_0.2-0.3	SE149963.005	%	70 - 130%	102
	BH9M_2.0-2.1	SE149963.006	%	70 - 130%	114
	BH11M_0.1-0.2	SE149963.007	%	70 - 130%	104
	BH11M_1.0-1.1	SE149963.008	%	70 - 130%	106
d5-nitrobenzene (Surrogate)	BH2_0.2-0.4	SE149963.001	%	70 - 130%	98
	BH2_1.2-1.5	SE149963.002	%	70 - 130%	88
	BH3_0.2-0.4	SE149963.003	%	70 - 130%	104
	BH3_0.8-1.0	SE149963.004	%	70 - 130%	106
	BH9M_0.2-0.3	SE149963.005	%	70 - 130%	94
	BH9M_2.0-2.1	SE149963.006	%	70 - 130%	104
	BH11M_0.1-0.2	SE149963.007	%	70 - 130%	98
	BH11M_1.0-1.1	SE149963.008	%	70 - 130%	88
CBs in Soil				Method: ME-(AU)-	[ENV]AN400/AI
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery
Tetrachloro-m-xylene (TCMX) (Surrogate)	BH2_0.2-0.4	SE149963.001	%	60 - 130%	105
	BH3_0.2-0.4	SE149963.003	%	60 - 130%	93
	BH9M_0.2-0.3	SE149963.005	%	60 - 130%	95
	BH11M_0.1-0.2	SE149963.007	%	60 - 130%	105
'OC's in Soil				Method: ME-(AU)-	
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery
Bromofluorobenzene (Surrogate)	BH2_0.2-0.4	SE149963.001	%	60 - 130%	87
	BH2_1.2-1.5	SE149963.002	%	60 - 130%	85
	BH3_0.2-0.4	SE149963.003	%	60 - 130%	75
	BH3_0.8-1.0	SE149963.004	%	60 - 130%	77
	BH9M_0.2-0.3	SE149963.005	%	60 - 130%	89
	BH9M_2.0-2.1	SE149963.006	%	60 - 130%	94
	BH11M_0.1-0.2	SE149963.007	%	60 - 130%	83
	BH11M_1.0-1.1	SE149963.008	%	60 - 130%	82
d4-1,2-dichloroethane (Surrogate)	BH2_0.2-0.4	SE149963.001	%	60 - 130%	101
	BH2_1.2-1.5	SE149963.002	%	60 - 130%	94
	BH3_0.2-0.4	SE149963.003	%	60 - 130%	91

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

/OC's in Soil (continued)				Method: ME-(AU)-	[ENV]AN433/AN4
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
d4-1,2-dichloroethane (Surrogate)	BH3_0.8-1.0	SE149963.004	%	60 - 130%	89
	BH9M_0.2-0.3	SE149963.005	%	60 - 130%	108
	BH9M_2.0-2.1	SE149963.006	%	60 - 130%	101
	BH11M_0.1-0.2	SE149963.007	%	60 - 130%	96
	BH11M_1.0-1.1	SE149963.008	%	60 - 130%	94
d8-toluene (Surrogate)	BH2_0.2-0.4	SE149963.001	%	60 - 130%	91
	BH2_1.2-1.5	SE149963.002	%	60 - 130%	73
	BH3_0.2-0.4	SE149963.003	%	60 - 130%	80
	BH3_0.8-1.0	SE149963.004	%	60 - 130%	78
	BH9M_0.2-0.3	SE149963.005	%	60 - 130%	97
	BH9M_2.0-2.1	SE149963.006	%	60 - 130%	83
	BH11M_0.1-0.2	SE149963.007	%	60 - 130%	87
	BH11M_1.0-1.1	SE149963.008	%	60 - 130%	73
Dibromofluoromethane (Surrogate)	BH2_0.2-0.4	SE149963.001	%	60 - 130%	86
	BH2_1.2-1.5	SE149963.002	%	60 - 130%	80
	BH3_0.2-0.4	SE149963.003	%	60 - 130%	74
	BH3_0.8-1.0	SE149963.004	%	60 - 130%	72
	BH9M_0.2-0.3	SE149963.005	%	60 - 130%	87
	BH9M_2.0-2.1	SE149963.006	%	60 - 130%	85
	BH11M_0.1-0.2	SE149963.007	%	60 - 130%	77
	BH11M_1.0-1.1	SE149963.008	%	60 - 130%	77
	DITTIM_1.0-1.1	32143303.000			
olatile Petroleum Hydrocarbons in Soil				d: ME-(AU)-[ENV]A	
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	BH2_0.2-0.4	SE149963.001	%	60 - 130%	87
	BH2_1.2-1.5	SE149963.002	%	60 - 130%	85
	BH3_0.2-0.4	SE149963.003	%	60 - 130%	75
	BH3_0.8-1.0	SE149963.004	%	60 - 130%	76
	BH9M_0.2-0.3	SE149963.005	%	60 - 130%	89
	BH9M_2.0-2.1	SE149963.006	%	60 - 130%	100
	BH11M_0.1-0.2	SE149963.007	%	60 - 130%	83
d4-1,2-dichloroethane (Surrogate)	BH11M_1.0-1.1	SE149963.008	%	60 - 130%	86
	BH2_0.2-0.4	SE149963.001	%	60 - 130%	101
	BH2_1.2-1.5	SE149963.002	%	60 - 130%	98
			70	00 100/0	
	BH3_0.2-0.4	SE149963.003	%	60 - 130%	91
	BH3_0.2-0.4 BH3_0.8-1.0	SE149963.003 SE149963.004			91 93
			%	60 - 130%	
	BH3_0.8-1.0	SE149963.004	%	60 - 130% 60 - 130%	93
	BH3_0.8-1.0 BH9M_0.2-0.3 BH9M_2.0-2.1	SE149963.004 SE149963.005 SE149963.006	% % %	60 - 130% 60 - 130% 60 - 130% 60 - 130%	93 108 105
	BH3_0.8-1.0 BH9M_0.2-0.3 BH9M_2.0-2.1 BH11M_0.1-0.2	SE149963.004 SE149963.005	% % % %	60 - 130% 60 - 130% 60 - 130%	93 108
d8-toluene (Surrogate)	BH3_0.8-1.0 BH9M_0.2-0.3 BH9M_2.0-2.1 BH11M_0.1-0.2 BH11M_1.0-1.1	SE149963.004 SE149963.005 SE149963.006 SE149963.007 SE149963.008	% % % %	60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130%	93 108 105 96 98
d8-toluene (Surrogate)	BH3_0.8-1.0 BH9M_0.2-0.3 BH9M_2.0-2.1 BH11M_0.1-0.2 BH11M_1.0-1.1 BH2_0.2-0.4	SE149963.004 SE149963.005 SE149963.006 SE149963.007 SE149963.008 SE149963.001	% % % % %	60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130%	93 108 105 96 98 91
d8-toluene (Surrogate)	BH3_0.8-1.0 BH9M_0.2-0.3 BH9M_2.0-2.1 BH11M_0.1-0.2 BH11M_1.0-1.1 BH2_0.2-0.4 BH2_1.2-1.5	SE149963.004 SE149963.005 SE149963.006 SE149963.007 SE149963.008 SE149963.001 SE149963.002	% % % % % %	60 - 130% 60 - 130%	93 108 105 96 98 91 87
d8-toluene (Surrogate)	BH3_0.8-1.0 BH9M_0.2-0.3 BH9M_2.0-2.1 BH11M_0.1-0.2 BH11M_1.0-1.1 BH2_0.2-0.4 BH3_0.2-0.4	SE149963.004 SE149963.005 SE149963.006 SE149963.007 SE149963.008 SE149963.001 SE149963.002 SE149963.002	% % % % % %	60 - 130% 60 - 130%	93 108 105 96 98 91 87 80
d8-toluene (Surrogate)	BH3_0.8-1.0 BH9M_0.2-0.3 BH9M_2.0-2.1 BH11M_0.1-0.2 BH11M_1.0-1.1 BH2_0.2-0.4 BH3_0.2-0.4 BH3_0.8-1.0	SE149963.004 SE149963.005 SE149963.006 SE149963.007 SE149963.008 SE149963.001 SE149963.002 SE149963.003 SE149963.004	% % % % % % %	60 - 130% 60 - 130%	93 108 105 96 98 91 87 80 80 81
d8-toluene (Surrogate)	BH3_0.8-1.0 BH9M_0.2-0.3 BH9M_2.0-2.1 BH11M_0.1-0.2 BH11M_1.0-1.1 BH2_0.2-0.4 BH3_0.2-0.4 BH3_0.2-0.4 BH3_0.8-1.0 BH9M_0.2-0.3	SE149963.004 SE149963.005 SE149963.006 SE149963.007 SE149963.008 SE149963.001 SE149963.002 SE149963.003 SE149963.004 SE149963.005	% % % % % % % %	60 - 130% 60 - 130%	93 108 105 96 98 91 87 80 81 81 97
d8-toluene (Surrogate)	BH3_0.8-1.0 BH9M_0.2-0.3 BH9M_2.0-2.1 BH11M_0.1-0.2 BH11M_1.0-1.1 BH2_0.2-0.4 BH3_0.2-0.4 BH3_0.8-1.0 BH9M_0.2-0.3 BH9M_0.2-0.2.1	SE149963.004 SE149963.005 SE149963.006 SE149963.007 SE149963.008 SE149963.001 SE149963.002 SE149963.003 SE149963.004 SE149963.005 SE149963.006	% % % % % % % %	60 - 130% 60 - 130%	93 108 105 96 98 91 87 80 81 81 97 96
d8-toluene (Surrogate)	BH3_0.8-1.0 BH9M_0.2-0.3 BH9M_2.0-2.1 BH11M_0.1-0.2 BH11M_1.0-1.1 BH2_0.2-0.4 BH3_0.2-0.4 BH3_0.2-0.4 BH3_0.2-0.4 BH3_0.2-0.4 BH3_0.2-0.4 BH3_0.2-0.1 BH9M_0.2-0.3 BH9M_2.0-2.1	SE149963.004 SE149963.005 SE149963.006 SE149963.007 SE149963.008 SE149963.001 SE149963.002 SE149963.003 SE149963.004 SE149963.005 SE149963.006 SE149963.007	% %	60 - 130% 60 - 130%	93 108 105 96 98 91 87 80 81 81 97 96 87
	BH3_0.8-1.0 BH9M_0.2-0.3 BH9M_2.0-2.1 BH11M_0.1-0.2 BH11M_1.0-1.1 BH2_0.2-0.4 BH3_0.2-0.4 BH3_0.2-0.4 BH3_0.2-0.4 BH3_0.2-0.4 BH3_0.2-0.4 BH3_0.2-0.1 BH9M_0.2-0.3 BH9M_0.2-0.2.1 BH11M_0.1-0.2 BH11M_1.0-1.1	SE149963.004 SE149963.005 SE149963.006 SE149963.007 SE149963.008 SE149963.001 SE149963.002 SE149963.003 SE149963.004 SE149963.005 SE149963.006 SE149963.007 SE149963.007 SE149963.007 SE149963.007 SE149963.008	% %	60 - 130% 60 - 130%	93 108 105 96 98 91 87 80 81 81 97 96 87 88
	BH3_0.8-1.0 BH9M_0.2-0.3 BH9M_2.0-2.1 BH11M_0.1-0.2 BH11M_1.0-1.1 BH2_0.2-0.4 BH3_0.2-0.4 BH3_0.2-0.4 BH3_0.2-0.4 BH3_0.2-0.4 BH3_0.2-0.4 BH3_0.2-0.1 BH9M_0.2-0.3 BH9M_0.2-0.2 BH11M_0.1-0.2 BH11M_1.0-1.1 BH2_0.2-0.4	SE149963.004 SE149963.005 SE149963.006 SE149963.007 SE149963.008 SE149963.001 SE149963.002 SE149963.003 SE149963.004 SE149963.005 SE149963.006 SE149963.007 SE149963.006 SE149963.007 SE149963.008 SE149963.008 SE149963.001	% %	60 - 130% 60 - 130%	93 108 105 96 98 91 87 80 81 97 96 87 88 88 88 86
	BH3_0.8-1.0 BH9M_0.2-0.3 BH9M_2.0-2.1 BH11M_0.1-0.2 BH11M_1.0-1.1 BH2_0.2-0.4 BH3_0.2-0.4 BH3_0.2-0.4 BH3_0.2-0.4 BH3_0.2-0.4 BH3_0.2-0.4 BH3_0.2-0.4 BH3_0.2-0.1 BH9M_0.2-0.3 BH9M_0.2-0.2.1 BH11M_0.1-0.2 BH11M_0.1-0.1 BH2_0.2-0.4	SE149963.004 SE149963.005 SE149963.006 SE149963.007 SE149963.008 SE149963.001 SE149963.002 SE149963.004 SE149963.005 SE149963.006 SE149963.007 SE149963.006 SE149963.007 SE149963.007 SE149963.008 SE149963.001 SE149963.001 SE149963.002	% %	60 - 130% 60 - 130%	93 108 105 96 98 91 87 80 81 97 96 87 87 88 88 88 86 81
	BH3_0.8-1.0 BH9M_0.2-0.3 BH9M_2.0-2.1 BH11M_0.1-0.2 BH11M_1.0-1.1 BH2_0.2-0.4 BH2_1.2-1.5 BH3_0.2-0.4 BH9M_2.0-2.1 BH9M_2.0-2.1 BH9M_0.2-0.3 BH9M_0.2-0.3 BH9M_0.1-0.2 BH11M_0.1-0.2 BH11M_0.1-0.2 BH31M_0.1-0.2 BH31M_0.1-0.2 BH31M_0.1-0.1.1 BH2_0.2-0.4 BH2_0.2-0.4	SE149963.004 SE149963.005 SE149963.006 SE149963.007 SE149963.008 SE149963.001 SE149963.002 SE149963.003 SE149963.004 SE149963.005 SE149963.006 SE149963.007 SE149963.008 SE149963.001 SE149963.002 SE149963.003	% %	60 - 130% 60 - 130%	93 108 105 96 98 91 87 80 81 97 96 87 87 88 87 88 88 86 81 74
	BH3_0.8-1.0 BH9M_0.2-0.3 BH9M_2.0-2.1 BH11M_0.1-0.2 BH11M_1.0-1.1 BH2_0.2-0.4 BH2_1.2-1.5 BH3_0.8-1.0 BH9M_2.0-2.1 BH9M_2.0-2.1 BH11M_1.0-1.1 BH9M_0.2-0.3 BH9M_2.0-2.1 BH11M_0.1-0.2 BH11M_0.1-0.2 BH31_0.2-0.4 BH2_0.2-0.4 BH2_0.2-0.4	SE149963.004 SE149963.005 SE149963.006 SE149963.007 SE149963.008 SE149963.001 SE149963.002 SE149963.003 SE149963.004 SE149963.005 SE149963.006 SE149963.007 SE149963.007 SE149963.007 SE149963.007 SE149963.007 SE149963.007 SE149963.007 SE149963.007 SE149963.008 SE149963.001 SE149963.002 SE149963.002 SE149963.003 SE149963.003	% %	60 - 130% 60 - 130%	93 108 105 96 98 91 87 80 81 97 96 87 87 88 88 88 86 81 74 73
	BH3_0.8-1.0 BH9M_0.2-0.3 BH9M_2.0-2.1 BH11M_0.1-0.2 BH11M_1.0-1.1 BH2_0.2-0.4 BH2_1.2-1.5 BH3_0.2-0.4 BH9M_2.0-2.1 BH9M_2.0-2.1 BH11M_0.1-0.2 BH11M_0.1-0.2 BH11M_0.1-0.2 BH11M_0.1-0.2 BH11M_0.2-0.3 BH2_0.2-0.4 BH2_0.2-0.4 BH2_0.2-0.4 BH2_0.2-0.4 BH2_0.2-0.4 BH2_0.2-0.4 BH3_0.2-0.4 BH3_0.2-0.4 BH3_0.2-0.4 BH3_0.2-0.4 BH3_0.2-0.4 BH3_0.2-0.4	SE149963.004 SE149963.005 SE149963.006 SE149963.007 SE149963.008 SE149963.001 SE149963.002 SE149963.003 SE149963.004 SE149963.005 SE149963.006 SE149963.007 SE149963.008 SE149963.007 SE149963.008 SE149963.001 SE149963.002 SE149963.003 SE149963.002 SE149963.003 SE149963.003 SE149963.004 SE149963.003 SE149963.004 SE149963.005	% %	60 - 130% 60 - 130%	93 108 105 96 98 91 87 80 81 97 96 87 88 88 86 81 74 73 87
d8-toluene (Surrogate)	BH3_0.8-1.0 BH9M_0.2-0.3 BH9M_2.0-2.1 BH11M_0.1-0.2 BH11M_1.0-1.1 BH2_0.2-0.4 BH2_1.2-1.5 BH3_0.8-1.0 BH9M_2.0-2.1 BH9M_2.0-2.1 BH11M_1.0-1.1 BH9M_0.2-0.3 BH9M_2.0-2.1 BH11M_0.1-0.2 BH11M_0.1-0.2 BH31_0.2-0.4 BH2_0.2-0.4 BH2_0.2-0.4	SE149963.004 SE149963.005 SE149963.006 SE149963.007 SE149963.008 SE149963.001 SE149963.002 SE149963.003 SE149963.004 SE149963.005 SE149963.006 SE149963.007 SE149963.007 SE149963.007 SE149963.007 SE149963.007 SE149963.007 SE149963.007 SE149963.007 SE149963.008 SE149963.001 SE149963.002 SE149963.002 SE149963.003 SE149963.003	% %	60 - 130% 60 - 130%	93 108 105 96 98 91 87 80 81 97 96 87 87 88 88 86 81 74 73
	BH3_0.8-1.0 BH9M_0.2-0.3 BH9M_2.0-2.1 BH11M_0.1-0.2 BH11M_1.0-1.1 BH2_0.2-0.4 BH2_1.2-1.5 BH3_0.2-0.4 BH9M_2.0-2.1 BH9M_2.0-2.1 BH11M_0.1-0.2 BH11M_0.1-0.2 BH11M_0.1-0.2 BH11M_0.1-0.2 BH11M_0.2-0.3 BH2_0.2-0.4 BH2_0.2-0.4 BH2_0.2-0.4 BH2_0.2-0.4 BH2_0.2-0.4 BH2_0.2-0.4 BH3_0.2-0.4 BH3_0.2-0.4 BH3_0.2-0.4 BH3_0.2-0.4 BH3_0.2-0.4 BH3_0.2-0.4	SE149963.004 SE149963.005 SE149963.006 SE149963.007 SE149963.008 SE149963.001 SE149963.002 SE149963.003 SE149963.004 SE149963.005 SE149963.006 SE149963.007 SE149963.008 SE149963.007 SE149963.008 SE149963.001 SE149963.002 SE149963.003 SE149963.002 SE149963.003 SE149963.003 SE149963.004 SE149963.003 SE149963.004 SE149963.005	% %	60 - 130% 60 - 130%	93 108 105 96 98 91 87 80 81 97 96 87 88 88 86 81 74 73 87

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Mercury in Soll Method: ME-(AU)-[1							
Sample Number	Parameter	Units	LOR	Result			
LB097090.001	Mercury	mg/kg	0.01	<0.01			

OC Pesticides in Soil

OC Pesticides in Soil				Method: ME-	(AU)-[ENV]AN400/AN4
Sample Number		Parameter	Units	LOR	Result
LB096968.001		Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1
		Alpha BHC	mg/kg	0.1	<0.1
		Lindane	mg/kg	0.1	<0.1
		Heptachlor	mg/kg	0.1	<0.1
		Aldrin	mg/kg	0.1	<0.1
		Beta BHC	mg/kg	0.1	<0.1
		Delta BHC	mg/kg	0.1	<0.1
		Heptachlor epoxide	mg/kg	0.1	<0.1
		Alpha Endosulfan	mg/kg	0.2	<0.2
		Gamma Chlordane	mg/kg	0.1	<0.1
		Alpha Chlordane	mg/kg	0.1	<0.1
		p,p'-DDE	mg/kg	0.1	<0.1
		Dieldrin	mg/kg	0.2	<0.2
		Endrin	mg/kg	0.2	<0.2
		Beta Endosulfan	mg/kg	0.2	<0.2
		p,p'-DDD	mg/kg	0.1	<0.1
		p,p'-DDT	mg/kg	0.1	<0.1
		Endosulfan sulphate	mg/kg	0.1	<0.1
		Endrin Aldehyde	mg/kg	0.1	<0.1
		Methoxychlor	mg/kg	0.1	<0.1
		Endrin Ketone	mg/kg	0.1	<0.1
		Isodrin	mg/kg	0.1	<0.1
		Mirex	mg/kg	0.1	<0.1
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	95
P Pesticides in Soil				Method: ME-	(AU)-[ENV]AN400/AN
ample Number		Parameter	Units	LOR	Result
B096968.001		Dichlorvos	mg/kg	0.5	<0.5
		Dimethoate	mg/kg	0.5	<0.5
		Diazinon (Dimpylate)	mg/kg	0.5	<0.5
		Fenitrothion	mg/kg	0.2	<0.2
		Malathion	mg/kg	0.2	<0.2
		Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2
		Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2
		Bromophos Ethyl	mg/kg	0.2	<0.2
		Methidathion	mg/kg	0.5	<0.5
		Ethion	mg/kg	0.2	<0.2
		Azinphos-methyl (Guthion)		0.2	<0.2
			mg/kg	0.2	NU.2

PAH (Polynuclear Aromatic Hydrocarb	olynuclear Aromatic Hydrocarbons) in Soil			od: ME-(AU)-[ENV]AN420
Sample Number	Parameter	Units	LOR	Result
LB096968.001	Naphthalene	mg/kg	0.1	<0.1
	2-methylnaphthalene	mg/kg	0.1	<0.1
	1-methylnaphthalene	mg/kg	0.1	<0.1
	Acenaphthylene	mg/kg	0.1	<0.1
	Acenaphthene	mg/kg	0.1	<0.1
	Fluorene	mg/kg	0.1	<0.1
	Phenanthrene	mg/kg	0.1	<0.1
	Anthracene	mg/kg	0.1	<0.1
	Fluoranthene	mg/kg	0.1	<0.1
	Pyrene	mg/kg	0.1	<0.1
	Benzo(a)anthracene	mg/kg	0.1	<0.1
	Chrysene	mg/kg	0.1	<0.1
	Benzo(a)pyrene	mg/kg	0.1	<0.1

%

%

Surrogates

2-fluorobiphenyl (Surrogate)

d14-p-terphenyl (Surrogate)

108

114

17/3/2016

METHOD BLANKS

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

					od: ME-(AU)-[ENV]A
Sample Number		Parameter	Units	LOR	Result
B096968.001		Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1
		Dibenzo(ah)anthracene	mg/kg	0.1	<0.1
		Benzo(ghi)perylene	mg/kg	0.1	<0.1
		Total PAH (18)	mg/kg	0.8	<0.8
	Surrogates	d5-nitrobenzene (Surrogate)	%	-	90
		2-fluorobiphenyl (Surrogate)	%	-	108
		d14-p-terphenyl (Surrogate)	%	-	114
CBs in Soil				Method: ME-	(AU)-[ENV]AN400/A
Sample Number		Parameter	Units	LOR	Result
B096968.001		Arochlor 1016	mg/kg	0.2	<0.2
		Arochlor 1221	mg/kg	0.2	<0.2
		Arochlor 1232	mg/kg	0.2	<0.2
		Arochlor 1242	mg/kg	0.2	<0.2
		Arochlor 1248	mg/kg	0.2	<0.2
		Arochlor 1254	mg/kg	0.2	<0.2
		Arochlor 1260	mg/kg	0.2	<0.2
		Arochlor 1262	mg/kg	0.2	<0.2
		Arochlor 1268	mg/kg	0.2	<0.2
		Total PCBs (Arochlors)	mg/kg	1	<1
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	95
otal Recoverable Me	tals in Soil/Waste Solids/Materia	s by ICPOES		Method: ME-	(AU)-[ENV]AN040/A
ample Number		Parameter	Units	LOR	Result
B097056.001		Arsenic, As	mg/kg	3	<3
2007000.001		Cadmium, Cd	mg/kg	0.3	<0.3
		Chromium, Cr		0.3	<0.3
		Copper, Cu	mg/kg mg/kg	0.5	<0.5
		Lead, Pb	mg/kg	1	<1
		Nickel, Ni		0.5	<0.5
		Zinc, Zn	mg/kg mg/kg	0.5	<0.5
DH (Total Deservate	ala Liudraaadhana) in Call		ingrig		
-	ole Hydrocarbons) in Soil	Demonstration	1124		od: ME-(AU)-[ENV]A
ample Number		Parameter	Units	LOR	Result
B096968.001		TRH C10-C14	mg/kg	20	<20
		TRH C15-C28	mg/kg	45	<45
		TRU 000 000			
		TRH C29-C36	mg/kg	45	<45
		TRH C37-C40	mg/kg	100	<100
				100 110	<100 <110
OC's in Soil		TRH C37-C40	mg/kg	100 110	<100 <110
		TRH C37-C40	mg/kg	100 110	<100 <110
ample Number	Fumigants	TRH C37-C40 TRH C10-C36 Total	mg/kg mg/kg	100 110 Method: ME-	<100 <110 (AU)-[ENV]AN433/A
ample Number	Fumigants	TRH C37-C40 TRH C10-C36 Total Parameter	mg/kg mg/kg Units	100 110 Method: ME- LOR	<100 <110 (AU)-[ENV]AN433/A Result
ample Number	Fumigants	TRH C37-C40 TRH C10-C36 Total Parameter 2,2-dichloropropane	mg/kg mg/kg Units mg/kg	100 110 Method: ME- LOR 0.1	<100 <110 (AU)-[ENV]AN433/A Result <0.1
ample Number	Fumigants	TRH C37-C40 TRH C10-C36 Total Parameter 2,2-dichloropropane 1,2-dichloropropane	mg/kg mg/kg Units mg/kg mg/kg	100 110 Method: ME- LOR 0.1 0.1	<100 <110 (AU)-[ENV]AN433/A Result <0.1 <0.1
ample Number	Fumigants	TRH C37-C40 TRH C10-C36 Total Parameter 2,2-dichloropropane 1,2-dichloropropane cis-1,3-dichloropropene	mg/kg mg/kg Units mg/kg mg/kg mg/kg	100 110 Method: ME- LOR 0.1 0.1 0.1	<100 <110 (AU)-[ENV]AN433/A Result <0.1 <0.1 <0.1
ample Number	Fumigants Halogenated Aliphatics	TRH C37-C40 TRH C10-C36 Total 2,2-dichloropropane 1,2-dichloropropane cis-1,3-dichloropropene trans-1,3-dichloropropene	mg/kg mg/kg Units mg/kg mg/kg mg/kg mg/kg	100 110 Method: ME- LOR 0.1 0.1 0.1 0.1	<100 <110 (AU)-[ENV]AN433/A Result <0.1 <0.1 <0.1 <0.1
ample Number		TRH C37-C40 TRH C10-C36 Total Parameter 2.2-dichloropropane 1.2-dichloropropane cis-1,3-dichloropropene trans-1,3-dichloropropene 1,2-dibromoethane (EDB)	mg/kg mg/kg Units mg/kg mg/kg mg/kg mg/kg mg/kg	100 110 Method: ME- LOR 0.1 0.1 0.1 0.1 0.1 0.1	<100 <110 (AU)-[ENV]AN433/A Result <0.1 <0.1 <0.1 <0.1 <0.1 <0.1
ample Number		TRH C37-C40 TRH C10-C36 Total Parameter 2,2-dichloropropane 1,2-dichloropropane cis-1,3-dichloropropene trans-1,3-dichloropropene 1,2-dibromoethane (EDB) Dichlorodifluoromethane (CFC-12)	mg/kg mg/kg Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	100 110 Method: ME- LOR 0.1 0.1 0.1 0.1 0.1 0.1 1	<100 <110 (AU)-[ENV]AN433/A Result <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <1
ample Number		TRH C37-C40 TRH C10-C36 Total 2,2-dichloropropane 1,2-dichloropropane cis-1,3-dichloropropene trans-1,3-dichloropropene 1,2-dibromoethane (EDB) Dichlorodifluoromethane (CFC-12) Chloromethane	mg/kg mg/kg Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	100 110 Method: ME- LOR 0.1 0.1 0.1 0.1 0.1 0.1 1 1	<100 <110 (AU)-[ENV]AN433/A Result <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <1 <1
ample Number		TRH C37-C40 TRH C10-C36 Total 2,2-dichloropropane 1,2-dichloropropane cis-1,3-dichloropropene trans-1,3-dichloropropene 1,2-dibromoethane (EDB) Dichlorodifluoromethane (CFC-12) Chloromethane Vinyl chloride (Chloroethene)	mg/kg mg/kg Units mg/kg	100 110 Method: ME- LOR 0.1 0.1 0.1 0.1 0.1 1 1 1 0.1	<100 <110 (AU)-[ENV]AN433/A Result <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <1 <1 <0.1
ample Number		TRH C37-C40 TRH C10-C36 Total 2,2-dichloropropane 1,2-dichloropropane cis-1,3-dichloropropene trans-1,3-dichloropropene 1,2-dibromoethane (EDB) Dichlorodifluoromethane (CFC-12) Chloromethane Vinyl chloride (Chloroethene) Bromomethane	mg/kg mg/kg Units mg/kg	100 110 Method: ME- LOR 0.1 0.1 0.1 0.1 0.1 1 1 1 0.1 1 1 1 1	<100 <110 (AU)-[ENV]AN433/A Result <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <1 <1 <1 <1 <1
ample Number		TRH C37-C40 TRH C10-C36 Total 2,2-dichloropropane 1,2-dichloropropane cis-1,3-dichloropropene trans-1,3-dichloropropene 1,2-dibromoethane (EDB) Dichlorodifluoromethane (CFC-12) Chloromethane Vinyl chloride (Chloroethene) Bromomethane Chloroethane	mg/kg mg/kg Units mg/kg	100 110 Method: ME- LOR 0.1 0.1 0.1 0.1 0.1 1 1 0.1 1 1 1 1 1 1	<100 <110 (AU)-[ENV]AN433/A Result <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <1 <1 <1 <1 <1 <1 <1 <1
ample Number		TRH C37-C40 TRH C10-C36 Total Parameter 2,2-dichloropropane 1,2-dichloropropane cis-1,3-dichloropropene trans-1,3-dichloropropene 1,2-dibromethane (EDB) Dichlorodifluoromethane (CFC-12) Chloromethane Vinyl chloride (Chloroethene) Bromomethane Chloroethane Trichlorofluoromethane	mg/kg mg/kg Units mg/kg	100 110 Method: ME- LOR 0.1 0.1 0.1 0.1 1 1 1 0.1 1 1 1 1 1 1 1	<100 <110 (AU)-[ENV]AN433/A Result <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1
ample Number		TRH C37-C40 TRH C10-C36 Total 2,2-dichloropropane 1,2-dichloropropane cis-1,3-dichloropropene trans-1,3-dichloropropene 1,2-dibromoethane (EDB) Dichlorodifluoromethane (CFC-12) Chloromethane Vinyl chloride (Chloroethene) Bromomethane Trichlorofluoromethane Inchloroethane Inchloroethane Inchloroethane	mg/kg mg/kg Units mg/kg	100 110 Method: ME- LOR 0.1 0.1 0.1 0.1 0.1 1 1 0.1 1 1 1 1 1 5	<100 <110 (AU)-[ENV]AN433/A Result <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1
ample Number		TRH C37-C40 TRH C10-C36 Total Parameter 2,2-dichloropropane 1,2-dichloropropane cis-1,3-dichloropropene trans-1,3-dichloropropene 1,2-dibromotethane (EDB) Dichlorodifluoromethane (CFC-12) Chloromethane Vinyl chloride (Chloroethene) Bromomethane Chloromethane Trichlorofluoromethane Iodomethane 1,1-dichloroptupene	mg/kg mg/kg Units mg/kg	100 110 Method: ME- LOR 0.1 0.1 0.1 0.1 1 1 1 1 1 1 1 5 0.1	<100 <110 (AU)-[ENV]AN433/A Result <0.1 <0.1 <0.1 <0.1 <0.1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1
ample Number		TRH C37-C40 TRH C10-C36 Total Parameter 2,2-dichloropropane 1,2-dichloropropane cis-1,3-dichloropropene trans-1,3-dichloropropene 1,2-dibromoethane (EDB) Dichlorodifluoromethane (CFC-12) Chloromethane Vinyl chloride (Chloroethene) Bromomethane Chloromethane Inchorofluoromethane Indorethane Trichlorofluoromethane Iodomethane 1,1-dichloroethene Dichloromethane 1,1-dichloroethene Dichloromethane	mg/kg mg/kg Units mg/kg	100 110 Method: ME- LOR 0.1 0.1 0.1 0.1 1 1 1 1 1 1 5 0.1 1 1 5 0.1 0.5	<100 <110 (AU)-[ENV]AN433/A Result <0.1 <0.1 <0.1 <0.1 <0.1 <1 <1 <1 <1 <1 <1 <1 <1 <5 <0.1 <0.5
ample Number		TRH C37-C40 TRH C10-C36 Total Parameter 2.2-dichloropropane 1.2-dichloropropane cis-1,3-dichloropropene trans-1,3-dichloropropene trans-1,3-dichloropropene 1.2-dibromoethane (EDB) Dichlorodifluoromethane (CFC-12) Chloromethane Vinyl chloride (Chloroethene) Bromomethane Chloromethane Inchlorofluoromethane Indomethane 1,1-dichlorotethene Dichloromethane 1,1-dichlorotethene Dichloromethane Allyl chloride	mg/kg mg/kg Units mg/kg	100 110 Method: ME- LOR 0.1 0.1 0.1 0.1 0.1 1 1 1 1 1 5 0.1 0.5 0.1	<100 <110 (AU)-[ENV]AN433/A Result <0.1 <0.1 <0.1 <0.1 <0.1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1
ample Number		TRH C37-C40 TRH C10-C36 Total 2.2-dichloropropane 1.2-dichloropropane cis-1,3-dichloropropene trans-1,3-dichloropropene trans-1,3-dichloropropene 1.2-dibromoethane (EDB) Dichlorodifluoromethane (CFC-12) Chloromethane Vinyl chloride (Chloroethene) Bromomethane Chloroethane Trichlorofluoromethane Iodomethane 1,1-dichloroethene Dichloromethane (Methylene chloride) Allyl chloride trans-1,2-dichloroethene	mg/kg mg/kg	100 110 Method: ME- LOR 0.1 0.1 0.1 0.1 0.1 1 1 1 1 1 5 0.1 0.5 0.1 0.1 0.1	<100 <110 (AU)-[ENV]AN433/A Result <0.1 <0.1 <0.1 <0.1 <0.1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1
ample Number		TRH C37-C40 TRH C10-C36 Total 2.2-dichloropropane 1.2-dichloropropane cis-1,3-dichloropropene trans-1,3-dichloropropene trans-1,3-dichloropropene trans-1,3-dichloropropene 1.2-dibromoethane (EDB) Dichlorodifluoromethane (CFC-12) Chloromethane Vinyl chloride (Chloroethene) Bromomethane Chloroethane Trichlorofluoromethane Iodomethane 1,1-dichloroethene Dichloromethane (Methylene chloride) Allyl chloride trans-1,2-dichloroethene 1,1-dichloroethane	mg/kg	100 110 Method: ME- LOR 0.1 0.1 0.1 0.1 1 1 1 1 1 5 0.1 0.5 0.1 0.5 0.1 0.1 0.1 0.1	<100 <110 (AU)-[ENV]AN433/A Result <0.1 <0.1 <0.1 <0.1 <0.1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1
'OC's in Soil Sample Number B096949.001		TRH C37-C40 TRH C10-C36 Total 2,2-dichloropropane 1,2-dichloropropane cis-1,3-dichloropropene trans-1,3-dichloropropene trans-1,3-dichloropropene 1,2-dibromoethane (EDB) Dichlorodifluoromethane (CFC-12) Chloromethane Vinyl chloride (Chloroethene) Bromomethane Chloroethane Trichlorofluoromethane Iodomethane 1,1-dichloroethene Dichloromethane (Methylene chloride) Allyl chloride trans-1,2-dichloroethene 1,1-dichloroethene chloromethane	mg/kg mg/kg	100 110 Method: ME- LOR 0.1 0.1 0.1 0.1 0.1 1 1 1 1 5 0.1 0.5 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	<100 <110 (AU)-[ENV]AN433/A Result <0.1 <0.1 <0.1 <0.1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <5 <0.1 <1 <1 <0.1 <1 <1 <1 <1 <1 <0.1 <1 <1 <1 <0.1 <0.

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

ole Number		Parameter	Units	LOR	Result
949.001	Halogenated Aliphatics	1,1-dichloropropene	mg/kg	0.1	<0.1
	··	Carbon tetrachloride	mg/kg	0.1	<0.1
		Dibromomethane	mg/kg	0.1	<0.1
		Trichloroethene (Trichloroethylene -TCE)	mg/kg	0.1	<0.1
		1,1,2-trichloroethane	mg/kg	0.1	<0.1
		1,3-dichloropropane	mg/kg	0.1	<0.1
				0.1	<0.1
		Tetrachloroethene (Perchloroethylene,PCE)	mg/kg	0.1	<0.1
		1,1,1,2-tetrachloroethane	mg/kg		
		cis-1,4-dichloro-2-butene	mg/kg	1	<1
		1,1,2,2-tetrachloroethane	mg/kg	0.1	<0.1
		1,2,3-trichloropropane	mg/kg	0.1	<0.1
		trans-1,4-dichloro-2-butene	mg/kg	1	<1
		1,2-dibromo-3-chloropropane	mg/kg	0.1	<0.1
		Hexachlorobutadiene	mg/kg	0.1	<0.1
	Halogenated Aromatics	Chlorobenzene	mg/kg	0.1	<0.1
		Bromobenzene	mg/kg	0.1	<0.1
		2-chlorotoluene	mg/kg	0.1	<0.1
		4-chlorotoluene	mg/kg	0.1	<0.1
		1,3-dichlorobenzene	mg/kg	0.1	<0.1
		1,4-dichlorobenzene	mg/kg	0.1	<0.1
		1,2-dichlorobenzene	mg/kg	0.1	<0.1
		1,2,4-trichlorobenzene	mg/kg	0.1	<0.1
		1,2,3-trichlorobenzene	mg/kg	0.1	<0.1
	Monocyclic Aromatic	Benzene	mg/kg	0.1	<0.1
	Hydrocarbons	Toluene	mg/kg	0.1	<0.1
		Ethylbenzene	mg/kg	0.1	<0.1
		m/p-xylene	mg/kg	0.2	<0.2
				0.2	<0.2
		o-xylene	mg/kg		
		Styrene (Vinyl benzene)	mg/kg	0.1	<0.1
		Isopropylbenzene (Cumene)	mg/kg	0.1	<0.1
		n-propylbenzene	mg/kg	0.1	<0.1
		1,3,5-trimethylbenzene	mg/kg	0.1	<0.1
		tert-butylbenzene	mg/kg	0.1	<0.1
		1,2,4-trimethylbenzene	mg/kg	0.1	<0.1
		sec-butylbenzene	mg/kg	0.1	<0.1
		p-isopropyltoluene	mg/kg	0.1	<0.1
		n-butylbenzene	mg/kg	0.1	<0.1
	Nitrogenous Compounds	Acrylonitrile	mg/kg	0.1	<0.1
		2-nitropropane	mg/kg	10	<10
	Oxygenated Compounds	Acetone (2-propanone)	mg/kg	10	<10
		MtBE (Methyl-tert-butyl ether)	mg/kg	0.1	<0.1
		Vinyl acetate	mg/kg	10	<10
		MEK (2-butanone)	mg/kg	10	<10
		MIBK (4-methyl-2-pentanone)	mg/kg	1	<1
		2-hexanone (MBK)	mg/kg	5	<5
	Polycyclic VOCs			0.1	<0.1
		Naphthalene	mg/kg		
	Sulphonated	Carbon disulfide	mg/kg	0.5	< 0.5
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	90
		d4-1,2-dichloroethane (Surrogate)	%	-	100
		d8-toluene (Surrogate)	%	-	76
		Bromofluorobenzene (Surrogate)	%	-	87
	Totals	Total BTEX	mg/kg	0.6	<0.6
	Trihalomethanes	Chloroform	mg/kg	0.1	<0.1
		Bromodichloromethane	mg/kg	0.1	<0.1
		Chlorodibromomethane	mg/kg	0.1	<0.1
		Bromoform	mg/kg	0.1	<0.1
			- •		

SE149963 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Volatile Petroleum Hydrocarbons in Soil (continued)

Method: ME-(AU)-[ENV]AN433/AN434/AN410

Sample Number		Parameter	Units	LOR	Result
LB096949.001		TRH C6-C9	mg/kg	20	<20
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	91
		d4-1,2-dichloroethane (Surrogate)	%	-	104
		d8-toluene (Surrogate)	%	-	94

Method: ME_(ALI)_JENV/JAN312

Method: ME-(AU)-IENVIAN002

Method: ME-(AU)-[ENV]AN400/AN420

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

Acenaphthene

Phenanthrene

Anthracene

Pyrene

Chrysene

Fluoranthene

Benzo(a)anthracene

Benzo(b&j)fluoranthene

Benzo(k)fluoranthene

Indeno(1,2,3-cd)pyrene

Dibenzo(ah)anthracene

Benzo(ghi)perylene

Benzo(a)pyrene

Fluorene

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury in Soil

Mercury In Coll								
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE150011.002	LB097090.014	Mercury	mg/kg	0.01	0.03	0.05	147	6
SE150037.005	LB097090.024	Mercury	mg/kg	0.01	0.02	0.02	200	0

Moisture Content

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE149963.003	LB096947.011	% Moisture	%w/w	0.5	19	18	35	2
SE149963.008	LB096947.017	% Moisture	%w/w	0.5	9.5	9.0	41	6

OC Pesticides in Soil

							Moulou. ML-	(10)-[LIII]H	
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE149963.007	LB096968.024		Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	0	200	0
			Alpha BHC	mg/kg	0.1	<0.1	0	200	0
			Lindane	mg/kg	0.1	<0.1	0	200	0
			Heptachlor	mg/kg	0.1	<0.1	0	200	0
			Aldrin	mg/kg	0.1	<0.1	0	200	0
			Beta BHC	mg/kg	0.1	<0.1	0	200	0
			Delta BHC	mg/kg	0.1	<0.1	0	200	0
			Heptachlor epoxide	mg/kg	0.1	<0.1	0	200	0
			o,p'-DDE	mg/kg	0.1	<0.1	0	200	0
			Alpha Endosulfan	mg/kg	0.2	<0.2	0	200	0
			Gamma Chlordane	mg/kg	0.1	<0.1	0	200	0
			Alpha Chlordane	mg/kg	0.1	<0.1	0	200	0
			trans-Nonachlor	mg/kg	0.1	<0.1	0	200	0
			p,p'-DDE	mg/kg	0.1	<0.1	0	200	0
			Dieldrin	mg/kg	0.2	<0.2	0	200	0
			Endrin	mg/kg	0.2	<0.2	0	200	0
			o,p'-DDD	mg/kg	0.1	<0.1	0	200	0
			o,p'-DDT	mg/kg	0.1	<0.1	0	200	0
			Beta Endosulfan	mg/kg	0.2	<0.2	0	200	0
			p,p'-DDD	mg/kg	0.1	<0.1	0	200	0
			p,p'-DDT	mg/kg	0.1	<0.1	0	200	0
			Endosulfan sulphate	mg/kg	0.1	<0.1	0	200	0
			Endrin Aldehyde	mg/kg	0.1	<0.1	0	200	0
			Methoxychlor	mg/kg	0.1	<0.1	0	200	0
			Endrin Ketone	mg/kg	0.1	<0.1	0	200	0
			Isodrin	mg/kg	0.1	<0.1	0	200	0
			Mirex	mg/kg	0.1	<0.1	0	200	0
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.16	0.151	30	5
AH (Polynuclear	Aromatic Hydrocarbo	ons) in Soil					Meth	od: ME-(AU)-	[ENV]AN4
Driginal	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE149963.002	LB096968.014		Naphthalene	mg/kg	0.1	<0.1	<0.1	200	0
			2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	200	0
			1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	200	0
			Acenaphthylene	mg/kg	0.1	<0.1	<0.1	200	0

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

mg/kg

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

< 0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

< 0.1

<0.1

<0.1

<0.1

<0.1

<0.1

< 0.1

<0.1

<0.1

<0.1

<0.1

<0.1

200

200

200

200

200

200

200

200

200

200

200

200

200

200

0

0

0

0

0

0

0

0

0

0

0

0

0

0

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD
SE149963.002	LB096968.014		Carcinogenic PAHs, BaP TEQ <lor=0< th=""><th>TEQ (mg/kg)</th><th>0.2</th><th><0.2</th><th><0.2</th><th>200</th><th>0</th></lor=0<>	TEQ (mg/kg)	0.2	<0.2	<0.2	200	0
143303.002	ED030300.014		Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg) TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td>134</td><td>0</td></lor=lor<>	TEQ (mg/kg) TEQ (mg/kg)	0.2	<0.2	<0.2	134	0
			Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td>175</td><td>0</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	175	0
		-	Total PAH (18)	mg/kg	0.8	<0.8	<0.8	200	0
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.4	0.4	30	2
			2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.5	30	4
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.6	30	6
E149963.008	LB096968.021		Naphthalene	mg/kg	0.1	<0.1	<0.1	200	0
			2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	200	0
			1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	200	0
			Acenaphthylene	mg/kg	0.1	<0.1	<0.1	200	0
			Acenaphthene	mg/kg	0.1	<0.1	<0.1	200	0
			Fluorene	mg/kg	0.1	<0.1	<0.1	200	0
			Phenanthrene	mg/kg	0.1	<0.1	<0.1	200	0
			Anthracene	mg/kg	0.1	<0.1	<0.1	200	0
			Fluoranthene	mg/kg	0.1	0.1	<0.1	135	10
			Pyrene	mg/kg	0.1	0.2	0.1	104	52
			Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	197	0
			Chrysene		0.1	<0.1	<0.1	173	0
				mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(b&j)fluoranthene	mg/kg					
			Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	197	0
			Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	197	0
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	200	0
			Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	200	0
			Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td>200</td><td>0</td></lor=0<>	TEQ (mg/kg)	0.2	<0.2	<0.2	200	0
			Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td><td>134</td><td>0</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	<0.3	134	0
			Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td>175</td><td>0</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	175	0
			Total PAH (18)	mg/kg	0.8	<0.8	<0.8	200	C
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg		0.4	0.5	30	4
		Gunogates			_	0.5	0.5	30	2
			2-fluorobiphenyl (Surrogate)	mg/kg					2
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	30	
CBs in Soil							Method: ME	-(AU)-[ENV]A	N400//
Driginal	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD
E149963.007	LB096968.022		Arochlor 1016	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1221	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1232	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1242	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1248		0.2	<0.2	0	200	0
				mg/kg					
			Arochlor 1254	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1260	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1262	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1268	mg/kg	0.2	<0.2	0	200	0
			Total PCBs (Arochlors)	mg/kg	1	<1	0	200	0
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0	0.151	30	5
ntal Recoverable	Metals in Soil/Waste	Solids/Materials	V ICPOES				Method: ME		N040/4
			•		LOB-	Original			
Driginal	Duplicate		Parameter	Units	LOR	Original		Criteria %	
SE150011.001	LB097056.014		Arsenic, As	mg/kg	3	2	2	80	12
			Cadmium, Cd	mg/kg	0.3	0.3	0.4	108	20
			Chromium, Cr	mg/kg	0.3	24	25	32	1
			Copper, Cu	mg/kg	0.5	24	22	32	7
			Lead, Pb	mg/kg	1	20	25	34	25
			Nickel, Ni	mg/kg	0.5	19	17	33	13
			Zinc, Zn	mg/kg	0.5	100	140	32	2
E150011.006	LB097056.020		Arsenic, As	mg/kg	3	4	2	64	42
	LD001000.020		Cadmium, Cd		0.3	1.4	1.5	51	4.
				mg/kg					
			Chromium, Cr	mg/kg	0.3	56	59	31	6
			Copper, Cu	mg/kg	0.5	270	280	30	5
			Copper, Cu Lead, Pb	mg/kg mg/kg	0.5 1	270 54	280 58	30 32	5

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

Driginal	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
E150011.006	LB097056.020		Zinc, Zn	mg/kg	0.5	690	730	30	6
RH (Total Recov	erable Hydrocarbons)) in Soil					Meth	od: ME-(AU)-	ENVJAN
Driginal	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
E149963.002	LB096968.014		TRH C10-C14	mg/kg	20	<20	<20	200	0
			TRH C15-C28	mg/kg	45	<45	<45	200	0
			TRH C29-C36	mg/kg	45	<45	<45	200	0
			TRH C37-C40	mg/kg	100	<100	<100	200	0
			TRH C10-C36 Total	mg/kg	110	<110	<110	200	0
			TRH C10-C40 Total	mg/kg	210	<210	<210	200	0
		TRH F Bands	TRH >C10-C16 (F2)	mg/kg	25	<25	<25	200	0
			TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	<25	<25	200	0
			TRH >C16-C34 (F3)	mg/kg	90	<90	<90	200	0
			TRH >C34-C40 (F4)	mg/kg	120	<120	<120	200	0
E149963.008	LB096968.021		TRH C10-C14	mg/kg	20	<20	<20	200	0
			TRH C15-C28	mg/kg	45	<45	<45	200	0
			TRH C29-C36	mg/kg	45	<45	<45	200	0
			TRH C37-C40	mg/kg	100	<100	<100	200	0
			TRH C10-C36 Total	mg/kg	110	<110	<110	200	0
			TRH C10-C40 Total	mg/kg	210	<210	<210	200	0
		TRH F Bands	TRH >C10-C16 (F2)	mg/kg	25	<25	<25	200	0
			TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	<25	<25	200	0
			TRH >C16-C34 (F3)	mg/kg	90	<90	<90	200	0
			TRH >C34-C40 (F4)	mg/kg	120	<120	<120	200	0

	~		· ·	
vu	C'S	In i	SO	
				•

SE149983.008 Funigents 2.2 dichlorogropane mg/g 0.1 <0.1 <0.1 200 12.4chlorogropane mg/g 0.1 <0.1 <0.1 200 12.4chlorogropane mg/g 0.1 <0.1 <0.0 <	OC's in Soil							inouriour iniz	-(AU)-[ENV]AI	
12-dichloropropane mg/kg 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.0	Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
cis1.3.dichlorogropene mg/kg 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.	SE149963.008	LB096949.012	Fumigants	2,2-dichloropropane	mg/kg	0.1	<0.1	<0.1	200	0
trans.1,3-dichloropropen mg/kg 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <				1,2-dichloropropane	mg/kg	0.1	<0.1	<0.1	200	0
1.2-dibronsehane (EDB) mg/kg 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.				cis-1,3-dichloropropene	mg/kg	0.1	<0.1	<0.1	200	0
Halogenated Dichlorosethane (CFC-12) mg/kg 1 <1 <1 200 Aliphatics Chiocomethane mg/kg 1 <1				trans-1,3-dichloropropene	mg/kg	0.1	<0.1	<0.1	200	0
Aliphatics Chloromethane mg/kg 1 <1 <1 200 Vinyt chirdig (Chloroethene) mg/kg 0.1 <0.1				1,2-dibromoethane (EDB)	mg/kg	0.1	<0.1	<0.1	200	0
Vinyl chloride (Chloroethane)mg/kg0.1<0.1<0.1200Bromomethanemg/kg1<1			Halogenated	Dichlorodifluoromethane (CFC-12)	mg/kg	1	<1	<1	200	0
Bromomethane mg/kg 1 <1 <1 200 Chloroethane mg/kg 1 <1			Aliphatics	Chloromethane	mg/kg	1	<1	<1	200	0
Chioroethanemg/kg1<1<1200Trichtoroftuoromethanemg/kg5<5				Vinyl chloride (Chloroethene)	mg/kg	0.1	<0.1	<0.1	200	0
Trichlorofluoromethanemg/kg1<1<1200Iodomethanemg/kg5<5				Bromomethane	mg/kg	1	<1	<1	200	0
lodomethanemg/kg5<5<52001.1.dichiorosethanemg/kg0.1<0.1				Chloroethane	mg/kg	1	<1	<1	200	0
1,1-dichloroethene mg/kg 0.1 <0.1				Trichlorofluoromethane	mg/kg	1	<1	<1	200	0
Dichloromethane (Methylene chloride) mg/kg 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 $<$				lodomethane	mg/kg	5	<5	<5	200	0
Allyl chloridemg/kg 0.1 <0.1 <0.1 200 trans-1,2-dichloroethanemg/kg 0.1 <0.1 <0.1 200 1,1-dichloroethanemg/kg 0.1 <0.1 <0.1 200 cis-1,2-dichloroethanemg/kg 0.1 <0.1 <0.1 200 Bromochloromethanemg/kg 0.1 <0.1 <0.1 200 1,2-dichloroethanemg/kg 0.1 <0.1 <0.1 200 1,1-dichloroptopenemg/kg 0.1 <0.1 <0.1 200 1,1-dichloropthanemg/kg 0.1 <0.1 <0.1 200 1,1-dichloroptopenemg/kg 0.1 <0.1 <0.1 <0.1 1,1-dichloropthanemg/kg 0.1 <0.1 <0.1 <0.1 1,1,2-trichloroethanemg/kg 0.1 <0.1 <0.1 <0.1 1,1,2-trichloroethanemg/kg 0.1 <0.1 <0.1 <0.1 1,1,2-terachloroethanemg/kg 0.1 <0.1 <0.1 <0.1 1,1,2-terachloroethanemg/kg 0.1 <0.1 <0.1 <0.1 1,1,2-terachloroethanemg/kg 0.1 <0.1 <0.1 <0.1 1,1,1,2-terachloroethanemg/kg $<$				1,1-dichloroethene	mg/kg	0.1	<0.1	<0.1	200	0
trans-1.2-dichloroethene mg/kg 0.1<0.1<0.12001,1-dichloroethane mg/kg 0.1<0.1				Dichloromethane (Methylene chloride)	mg/kg	0.5	<0.5	<0.5	200	0
1,1-dichloroethanemg/kg0.1<0.1<0.1200cis-1,2-dichloroethanemg/kg0.1<0.1				Allyl chloride	mg/kg	0.1	<0.1	<0.1	200	0
cis-1,2-dichloroethene mg/kg 0.1 <0.1 <0.1 <0.1 200 Bromochloromethane mg/kg 0.1 <0.1 <0.1 200 1,2-dichloroethane mg/kg 0.1 <0.1 <0.1 200 1,1,1-tichloroethane mg/kg 0.1 <0.1 <0.1 200 1,1-tichloropethane mg/kg 0.1 <0.1 <0.1 200 1,1-dichloropethane mg/kg 0.1 <0.1 <0.1 200 1,1,2-trichloroethane mg/kg 0.1 <0.1 <0.1 200 1,3-dichloroppana mg/kg 0.1 <0.1 <0.1 200 <0.1 1,1,2-tetrachloroethane mg/kg 0.1 <0.1 <0.1 <0.1 <0.1 1,1,2-tetrachloroethane mg/kg 0.1 <0.1 <0.1 <0.1 <0.1 1,1,2-tetrach				trans-1,2-dichloroethene	mg/kg	0.1	<0.1	<0.1	200	0
Bromochloromethane mg/kg 0.1 <0.1 <0.1 200 1,2-dichloroethane mg/kg 0.1 <0.1				1,1-dichloroethane	mg/kg	0.1	<0.1	<0.1	200	0
1.2-dichloroethane mg/kg 0.1 <0.1				cis-1,2-dichloroethene	mg/kg	0.1	<0.1	<0.1	200	0
1,1,1-trichloroethanemg/kg0.1<0.1<0.12001,1-dichloropropenemg/kg0.1<0.1				Bromochloromethane	mg/kg	0.1	<0.1	<0.1	200	0
1.1-dichloropropenemg/kg0.1<0.1<0.12001.1-dichloropropenemg/kg0.1<0.1				1,2-dichloroethane	mg/kg	0.1	<0.1	<0.1	200	0
Carbon tetrachloride mg/kg 0.1 <0.1 <0.1 200 Dibromomethane mg/kg 0.1 <0.1				1,1,1-trichloroethane	mg/kg	0.1	<0.1	<0.1	200	0
Dibromomethane mg/kg 0.1 <0.1 <0.1 200 Trichloroethene (Trichloroethylene -TCE) mg/kg 0.1 <0.1				1,1-dichloropropene	mg/kg	0.1	<0.1	<0.1	200	0
Trichloroethene (Trichloroethylene -TCE)mg/kg0.1<0.1<0.12001,1,2-trichloroethanemg/kg0.1<0.1				Carbon tetrachloride	mg/kg	0.1	<0.1	<0.1	200	0
1,1,2-trichloroethane mg/kg 0.1 <0.1 <0.1 200 1,3-dichloropropane mg/kg 0.1 <0.1				Dibromomethane	mg/kg	0.1	<0.1	<0.1	200	0
1,3-dichloropropane mg/kg 0.1 <0.1 <0.1 200 Tetrachloroethene (Perchloroethylene,PCE) mg/kg 0.1 <0.1				Trichloroethene (Trichloroethylene -TCE)	mg/kg	0.1	<0.1	<0.1	200	0
Tetrachloroethene (Perchloroethylene,PCE) mg/kg 0.1 <0.1 <0.1 200 1,1,1,2-tetrachloroethane mg/kg 0.1 <0.1				1,1,2-trichloroethane	mg/kg	0.1	<0.1	<0.1	200	0
1,1,1,2-tetrachloroethane mg/kg 0.1 <0.1 <0.1 200 cis-1,4-dichloro-2-butene mg/kg 1 <1				1,3-dichloropropane	mg/kg	0.1	<0.1	<0.1	200	0
cis-1,4-dichloro-2-butene mg/kg 1 <1 <1 200 1,1,2,2-tetrachloroethane mg/kg 0.1 <0.1				Tetrachloroethene (Perchloroethylene,PCE)	mg/kg	0.1	<0.1	<0.1	200	0
1,1,2,2-tetrachloroethane mg/kg 0.1 <0.1 <0.1 200 1,2,3-trichloropropane mg/kg 0.1 <0.1				1,1,1,2-tetrachloroethane	mg/kg	0.1	<0.1	<0.1	200	0
1,2,3-trichloropropane mg/kg 0.1 <0.1 <0.1 200 trans-1,4-dichloro-2-butene mg/kg 1 <1				cis-1,4-dichloro-2-butene	mg/kg	1	<1	<1	200	0
trans-1,4-dichloro-2-butene mg/kg 1 <1 <1 200				1,1,2,2-tetrachloroethane	mg/kg	0.1	<0.1	<0.1	200	0
				1,2,3-trichloropropane	mg/kg	0.1	<0.1	<0.1	200	0
				trans-1,4-dichloro-2-butene	mg/kg	1	<1	<1	200	0
				1,2-dibromo-3-chloropropane		0.1	<0.1	<0.1	200	0
Hexachlorobutadiene mg/kg 0.1 <0.1 <0.1 200							<0.1	<0.1	200	0

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

Driginal	Duplicate		Parameter	Units	LOR	Original	Dup <u>licate</u>	Criteria %	RPD %
E149963.008	LB096949.012	Halogenated	Chlorobenzene	mg/kg	0.1	<0.1	<0.1	200	0
		Aromatics	Bromobenzene	mg/kg	0.1	<0.1	<0.1	200	0
			2-chlorotoluene	mg/kg	0.1	<0.1	<0.1	200	0
			4-chlorotoluene	mg/kg	0.1	<0.1	<0.1	200	0
			1,3-dichlorobenzene	mg/kg	0.1	<0.1	<0.1	200	0
			1,4-dichlorobenzene	mg/kg	0.1	<0.1	<0.1	200	0
			1,2-dichlorobenzene	mg/kg	0.1	<0.1	<0.1	200	0
			1,2,4-trichlorobenzene	mg/kg	0.1	<0.1	<0.1	200	0
			1,2,3-trichlorobenzene	mg/kg	0.1	<0.1	<0.1	200	0
		Monocyclic	Benzene	mg/kg	0.1	<0.1	<0.1	200	0
		Aromatic	Toluene	mg/kg	0.1	<0.1	<0.1	200	0
			Ethylbenzene	mg/kg	0.1	<0.1	<0.1	200	0
			m/p-xylene	mg/kg	0.2	<0.2	<0.2	200	0
			o-xylene	mg/kg	0.1	<0.1	<0.1	200	0
			Styrene (Vinyl benzene)	mg/kg	0.1	<0.1	<0.1	200	0
			Isopropylbenzene (Cumene)	mg/kg	0.1	<0.1	<0.1	200	0
			n-propylbenzene	mg/kg	0.1	<0.1	<0.1	200	0
			1,3,5-trimethylbenzene	mg/kg	0.1	<0.1	<0.1	200	0
			tert-butylbenzene	mg/kg	0.1	<0.1	<0.1	200	0
			1,2,4-trimethylbenzene	mg/kg	0.1	<0.1	<0.1	200	0
			sec-butylbenzene	mg/kg	0.1	<0.1	<0.1	200	0
			p-isopropyltoluene	mg/kg	0.1	<0.1	<0.1	200	0
			n-butylbenzene	mg/kg	0.1	<0.1	<0.1	200	0
		Nitrogenous	Acrylonitrile	mg/kg	0.1	<0.1	<0.1	200	0
		Compounds	2-nitropropane	mg/kg	10	<10	<10	200	0
		Oxygenated	Acetone (2-propanone)	mg/kg	10	<10	<10	200	0
		Compounds	MtBE (Methyl-tert-butyl ether)	mg/kg	0.1	<0.1	<0.1	200	0
			Vinyl acetate	mg/kg	10	<10	<10	200	0
			MEK (2-butanone)	mg/kg	10	<10	<10	200	0
			MIBK (4-methyl-2-pentanone)	mg/kg	1	<1	<1	200	0
			2-hexanone (MBK)	mg/kg	5	<5	<5	200	0
		Polycyclic	Naphthalene	mg/kg	0.1	<0.1	<0.1	200	0
		Sulphonated	Carbon disulfide	mg/kg	0.5	<0.5	<0.5	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	3.9	3.4	50	12
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.7	4.2	50	1(
			d8-toluene (Surrogate)	mg/kg	-	3.6	3.6	50	2
			Bromofluorobenzene (Surrogate)	mg/kg	-	4.1	3.6	50	
		Totals	Total Xylenes*	mg/kg	0.3	<0.3	<0.3	200	0
		. otalo	Total BTEX	mg/kg	0.6	<0.6	<0.6	200	0
		Trihalomethan	Chloroform	mg/kg	0.0	<0.1	<0.1	200	0
		es	Bromodichloromethane	mg/kg	0.1	<0.1	<0.1	200	0
			Chlorodibromomethane	mg/kg	0.1	<0.1	<0.1	200	0
			Bromoform	mg/kg	0.1	<0.1	<0.1	200	0
latila Datrolaum	Hydrocarbons in Soi							ENVJAN433/AI	
		•	D	11*					
riginal	Duplicate		Parameter	Units	LOR			Criteria %	
E149963.008	LB096949.012		TRH C6-C10	mg/kg	25	<25	<25	200	0
			TRH C6-C9	mg/kg	20	<20	<20	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	3.9	4.2	30	8
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.9	4.4	30	10
			d8-toluene (Surrogate)	mg/kg	-	4.4	3.9	30	12
			Bromofluorobenzene (Surrogate)	mg/kg	-	4.3	3.7	30	15
		VPH F Bands	Benzene (F0)	mg/kg	0.1	<0.1	<0.1	200	0

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Mercury in Soil					1	Nethod: ME-(A	U)-[ENV]AN312
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB097090.002	Mercury	mg/kg	0.01	0.20	0.2	70 - 130	101

00	Doof	ticides	in Soi	1
00	001	10000		

OC Pesticides in S	oil					Method:	ME-(AU)-[ENV	/JAN400/AN42
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB096968.002		Heptachlor	mg/kg	0.1	0.2	0.2	60 - 140	99
		Aldrin	mg/kg	0.1	0.2	0.2	60 - 140	97
		Delta BHC	mg/kg	0.1	0.2	0.2	60 - 140	92
		Dieldrin	mg/kg	0.2	<0.2	0.2	60 - 140	95
		Endrin	mg/kg	0.2	0.2	0.2	60 - 140	105
		p,p'-DDT	mg/kg	0.1	0.2	0.2	60 - 140	90
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.14	0.15	40 - 130	91
OP Pesticides in Se	oil					Method:	ME-(AU)-[ENV	/JAN400/AN42
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB096968.002		Dichlorvos	mg/kg	0.5	1.6	2	60 - 140	82
		Diazinon (Dimpylate)	mg/kg	0.5	2.0	2	60 - 140	100
		Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	2.0	2	60 - 140	98
		Ethion	mg/kg	0.2	1.7	2	60 - 140	87
	Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.5	40 - 130	104
		d14-p-terphenyl (Surrogate)	mg/kg	-	0.6	0.5	40 - 130	110
PAH (Polynuclear /	Aromatic Hydroca	arbons) in Soil				N	Nethod: ME-(Al	U)-[ENV]AN42
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB096968.002		Naphthalene	mg/kg	0.1	4.5	4	60 - 140	113
		Acenaphthylene	mg/kg	0.1	4.5	4	60 - 140	112
		Acenaphthene	mg/kg					
			ilig/kg	0.1	4.5	4	60 - 140	113
		Phenanthrene	mg/kg	0.1	4.5	4	60 - 140 60 - 140	113 113
		Phenanthrene Anthracene						
			mg/kg	0.1	4.5	4	60 - 140	113
		Anthracene	mg/kg mg/kg	0.1 0.1	4.5 4.9	4	60 - 140 60 - 140	113 124
		Anthracene Fluoranthene	mg/kg mg/kg mg/kg	0.1 0.1 0.1	4.5 4.9 4.6	4 4 4	60 - 140 60 - 140 60 - 140	113 124 115
	Surrogates	Anthracene Fluoranthene Pyrene	mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1	4.5 4.9 4.6 4.7	4 4 4 4	60 - 140 60 - 140 60 - 140 60 - 140	113 124 115 116
	Surrogates	Anthracene Fluoranthene Pyrene Benzo(a)pyrene	mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1	4.5 4.9 4.6 4.7 4.8	4 4 4 4 4 4	60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	113 124 115 116 120
	Surrogates	Anthracene Fluoranthene Pyrene Benzo(a)pyrene d5-nitrobenzene (Surrogate)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 -	4.5 4.9 4.6 4.7 4.8 0.5	4 4 4 4 4 0.5	60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 40 - 130	113 124 115 116 120 92
PCBs in Soil	Surrogates	Anthracene Fluoranthene Pyrene Benzo(a)pyrene d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 - -	4.5 4.9 4.6 4.7 4.8 0.5 0.5	4 4 4 4 0.5 0.5 0.5	60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 40 - 130 40 - 130	113 124 115 116 120 92 104 110
P <mark>CBs in Soil</mark> Sample Number	Surrogates	Anthracene Fluoranthene Pyrene Benzo(a)pyrene d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 - -	4.5 4.9 4.6 4.7 4.8 0.5 0.5	4 4 4 4 0.5 0.5 0.5	60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 40 - 130 40 - 130 40 - 130	113 124 115 116 120 92 104 110

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES

Total Recoverable I	Metals in Soil/Was	te Solids/Materials by ICPOES				Method:	ME-(AU)-[EN\	/JAN040/AN320
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB097056.002		Arsenic, As	mg/kg	3	50	50	80 - 120	101
		Cadmium, Cd	mg/kg	0.3	52	50	80 - 120	103
		Chromium, Cr	mg/kg	0.3	51	50	80 - 120	102
		Copper, Cu	mg/kg	0.5	51	50	80 - 120	102
		Lead, Pb	mg/kg	1	52	50	80 - 120	104
		Nickel, Ni	mg/kg	0.5	51	50	80 - 120	102
		Zinc, Zn	mg/kg	0.5	49	50	80 - 120	97
TRH (Total Recove	rable Hydrocarbo	ns) in Soil				N	lethod: ME-(A	U)-[ENV]AN403
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB096968.002		TRH C10-C14	mg/kg	20	45	40	60 - 140	113
		TRH C15-C28	mg/kg	45	<45	40	60 - 140	108
		TRH C29-C36	mg/kg	45	<45	40	60 - 140	93
	TRH F Bands	TRH >C10-C16 (F2)	mg/kg	25	45	40	60 - 140	113
		TRH >C16-C34 (F3)	mg/kg	90	<90	40	60 - 140	105
		TRH >C34-C40 (F4)	mg/kg	120	<120	20	60 - 140	90
VOC's in Soil						Method:	ME-(AU)-[EN\	/JAN433/AN434

Sample Number

Units LOR Parameter

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

VOC's in Soil (cont	inued)					Method:	ME-(AU)-[EN	V]AN433/AN43
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB096949.002	Halogenated	1,1-dichloroethene	mg/kg	0.1	2.3	2.56	60 - 140	91
	Aliphatics	1,2-dichloroethane	mg/kg	0.1	2.9	2.56	60 - 140	114
		Trichloroethene (Trichloroethylene -TCE)	mg/kg	0.1	1.9	2.56	60 - 140	73
	Halogenated	Chlorobenzene	mg/kg	0.1	2.8	2.56	60 - 140	109
	Monocyclic	Benzene	mg/kg	0.1	3.1	2.9	60 - 140	106
	Aromatic	Toluene	mg/kg	0.1	2.6	2.9	60 - 140	89
		Ethylbenzene	mg/kg	0.1	2.6	2.9	60 - 140	90
		m/p-xylene	mg/kg	0.2	5.1	5.8	60 - 140	88
		o-xylene	mg/kg	0.1	2.7	2.9	60 - 140	94
	Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	4.7	5	60 - 140	94
		d4-1,2-dichloroethane (Surrogate)	mg/kg	-	5.8	5	60 - 140	116
		d8-toluene (Surrogate)	mg/kg	-	4.3	5	60 - 140	86
		Bromofluorobenzene (Surrogate)	mg/kg	-	4.9	5	60 - 140	97
	Trihalomethan	Chloroform	mg/kg	0.1	2.9	2.56	60 - 140	115
Volatile Petroleum	Hydrocarbons in S	oil				Nethod: ME-(Al	J)-[ENV]AN43	3/AN434/AN41
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB096949.002		TRH C6-C10	mg/kg	25	26	24.65	60 - 140	104
		TRH C6-C9	mg/kg	20	22	23.2	60 - 140	95
	Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	4.7	5	60 - 140	95
		d4-1,2-dichloroethane (Surrogate)	mg/kg	-	5.5	5	60 - 140	109
		d8-toluene (Surrogate)	mg/kg	-	5.1	5	60 - 140	101
		Bromofluorobenzene (Surrogate)	mg/kg	-	4.9	5	60 - 140	99
	VPH F Bands	TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	7.25	60 - 140	126

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury in Soil						Met	nod: ME-(AL	J)-[ENV]AN312
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE149963.001	LB097090.004	Mercury	mg/kg	0.01	0.29	0.15	0.2	71

PAH (Polynuclear Aromatic Hydrocarbons) in Soil

PAH (Polynuclea	r Aromatic Hydrocarb	ons) in Soil					Meth	od: ME-(AU	J)-[ENV]AN420
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE149945.002	LB096968.022		Naphthalene	mg/kg	0.1	4.6	<0.1	4	114
			2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	-	-
			1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	-	-
			Acenaphthylene	mg/kg	0.1	4.7	<0.1	4	117
			Acenaphthene	mg/kg	0.1	4.4	<0.1	4	111
			Fluorene	mg/kg	0.1	<0.1	<0.1	-	-
			Phenanthrene	mg/kg	0.1	4.3	<0.1	4	106
			Anthracene	mg/kg	0.1	4.8	<0.1	4	120
			Fluoranthene	mg/kg	0.1	4.6	0.1	4	112
			Pyrene	mg/kg	0.1	4.6	0.1	4	112
			Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	-	-
			Chrysene	mg/kg	0.1	<0.1	<0.1	-	-
			Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	-	-
			Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	-	-
			Benzo(a)pyrene	mg/kg	0.1	4.8	<0.1	4	118
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	-	-
			Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	-	-
			Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	-	-
			Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ</td><td>0.2</td><td>4.8</td><td><0.2</td><td>-</td><td>-</td></lor=0<>	TEQ	0.2	4.8	<0.2	-	-
			Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>4.9</td><td><0.3</td><td>-</td><td>-</td></lor=lor<>	TEQ (mg/kg)	0.3	4.9	<0.3	-	-
			Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>4.9</td><td><0.2</td><td>-</td><td>-</td></lor=lor>	TEQ (mg/kg)	0.2	4.9	<0.2	-	-
			Total PAH (18)	mg/kg	0.8	37	<0.8	-	-
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.5	0.5	-	96
			2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.5	-	92
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	-	106
Total Recoverab	e Metals in Soil/Waste	e Solids/Materia	Is by ICPOES				Method: ME	-(AU)-[ENV]	AN040/AN320
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE149956.004	LB097056.004		Arsenic, As	mg/kg	3	50	<1	50	100
			Cadmium, Cd	mg/kg	0.3	52	<0.1	50	103

TRH (Total Recoverable Hydrocarbons) in Soil

Method:	ME-(AU)-[ENV]AN403

		Units	LOR	Result	Original	Spike	Recovery%
LB096968.022	TRH C10-C14	mg/kg	20	48	<20	40	113
	TRH C15-C28	mg/kg	45	110	51	40	153 (9)
	TRH C29-C36	mg/kg	45	100	<45	40	150 (9)
	TRH C37-C40	mg/kg	100	<100	<100	-	-
	TRH C10-C36 Total	mg/kg	110	260	<110	-	-
	TRH C10-C40 Total	mg/kg	210	260	<210	-	-
TRH F Ba	ds TRH >C10-C16 (F2)	mg/kg	25	48	<25	40	113
	TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	48	<25	-	-
	TRH >C16-C34 (F3)	mg/kg	90	160	91	40	183 (9)
	TRH >C34-C40 (F4)	mg/kg	120	<120	<120	-	-
		TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH C10-C40 Total TRH >C10-C40 Total TRH >C10-C40 (F2) TRH >C10-C16 (F2) TRH >C10-C16 (F2) TRH >C10-C36 (F3)	TRH C15-C28 mg/kg TRH C29-C36 mg/kg TRH C37-C40 mg/kg TRH C10-C36 Total mg/kg TRH C10-C40 Total mg/kg TRH F Bands TRH >C10-C16 (F2) TRH >C10-C16 (F2) - Naphthalene mg/kg TRH >C16-C34 (F3) mg/kg	TRH C15-C28 mg/kg 45 TRH C29-C36 mg/kg 45 TRH C37-C40 mg/kg 100 TRH C10-C36 Total mg/kg 110 TRH C10-C40 Total mg/kg 210 TRH F Bands TRH >C10-C16 (F2) mg/kg 25 TRH >C10-C16 (F2) - Naphthalene mg/kg 25 TRH >C10-C16 (F3) mg/kg 90	TRH C15-C28 mg/kg 45 110 TRH C29-C36 mg/kg 45 100 TRH C37-C40 mg/kg 100 <100	TRH C15-C28 mg/kg 45 110 51 TRH C29-C36 mg/kg 45 100 <45	TRH C15-C28 mg/kg 45 110 51 40 TRH C29-C36 mg/kg 45 100 <45

QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE149963.001	LB096949.004		TRH C6-C10	mg/kg	25	25	<25	24.65	100
			TRH C6-C9	mg/kg	20	21	<20	23.2	90
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	4.0	4.3	-	80
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.0	5.0	-	81
			d8-toluene (Surrogate)	mg/kg	-	3.6	4.6	-	72
			Bromofluorobenzene (Surrogate)	mg/kg	-	4.2	4.4	-	83
		VPH F	Benzene (F0)	mg/kg	0.1	2.3	<0.1	-	-
		Bands	TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	7.25	140

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spike duplicates were required for this job.

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover the performance of this service.
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- ② RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ④ Recovery failed acceptance criteria due to matrix interference.
- Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- O LOR was raised due to dilution of significantly high concentration of analyte in sample.
- Image: Image:
- Recovery failed acceptance criteria due to sample heterogeneity.
- [®] LOR was raised due to high conductivity of the sample (required dilution).
- t Refer to Analytical Report comments for further information.

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service, available on request and accessible at http://www.sgs.com/en/terms-and-conditions. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained herein reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This test report shall not be reproduced, except in full.

STATEMENT OF QA/QC PERFORMANCE

CLIENT DETAILS		LABORATORY DETAI	LS
Contact	Mariana Torres	Manager	Huong Crawford
Client	Environmental Investigations	Laboratory	SGS Alexandria Environmental
Address	Suite 6.01, 55 Miller Street NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	02 9516 0722	Telephone	+61 2 8594 0400
Facsimile	02 9516 0741	Facsimile	+61 2 8594 0499
Email	mariana.torres@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E22913 Regent & Trafalgar St Petersham	SGS Reference	SE150039 R0
Order Number	E22913	Date Received	14 Mar 2016
Samples	12	Date Reported	21 Mar 2016

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document and was supplied by the Client. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met with the exception of the following:

Matrix Spike

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES

3 items

SAMPL	E SI	IMM	ARY
0/11/11 2		21VIIVI	/ \ \

Sample counts by matrix Date documentation received Samples received without headspace Sample container provider Samples received in correct containers Sample cooling method Complete documentation received

11 Soils, 1 Water 14/3/2016 Yes SGS Yes Ice Bricks Yes

Type of documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested Sufficient sample for analysis Samples clearly labelled

coc Yes 10.9°C Standard Yes Yes

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC

Alexandria NSW 2015 Alexandria NSW 2015 Australia t +61 2 8594 0400 Australia

www.sgs.com.au f +61 2 8594 0499

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Fibre Identification in soil							Method: I	ME-(AU)-[ENV]AN602
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH6 0.2-0.4_ZLP	SE150039.007	LB097401	11 Mar 2016	14 Mar 2016	11 Mar 2017	18 Mar 2016	11 Mar 2017	21 Mar 2016
BH7 0.2-0.4_ZLP	SE150039.008	LB097401	10 Mar 2016	14 Mar 2016	10 Mar 2017	18 Mar 2016	10 Mar 2017	21 Mar 2016
BH12 0.2-0.4_ZLP	SE150039.009	LB097401	11 Mar 2016	14 Mar 2016	11 Mar 2017	18 Mar 2016	11 Mar 2017	21 Mar 2016
Mercury (dissolved) in Water							Method: ME-(AU)-[ENV]AN311/AN312
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
QR1	SE150039.012	LB097282	11 Mar 2016	14 Mar 2016	08 Apr 2016	17 Mar 2016	08 Apr 2016	17 Mar 2016

Mercury in Soil							Method:	ME-(AU)-[ENV]AN31
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH6 0.2-0.4	SE150039.001	LB097369	11 Mar 2016	14 Mar 2016	08 Apr 2016	18 Mar 2016	08 Apr 2016	21 Mar 2016
BH6 1.3-1.5	SE150039.002	LB097369	11 Mar 2016	14 Mar 2016	08 Apr 2016	18 Mar 2016	08 Apr 2016	21 Mar 2016
BH7 0.2-0.4	SE150039.003	LB097369	10 Mar 2016	14 Mar 2016	07 Apr 2016	18 Mar 2016	07 Apr 2016	21 Mar 2016
BH7 2.3-2.5	SE150039.004	LB097369	10 Mar 2016	14 Mar 2016	07 Apr 2016	18 Mar 2016	07 Apr 2016	21 Mar 2016
BH12 0.2-0.4	SE150039.005	LB097369	11 Mar 2016	14 Mar 2016	08 Apr 2016	18 Mar 2016	08 Apr 2016	21 Mar 2016
BH12 1.3-1.5	SE150039.006	LB097369	11 Mar 2016	14 Mar 2016	08 Apr 2016	18 Mar 2016	08 Apr 2016	21 Mar 2016
QD1	SE150039.010	LB097369	10 Mar 2016	14 Mar 2016	07 Apr 2016	18 Mar 2016	07 Apr 2016	21 Mar 2016
Noisture Content							Method:	ME-(AU)-[ENV]AN00
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH6 0.2-0.4	SE150039.001	LB097116	11 Mar 2016	14 Mar 2016	25 Mar 2016	15 Mar 2016	20 Mar 2016	18 Mar 2016
BH6 1.3-1.5	SE150039.002	LB097116	11 Mar 2016	14 Mar 2016	25 Mar 2016	15 Mar 2016	20 Mar 2016	18 Mar 2016
BH7 0.2-0.4	SE150039.003	LB097116	10 Mar 2016	14 Mar 2016	24 Mar 2016	15 Mar 2016	20 Mar 2016	18 Mar 2016
BH7 2.3-2.5	SE150039.004	LB097116	10 Mar 2016	14 Mar 2016	24 Mar 2016	15 Mar 2016	20 Mar 2016	18 Mar 2016
BH12 0.2-0.4	SE150039.005	LB097116	11 Mar 2016	14 Mar 2016	25 Mar 2016	15 Mar 2016	20 Mar 2016	18 Mar 2016
BH12 1.3-1.5	SE150039.006	LB097116	11 Mar 2016	14 Mar 2016	25 Mar 2016	15 Mar 2016	20 Mar 2016	18 Mar 2016
BH6 0.2-0.4 ZLP	SE150039.007	LB097116	11 Mar 2016	14 Mar 2016	25 Mar 2016	15 Mar 2016	20 Mar 2016	21 Mar 2016†
QD1	SE150039.010	LB097225	10 Mar 2016	14 Mar 2016	24 Mar 2016	16 Mar 2016	21 Mar 2016	19 Mar 2016
QTB1	SE150039.011	LB097116	11 Mar 2016	14 Mar 2016	25 Mar 2016	15 Mar 2016	20 Mar 2016	18 Mar 2016
OC Pesticides in Soil	0210000.011	20001110	11 11 12 10 10	1111112010	20 1101 2010	10 110 2010)-[ENV]AN400/AN42
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH6 0.2-0.4	SE150039.001	LB097123	11 Mar 2016	14 Mar 2016	25 Mar 2016	15 Mar 2016	24 Apr 2016	21 Mar 2016
BH6 1.3-1.5	SE150039.002	LB097123	11 Mar 2016	14 Mar 2016	25 Mar 2016	15 Mar 2016	24 Apr 2016	21 Mar 2010
BH7 0.2-0.4	SE150039.002	LB097123	10 Mar 2016	14 Mar 2016	24 Mar 2016	15 Mar 2016	24 Apr 2016	21 Mar 2010
BH7 2.3-2.5	SE150039.004	LB097123	10 Mar 2016	14 Mar 2016	24 Mar 2016	15 Mar 2016	24 Apr 2016	21 Mar 2010
BH12 0.2-0.4	SE150039.004	LB097123	11 Mar 2016	14 Mar 2016	25 Mar 2016	15 Mar 2016	24 Apr 2016	21 Mar 2016
BH12 0.2-0.4 BH12 1.3-1.5	SE150039.005	LB097123	11 Mar 2016	14 Mar 2016	25 Mar 2016	15 Mar 2016		21 Mar 2016
							24 Apr 2016	
BH6 0.2-0.4_ZLP	SE150039.007	LB097123	11 Mar 2016	14 Mar 2016	25 Mar 2016	15 Mar 2016	24 Apr 2016	21 Mar 2016
QD1	SE150039.010	LB097249	10 Mar 2016	14 Mar 2016	24 Mar 2016	16 Mar 2016	25 Apr 2016	21 Mar 2016
OP Pesticides in Soil							Method: ME-(AU)-[ENV]AN400/AN42
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH6 0.2-0.4	SE150039.001	LB097123	11 Mar 2016	14 Mar 2016	25 Mar 2016	15 Mar 2016	24 Apr 2016	18 Mar 2016
BH6 1.3-1.5	SE150039.002	LB097123	11 Mar 2016	14 Mar 2016	25 Mar 2016	15 Mar 2016	24 Apr 2016	18 Mar 2016
BH7 0.2-0.4	SE150039.003	LB097123	10 Mar 2016	14 Mar 2016	24 Mar 2016	15 Mar 2016	24 Apr 2016	18 Mar 2016
BH7 2.3-2.5	SE150039.004	LB097123	10 Mar 2016	14 Mar 2016	24 Mar 2016	15 Mar 2016	24 Apr 2016	18 Mar 2016
BH12 0.2-0.4	SE150039.005	LB097123	11 Mar 2016	14 Mar 2016	25 Mar 2016	15 Mar 2016	24 Apr 2016	18 Mar 2016
BH12 1.3-1.5	SE150039.006	LB097123	11 Mar 2016	14 Mar 2016	25 Mar 2016	15 Mar 2016	24 Apr 2016	18 Mar 2016
BH6 0.2-0.4_ZLP	SE150039.007	LB097123	11 Mar 2016	14 Mar 2016	25 Mar 2016	15 Mar 2016	24 Apr 2016	18 Mar 2016
QD1	SE150039.010	LB097249	10 Mar 2016	14 Mar 2016	24 Mar 2016	16 Mar 2016	25 Apr 2016	18 Mar 2016
PAH (Polynuclear Aromati	ic Hydrocarbons) in Soil						Method:	ME-(AU)-[ENV]AN4:
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH6 0.2-0.4	SE150039.001	LB097123	11 Mar 2016	14 Mar 2016	25 Mar 2016	15 Mar 2016	24 Apr 2016	18 Mar 2016
BH6 1.3-1.5	SE150039.002	LB097123	11 Mar 2016	14 Mar 2016	25 Mar 2016	15 Mar 2016	24 Apr 2016	18 Mar 2016
BH7 0.2-0.4	SE150039.003	LB097123	10 Mar 2016	14 Mar 2016	24 Mar 2016	15 Mar 2016	24 Apr 2016	18 Mar 2016
BH7 2.3-2.5	SE150039.004	LB097123	10 Mar 2016	14 Mar 2016	24 Mar 2016	15 Mar 2016	24 Apr 2016	18 Mar 2016
BH12 0.2-0.4	SE150039.005	LB097123	11 Mar 2016	14 Mar 2016	25 Mar 2016	15 Mar 2016	24 Apr 2016	18 Mar 2016
BH12 1.3-1.5	SE150039.006	LB097123	11 Mar 2016	14 Mar 2016	25 Mar 2016	15 Mar 2016	24 Apr 2016	18 Mar 2016
BH6 0.2-0.4 ZLP	SE150039.007	LB097123	11 Mar 2016	14 Mar 2016	25 Mar 2016	15 Mar 2016	24 Apr 2016	18 Mar 2016
	32.30003.007	20001120			20 100 2010	10 1001 2010	217.012010	10 1001 2010

14 Mar 2016

24 Mar 2016

16 Mar 2016

25 Apr 2016

18 Mar 2016

SE150039.010

LB097249

10 Mar 2016

QD1

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

0	O sumula Na	00 8-6	0	Dessiond	Ester ation Due	Estus stad	Analysis Due	Ameliand
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH6 0.2-0.4	SE150039.001	LB097123	11 Mar 2016	14 Mar 2016	25 Mar 2016	15 Mar 2016	24 Apr 2016	21 Mar 2016
BH6 1.3-1.5	SE150039.002	LB097123	11 Mar 2016	14 Mar 2016	25 Mar 2016	15 Mar 2016	24 Apr 2016	21 Mar 2016
BH7 0.2-0.4	SE150039.003	LB097123	10 Mar 2016	14 Mar 2016	24 Mar 2016	15 Mar 2016	24 Apr 2016	21 Mar 2016
BH7 2.3-2.5	SE150039.004	LB097123	10 Mar 2016	14 Mar 2016	24 Mar 2016	15 Mar 2016	24 Apr 2016	21 Mar 2016
BH12 0.2-0.4	SE150039.005	LB097123	11 Mar 2016	14 Mar 2016	25 Mar 2016	15 Mar 2016	24 Apr 2016	21 Mar 2016
BH12 1.3-1.5	SE150039.006	LB097123	11 Mar 2016	14 Mar 2016	25 Mar 2016	15 Mar 2016	24 Apr 2016	21 Mar 2016
BH6 0.2-0.4_ZLP	SE150039.007	LB097123	11 Mar 2016	14 Mar 2016	25 Mar 2016	15 Mar 2016	24 Apr 2016	21 Mar 2016
QD1	SE150039.010	LB097249	10 Mar 2016	14 Mar 2016	24 Mar 2016	16 Mar 2016	25 Apr 2016	21 Mar 2016

al Recoverable Metals in Soil/Waste Solids/Materials by ICPOES

TOTAL RECOVERADIE MELAIS	Mediod. ME-(AC	Metriod: ME-(AU)-[EINV]AN040/AN320						
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH6 0.2-0.4	SE150039.001	LB097266	11 Mar 2016	14 Mar 2016	07 Sep 2016	17 Mar 2016	07 Sep 2016	21 Mar 2016
BH6 1.3-1.5	SE150039.002	LB097266	11 Mar 2016	14 Mar 2016	07 Sep 2016	17 Mar 2016	07 Sep 2016	21 Mar 2016
BH7 0.2-0.4	SE150039.003	LB097266	10 Mar 2016	14 Mar 2016	06 Sep 2016	17 Mar 2016	06 Sep 2016	21 Mar 2016
BH7 2.3-2.5	SE150039.004	LB097266	10 Mar 2016	14 Mar 2016	06 Sep 2016	17 Mar 2016	06 Sep 2016	21 Mar 2016
BH12 0.2-0.4	SE150039.005	LB097267	11 Mar 2016	14 Mar 2016	07 Sep 2016	17 Mar 2016	07 Sep 2016	21 Mar 2016
BH12 1.3-1.5	SE150039.006	LB097267	11 Mar 2016	14 Mar 2016	07 Sep 2016	17 Mar 2016	07 Sep 2016	21 Mar 2016
QD1	SE150039.010	LB097267	10 Mar 2016	14 Mar 2016	06 Sep 2016	17 Mar 2016	06 Sep 2016	21 Mar 2016

ce Metals (Dissolved) in Water by ICPMS

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
QR1	SE150039.012	LB097287	11 Mar 2016	14 Mar 2016	07 Sep 2016	17 Mar 2016	07 Sep 2016	17 Mar 2016

TRH (Tot	al Recoverat	ole Hydrocarbons	s) in Soil
----------	--------------	------------------	------------

TRH (Total Recoverable I	Hydrocarbons) in Soil						Method:	ME-(AU)-[ENV]AN4
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH6 0.2-0.4	SE150039.001	LB097123	11 Mar 2016	14 Mar 2016	25 Mar 2016	15 Mar 2016	24 Apr 2016	18 Mar 2016
BH6 1.3-1.5	SE150039.002	LB097123	11 Mar 2016	14 Mar 2016	25 Mar 2016	15 Mar 2016	24 Apr 2016	18 Mar 2016
BH7 0.2-0.4	SE150039.003	LB097123	10 Mar 2016	14 Mar 2016	24 Mar 2016	15 Mar 2016	24 Apr 2016	18 Mar 2016
BH7 2.3-2.5	SE150039.004	LB097123	10 Mar 2016	14 Mar 2016	24 Mar 2016	15 Mar 2016	24 Apr 2016	18 Mar 2016
BH12 0.2-0.4	SE150039.005	LB097123	11 Mar 2016	14 Mar 2016	25 Mar 2016	15 Mar 2016	24 Apr 2016	18 Mar 2016
BH12 1.3-1.5	SE150039.006	LB097123	11 Mar 2016	14 Mar 2016	25 Mar 2016	15 Mar 2016	24 Apr 2016	18 Mar 2016
BH6 0.2-0.4_ZLP	SE150039.007	LB097123	11 Mar 2016	14 Mar 2016	25 Mar 2016	15 Mar 2016	24 Apr 2016	21 Mar 2016
QD1	SE150039.010	LB097249	10 Mar 2016	14 Mar 2016	24 Mar 2016	16 Mar 2016	25 Apr 2016	21 Mar 2016
TRH (Total Recoverable I	Hydrocarbons) in Water						Method:	ME-(AU)-[ENV]AN4
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
QR1	SE150039.012	LB097122	11 Mar 2016	14 Mar 2016	18 Mar 2016	14 Mar 2016	23 Apr 2016	18 Mar 2016

VOC's in Soil							Method: ME-(AU)	-[ENV]AN433/AN434
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH6 0.2-0.4	SE150039.001	LB097118	11 Mar 2016	14 Mar 2016	25 Mar 2016	15 Mar 2016	24 Apr 2016	18 Mar 2016
BH6 1.3-1.5	SE150039.002	LB097118	11 Mar 2016	14 Mar 2016	25 Mar 2016	15 Mar 2016	24 Apr 2016	18 Mar 2016
BH7 0.2-0.4	SE150039.003	LB097118	10 Mar 2016	14 Mar 2016	24 Mar 2016	15 Mar 2016	24 Apr 2016	18 Mar 2016
BH7 2.3-2.5	SE150039.004	LB097118	10 Mar 2016	14 Mar 2016	24 Mar 2016	15 Mar 2016	24 Apr 2016	18 Mar 2016
BH12 0.2-0.4	SE150039.005	LB097118	11 Mar 2016	14 Mar 2016	25 Mar 2016	15 Mar 2016	24 Apr 2016	18 Mar 2016
BH12 1.3-1.5	SE150039.006	LB097118	11 Mar 2016	14 Mar 2016	25 Mar 2016	15 Mar 2016	24 Apr 2016	18 Mar 2016
BH6 0.2-0.4_ZLP	SE150039.007	LB097118	11 Mar 2016	14 Mar 2016	25 Mar 2016	15 Mar 2016	24 Apr 2016	18 Mar 2016
QD1	SE150039.010	LB097228	10 Mar 2016	14 Mar 2016	24 Mar 2016	16 Mar 2016	25 Apr 2016	18 Mar 2016
QTB1	SE150039.011	LB097118	11 Mar 2016	14 Mar 2016	25 Mar 2016	15 Mar 2016	24 Apr 2016	18 Mar 2016
VOCs in Water							Method: ME-(AU)	-[ENV]AN433/AN434
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
QR1	SE150039.012	LB097140	11 Mar 2016	14 Mar 2016	18 Mar 2016	15 Mar 2016	24 Apr 2016	17 Mar 2016

Volatile Petroleum Hydrocarbons in Soil

Volatile Petroleum Hydroc	/olatile Petroleum Hydrocarbons in Soil										
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed			
BH6 0.2-0.4	SE150039.001	LB097118	11 Mar 2016	14 Mar 2016	25 Mar 2016	15 Mar 2016	24 Apr 2016	18 Mar 2016			
BH6 1.3-1.5	SE150039.002	LB097118	11 Mar 2016	14 Mar 2016	25 Mar 2016	15 Mar 2016	24 Apr 2016	18 Mar 2016			
BH7 0.2-0.4	SE150039.003	LB097118	10 Mar 2016	14 Mar 2016	24 Mar 2016	15 Mar 2016	24 Apr 2016	18 Mar 2016			
BH7 2.3-2.5	SE150039.004	LB097118	10 Mar 2016	14 Mar 2016	24 Mar 2016	15 Mar 2016	24 Apr 2016	18 Mar 2016			

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Volatile Petroleum Hvdro	carbons in Soil (continued)						Method: ME-(AU)-[ENV]AN433/AN434//		
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed	
BH12 0.2-0.4	SE150039.005	LB097118	11 Mar 2016	14 Mar 2016	25 Mar 2016	15 Mar 2016	24 Apr 2016	18 Mar 2016	
BH12 1.3-1.5	SE150039.006	LB097118	11 Mar 2016	14 Mar 2016	25 Mar 2016	15 Mar 2016	24 Apr 2016	18 Mar 2016	
BH6 0.2-0.4_ZLP	SE150039.007	LB097118	11 Mar 2016	14 Mar 2016	25 Mar 2016	15 Mar 2016	24 Apr 2016	18 Mar 2016	
QD1	SE150039.010	LB097228	10 Mar 2016	14 Mar 2016	24 Mar 2016	16 Mar 2016	25 Apr 2016	18 Mar 2016	
QTB1	SE150039.011	LB097118	11 Mar 2016	14 Mar 2016	25 Mar 2016	15 Mar 2016	24 Apr 2016	18 Mar 2016	
Volatile Petroleum Hydro	carbons in Water						Method: ME-(AU)-[ENV]	AN433/AN434/AN4	
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed	
QR1	SE150039.012	LB097140	11 Mar 2016	14 Mar 2016	18 Mar 2016	15 Mar 2016	24 Apr 2016	17 Mar 2016	

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

OC Pesticides in Soil				Method: ME-(AU)-	ENVJAN400/AN
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Tetrachloro-m-xylene (TCMX) (Surrogate)	BH6 0.2-0.4	SE150039.001	%	60 - 130%	71
	BH7 0.2-0.4	SE150039.003	%	60 - 130%	77
	BH12 0.2-0.4	SE150039.005	%	60 - 130%	75
OP Pesticides in Soll				Method: ME-(AU)-	ENVJAN400/AN
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
2-fluorobiphenyl (Surrogate)	BH6 0.2-0.4	SE150039.001	%	60 - 130%	84
	BH7 0.2-0.4	SE150039.003	%	60 - 130%	82
	BH12 0.2-0.4	SE150039.005	%	60 - 130%	86
d14-p-terphenyl (Surrogate)	BH6 0.2-0.4	SE150039.001	%	60 - 130%	104
	BH7 0.2-0.4	SE150039.003	%	60 - 130%	106
	BH12 0.2-0.4	SE150039.005	%	60 - 130%	100
AH (Polynuclear Aromatic Hydrocarbons) in Soil			,.		E-(AU)-[ENV]AN
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
2-fluorobiphenyl (Surrogate)	BH6 0.2-0.4	SE150039.001	%	70 - 130%	84
	BH6 1.3-1.5	SE150039.002	%	70 - 130%	84
	BH7 0.2-0.4	SE150039.003	%	70 - 130%	82
	BH7 2.3-2.5	SE150039.004	%	70 - 130%	82
	BH12 0.2-0.4	SE150039.005	%	70 - 130%	86
	BH12 1.3-1.5	SE150039.006	%	70 - 130%	86
d14-p-terphenyl (Surrogate)	BH6 0.2-0.4	SE150039.001	%	70 - 130%	104
	BH6 1.3-1.5	SE150039.002	%	70 - 130%	106
	BH7 0.2-0.4	SE150039.003	%	70 - 130%	106
	BH7 2.3-2.5	SE150039.004	%	70 - 130%	92
	BH12 0.2-0.4	SE150039.005	%	70 - 130%	100
	BH12 1.3-1.5	SE150039.006	%	70 - 130%	108
d5-nitrobenzene (Surrogate)	BH6 0.2-0.4	SE150039.001	%	70 - 130%	90
	BH6 1.3-1.5	SE150039.002	%	70 - 130%	86
	BH7 0.2-0.4	SE150039.003	%	70 - 130%	86
	BH7 2.3-2.5	SE150039.004	%	70 - 130%	76
	BH12 0.2-0.4	SE150039.005	%	70 - 130%	90
	BH12 1.3-1.5	SE150039.006	%	70 - 130%	80
PCBs in Soil				Method: ME-(AU)-	[ENV]AN400/Al
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery
Tetrachloro-m-xylene (TCMX) (Surrogate)	BH6 0.2-0.4	SE150039.001	%	60 - 130%	71
	BH7 0.2-0.4	SE150039.003	%	60 - 130%	77
	BH12 0.2-0.4	SE150039.005	%	60 - 130%	75
/OC's in Soll				Method: ME-(AU)-	ENVJAN433/A
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery
Bromofluorobenzene (Surrogate)	BH6 0.2-0.4	SE150039.001	%	60 - 130%	93
Shomonadiosonizono (cantegato)	BH6 1.3-1.5	SE150039.002	%	60 - 130%	101
	BH7 0.2-0.4	SE150039.003	%	60 - 130%	82
	BH7 2.3-2.5	SE150039.004	%	60 - 130%	97
	BH12 0.2-0.4	SE150039.005	%	60 - 130%	72
	BH12 1.3-1.5	SE150039.006	%	60 - 130%	82
	QD1	SE150039.010	%	60 - 130%	73
	QTB1	SE150039.011	%	60 - 130%	98
d4-1,2-dichloroethane (Surrogate)	BH6 0.2-0.4	SE150039.001	%	60 - 130%	107
	BH6 1.3-1.5	SE150039.002	%	60 - 130%	99
	BH7 0.2-0.4	SE150039.003	%	60 - 130%	114
	BH7 2.3-2.5	SE150039.004	%	60 - 130%	91
	BH7 2.3-2.3 BH12 0.2-0.4	SE150039.004	%	60 - 130%	84
	BH12 1.3-1.5	SE150039.005	%	60 - 130%	79
	QD1	SE150039.000	%	60 - 130%	86
	QTB1	SE150039.010	%	60 - 130%	113
d8.toluene (Surrogate)		SE150039.001			
d8-toluene (Surrogate)	BH6 0.2-0.4	SE150039.001 SE150039.002	%	60 - 130%	101
	BH6 1.3-1.5	SE150039.002 SE150039.003	%	60 - 130%	107
	BH7 0.2-0.4		%	60 - 130%	98
	BH7 2.3-2.5	SE150039.004	%	60 - 130%	91
	BH12 0.2-0.4	SE150039.005	%	60 - 130%	82

21/3/2016

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

VOC's in Soil (continued) Method: ME-(AU)-[ENV]AN433/AN434 Recovery % Parameter Sample Name Criteria Sample Numb Units d8-toluene (Surrogate) BH12 1.3-1.5 SE150039.006 % 60 - 130% 87 QD1 SE150039.010 60 - 130% 80 % QTB1 SE150039.011 % 60 - 130% 96 Dibromofluoromethane (Surrogate) BH6 0.2-0.4 SE150039.001 60 - 130% 99 % BH6 1.3-1.5 SE150039.002 60 - 130% 71 % BH7 0.2-0.4 SE150039.003 % 60 - 130% 103 BH7 2.3-2.5 SE150039.004 % 60 - 130% 96 BH12 0.2-0.4 SE150039.005 % 60 - 130% 77 74 BH12 1.3-1.5 SE150039.006 % 60 - 130% OD1 SE150039.010 % 60 - 130% 74 QTB1 SE150039.011 % 60 - 130% 101 **VOCs in Water** Method: ME-(AU)-[ENV]AN433/AN434 Recovery % Parameter Sample Numb Units Criteria Sample Name Bromofluorobenzene (Surrogate) QR1 SE150039.012 % 40 - 130% 83 d4-1,2-dichloroethane (Surrogate) QR1 SE150039.012 40 - 130% 118 % 40 - 130% d8-toluene (Surrogate) QR1 SE150039.012 % 113 Dibromofluoromethane (Surrogate) QR1 SE150039.012 % 40 - 130% 122 Volatile Petroleum Hydrocarbons in Soil Method: ME-(AU)-[ENV]AN433/AN434/AN410 Parameter Sample Name Sample Numb Units Criteria Recovery % Bromofluorobenzene (Surrogate) BH6 0.2-0.4 SE150039.001 % 60 - 130% 93 BH6 1.3-1.5 SE150039.002 60 - 130% 88 % BH7 0.2-0.4 SE150039.003 % 60 - 130% 82 BH7 2.3-2.5 SE150039.004 % 60 - 130% 79 BH12 0.2-0.4 SE150039.005 % 60 - 130% 72 BH12 1.3-1.5 SE150039.006 60 - 130% 72 % QD1 SE150039.010 % 60 - 130% 73 d4-1,2-dichloroethane (Surrogate) BH6 0.2-0.4 SE150039.001 60 - 130% 107 % BH6 1.3-1.5 SE150039.002 60 - 130% 102 % BH7 0.2-0.4 SE150039.003 % 60 - 130% 114 BH7 2.3-2.5 SE150039.004 % 60 - 130% 100 BH12 0.2-0.4 SE150039.005 60 - 130% 84 % BH12 1.3-1.5 SE150039.006 % 60 - 130% 76 72 QD1 SE150039.010 % 60 - 130% d8-toluene (Surrogate) BH6 0.2-0.4 SE150039.001 60 - 130% 101 % BH6 1.3-1.5 SE150039.002 % 60 - 130% 92 BH7 0.2-0.4 SE150039.003 60 - 130% 98 % BH7 2.3-2.5 SE150039.004 60 - 130% 97 % BH12 0.2-0.4 SE150039.005 % 60 - 130% 82 BH12 1.3-1.5 SE150039.006 60 - 130% 73 % QD1 SE150039.010 60 - 130% 73 % Dibromofluoromethane (Surrogate) BH6 0.2-0.4 SE150039.001 % 60 - 130% 99 BH6 1.3-1.5 SE150039.002 60 - 130% 72 % BH7 0.2-0.4 SE150039.003 60 - 130% 103 % BH7 2.3-2.5 SE150039.004 % 60 - 130% 105 BH12 0.2-0.4 SE150039.005 60 - 130% 77 % BH12 1.3-1.5 SE150039.006 % 60 - 130% 70 QD1 SE150039.010 % 60 - 130% 74 Volatile Petroleum Hydrocarbons in Water Method: ME-(AU)-[ENVIAN433/AN434/AN410

Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %	
Bromofluorobenzene (Surrogate)	QR1	SE150039.012	%	40 - 130%	83	
d4-1,2-dichloroethane (Surrogate)	QR1	SE150039.012	%	60 - 130%	118	
d8-toluene (Surrogate)	QR1	SE150039.012	%	40 - 130%	113	
Dibromofluoromethane (Surrogate)	QR1	SE150039.012	%	40 - 130%	122	

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Mercury (dissolved) in Water			Method: ME-((AU)-[ENV]AN311/AN312
Sample Number	Parameter	Units	LOR	Result
LB097282.001	Mercury	mg/L	0.0001	<0.0001

Mercury in Soil

Mercury in Soil			м	ethod: ME-(AU)-[ENV]AN312
Sample Number	Parameter	Units	LOR	Result
LB097369.001	Mercury	mg/kg	0.01	<0.01

OC Pesticides in Soil

Pesticides in Soil			Method: ME-	(AU)-[ENV]AN400//
nple Number	Parameter	Units	LOR	Result
97123.001	Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1
	Alpha BHC	mg/kg	0.1	<0.1
	Lindane	mg/kg	0.1	<0.1
	Heptachlor	mg/kg	0.1	<0.1
	Aldrin	mg/kg	0.1	<0.1
	Beta BHC	mg/kg	0.1	<0.1
	Delta BHC	mg/kg	0.1	<0.1
	Heptachlor epoxide	mg/kg	0.1	<0.1
	Alpha Endosulfan	mg/kg	0.2	<0.2
	Gamma Chlordane	mg/kg	0.1	<0.1
	Alpha Chlordane	mg/kg	0.1	<0.1
	p,p'-DDE	mg/kg	0.1	<0.1
	Dieldrin	mg/kg	0.2	<0.2
	Endrin	mg/kg	0.2	<0.2
	Beta Endosulfan	mg/kg	0.2	<0.2
	p,p'-DDD	mg/kg	0.1	<0.1
	p,p'-DDT	mg/kg	0.1	<0.1
	Endosulfan sulphate	mg/kg	0.1	<0.1
	Endrin Aldehyde	mg/kg	0.1	<0.1
	Methoxychlor	mg/kg	0.1	<0.1
	Endrin Ketone	mg/kg	0.1	<0.1
	Isodrin	mg/kg	0.1	<0.1
	Mirex	mg/kg	0.1	<0.1
Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	106

		Mirex	mg/kg	0.1	<0.1
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	106
OP Pesticides in Soil				Method: ME-	(AU)-[ENV]AN400/AN4
Sample Number		Parameter	Units	LOR	Result
_B097123.001		Dichlorvos	mg/kg	0.5	<0.5
		Dimethoate	mg/kg	0.5	<0.5
		Diazinon (Dimpylate)	mg/kg	0.5	<0.5
		Fenitrothion	mg/kg	0.2	<0.2
		Malathion	mg/kg	0.2	<0.2
		Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2
		Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2
		Bromophos Ethyl	mg/kg	0.2	<0.2
		Methidathion	mg/kg	0.5	<0.5
		Ethion	mg/kg	0.2	<0.2
		Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2
	Surrogates	2-fluorobiphenyl (Surrogate)	%	-	88
		d14-p-terphenyl (Surrogate)	%	-	108
AH (Polynuclear Aroma	atic Hydrocarbons) in Soil			Meth	od: ME-(AU)-[ENV]AN
Sample Number		Parameter	Units	LOR	Result
B097123.001		Naphthalene	mg/kg	0.1	<0.1
		2-methylnaphthalene	mg/kg	0.1	<0.1
		1-methylnaphthalene	mg/kg	0.1	<0.1

Acenaphthylene

Acenaphthene

Phenanthrene

Anthracene

Fluorene

<0.1

<0.1

<0.1

< 0.1

<0.1

0.1

0.1

0.1

0.1

0.1

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

SE150039 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

TRH C15-C28

PAH (Polynuclear Aromatic Hydrocarbons) in Soil (continued) Method: ME-(AU)-[ENV]AN420 LOR Sample Number Parameter Units Result LB097123.001 Fluoranthene mg/kg 0.1 < 0.1 Pyrene mg/kg 0.1 <0.1 0.1 <0.1 Benzo(a)anthracene mg/kg Chrysene mg/kg 0.1 < 0.1 Benzo(a)pyrene 0.1 <0.1 mg/kg Indeno(1,2,3-cd)pyrene 0.1 <0.1 mg/kg <0.1 Dibenzo(ah)anthrace mg/kg 0.1 Benzo(ghi)perylene mg/kg 0.1 <0.1 Total PAH (18) mg/kg 0.8 <0.8 Surrogates d5-nitrobenzene (Surrogate) % 84 2-fluorobiphenyl (Surrogate) % 88 d14-p-terphenyl (Surrogate) % 108 PCBs in Soil Method: ME-(AU)-[ENV]AN400/AN420 Sample Numb Parameter Result Units LOR 0.2 L B097123 001 Arochlor 1016 mg/kg <0.2 Arochlor 1221 0.2 <0.2 mg/kg Arochlor 1232 mg/kg 0.2 < 0.2 Arochlor 1242 0.2 <0.2 mg/kg Arochlor 1248 0.2 <0.2 mg/kg Arochlor 1254 mg/kg 0.2 < 0.2 Arochlor 1260 mg/kg 0.2 <0.2 Arochlor 1262 0.2 <0.2 mg/kg Arochlor 1268 mg/kg 0.2 < 0.2 Total PCBs (Arochlors) <1 mg/kg 1 Surrogates Tetrachloro-m-xylene (TCMX) (Surrogate) 94 % -Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES Method: ME-(AU)-[ENV]AN040/AN320 Sample Number Parameter Units LOR Result LB097266.001 Arsenic, As mg/kg 3 <3 Cadmium, Cd 0.3 <0.3 mg/kg Chromium, Cr mg/kg 0.3 <0.3 <0.5 Copper, Cu 0.5 mg/kg Lead, Pb mg/kg 1 <1 Nickel, Ni mg/kg 0.5 <0.5 <0.5 Zinc, Zn 0.5 mg/kg LB097267.001 <3 Arsenic, As 3 mg/kg Cadmium, Cd mg/kg 0.3 < 0.3 Chromium, Cr 0.3 <0.3 mg/kg <0.5 Copper, Cu 0.5 mg/kg Lead Ph mg/kg 1 <1 Nickel, Ni 0.5 <0.5 mg/kg 0.5 <0.5 Zinc, Zn mg/kg Trace Metals (Dissolved) in Water by ICPMS Method: ME-(AU)-[ENV]AN318 Result Sample Number Parameter Units LB097287.001 Arsenic, As µg/L <1 1 Cadmium, Cd 0.1 <0.1 µg/L Chromium, Cr µg/L 1 <1 Copper, Cu <1 µg/L 1 Lead, Pb µg/L 1 <1 Nickel, Ni µg/L <1 1 Zinc, Zn µg/L 5 <5 TRH (Total Recoverable Hydrocarbons) in Soil Method: ME-(AU)-[ENV]AN403 Sample Number Units LOR Result Param <20 LB097123.001 TRH C10-C14 20 mg/kg TRH C15-C28 45 <45 mg/kg TRH C29-C36 mg/kg 45 <45 TRH C37-C40 mg/kg 100 <100 TRH C10-C36 Total 110 <110 mg/kg LB097249.001 TRH C10-C14 mg/kg 20 <20

<45

45

mg/kg

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

	ble Hydrocarbons) in Soil (continu				od: ME-(AU)-[ENV]/
Sample Number		Parameter	Units	LOR	Result
B097249.001		TRH C29-C36	mg/kg	45	<45
		TRH C37-C40	mg/kg	100	<100
		TRH C10-C36 Total	mg/kg	110	<110
RH (Total Recoverab	le Hydrocarbons) in Water			Metho	od: ME-(AU)-[ENV]/
ample Number		Parameter	Units	LOR	Result
B097122.001		TRH C10-C14	µg/L	50	<50
		TRH C15-C28	µg/L	200	<200
		TRH C29-C36	µg/L	200	<200
		TRH C37-C40	μg/L	200	<200
			P3-		
OC's in Soil					(AU)-[ENV]AN433//
ample Number		Parameter	Units	LOR	Result
3097118.001	Fumigants	2,2-dichloropropane	mg/kg	0.1	<0.1
		1,2-dichloropropane	mg/kg	0.1	<0.1
		cis-1,3-dichloropropene	mg/kg	0.1	<0.1
		trans-1,3-dichloropropene	mg/kg	0.1	<0.1
		1,2-dibromoethane (EDB)	mg/kg	0.1	<0.1
	Halogenated Aliphatics	Dichlorodifluoromethane (CFC-12)	mg/kg	1	<1
		Chloromethane	mg/kg	1	<1
		Vinyl chloride (Chloroethene)	mg/kg	0.1	<0.1
		Bromomethane	mg/kg	1	<1
		Chloroethane	mg/kg	1	<1
		Trichlorofluoromethane	mg/kg	1	<1
		lodomethane	mg/kg	5	<5
		1,1-dichloroethene	mg/kg	0.1	<0.1
		Dichloromethane (Methylene chloride)	mg/kg	0.5	<0.5
		Allyl chloride	mg/kg	0.1	<0.1
		trans-1,2-dichloroethene	mg/kg	0.1	<0.1
		1,1-dichloroethane		0.1	<0.1
			mg/kg		
		cis-1,2-dichloroethene	mg/kg	0.1	<0.1
		Bromochloromethane	mg/kg	0.1	<0.1
		1,2-dichloroethane	mg/kg	0.1	<0.1
		1,1,1-trichloroethane	mg/kg	0.1	<0.1
		1,1-dichloropropene	mg/kg	0.1	<0.1
		Carbon tetrachloride	mg/kg	0.1	<0.1
		Dibromomethane	mg/kg	0.1	<0.1
		Trichloroethene (Trichloroethylene -TCE)	mg/kg	0.1	<0.1
		1,1,2-trichloroethane	mg/kg	0.1	<0.1
		1,3-dichloropropane	mg/kg	0.1	<0.1
		Tetrachloroethene (Perchloroethylene,PCE)	mg/kg	0.1	<0.1
		1,1,1,2-tetrachloroethane	mg/kg	0.1	<0.1
		cis-1,4-dichloro-2-butene	mg/kg	1	<1
		1,1,2,2-tetrachloroethane	mg/kg	0.1	<0.1
		1,2,3-trichloropropane	mg/kg	0.1	<0.1
		trans-1,4-dichloro-2-butene	mg/kg	1	<1
		1,2-dibromo-3-chloropropane	mg/kg	0.1	<0.1
		Hexachlorobutadiene	mg/kg	0.1	<0.1
	Halogenated Aromatics	Chlorobenzene	mg/kg	0.1	<0.1
	nalogenated Afomatics			0.1	<0.1
		Bromobenzene	mg/kg		
		2-chlorotoluene	mg/kg	0.1	<0.1
		4-chlorotoluene	mg/kg	0.1	<0.1
		1,3-dichlorobenzene	mg/kg	0.1	<0.1
		1,4-dichlorobenzene	mg/kg	0.1	<0.1
		1,2-dichlorobenzene	mg/kg	0.1	<0.1
		1,2,4-trichlorobenzene	mg/kg	0.1	<0.1
		1,2,3-trichlorobenzene	mg/kg	0.1	<0.1
	Monocyclic Aromatic	Benzene	mg/kg	0.1	<0.1
	Hydrocarbons	Toluene	mg/kg	0.1	<0.1
		Ethylbenzene	mg/kg	0.1	<0.1
		m/p-xylene	mg/kg	0.2	<0.2
		o-xylene	mg/kg	0.1	<0.1

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

VOC's in Soil (continued)

OC's in Soil (continu		Devenuetor			(AU)-[ENV]AN433/
Sample Number	Managements A	Parameter	Units	LOR	Result
B097118.001	Monocyclic Aromatic	Styrene (Vinyl benzene)	mg/kg	0.1	<0.1
	Hydrocarbons	Isopropylbenzene (Cumene)	mg/kg	0.1	<0.1
		n-propylbenzene	mg/kg	0.1	<0.1
		1,3,5-trimethylbenzene	mg/kg	0.1	<0.1
		tert-butylbenzene	mg/kg	0.1	<0.1
		1,2,4-trimethylbenzene	mg/kg	0.1	<0.1
		sec-butylbenzene	mg/kg	0.1	<0.1
		p-isopropyltoluene	mg/kg	0.1	<0.1
		n-butylbenzene	mg/kg	0.1	<0.1
	Nitrogenous Compounds	Acrylonitrile	mg/kg	0.1	<0.1
		2-nitropropane	mg/kg	10	<10
	Oxygenated Compounds	Acetone (2-propanone)	mg/kg	10	<10
		MtBE (Methyl-tert-butyl ether)	mg/kg	0.1	<0.1
		Vinyl acetate	mg/kg	10	<10
		MEK (2-butanone)	mg/kg	10	<10
		MIBK (4-methyl-2-pentanone)	mg/kg	1	<1
				5	<5
	Rolyovalia V/OCa	2-hexanone (MBK)	mg/kg		
	Polycyclic VOCs	Naphthalene	mg/kg	0.1	<0.1
	Sulphonated	Carbon disulfide	mg/kg	0.5	<0.5
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	84
		d4-1,2-dichloroethane (Surrogate)	%	-	89
		d8-toluene (Surrogate)	%	-	101
		Bromofluorobenzene (Surrogate)	%	-	102
	Totals	Total BTEX	mg/kg	0.6	<0.6
	Trihalomethanes	Chloroform	mg/kg	0.1	<0.1
		Bromodichloromethane	mg/kg	0.1	<0.1
		Chlorodibromomethane	mg/kg	0.1	<0.1
		Bromoform	mg/kg	0.1	<0.1
097228.001	Fumigants	2,2-dichloropropane	mg/kg	0.1	<0.1
		1,2-dichloropropane	mg/kg	0.1	<0.1
		cis-1,3-dichloropropene	mg/kg	0.1	<0.1
		trans-1,3-dichloropropene	mg/kg	0.1	<0.1
		1,2-dibromoethane (EDB)	mg/kg	0.1	<0.1
	Lislananatad Alinhatian			1	<1
	Halogenated Aliphatics	Dichlorodifluoromethane (CFC-12)	mg/kg		
		Chloromethane	mg/kg	1	<1
		Vinyl chloride (Chloroethene)	mg/kg	0.1	<0.1
		Bromomethane	mg/kg	1	<1
		Chloroethane	mg/kg	1	<1
		Trichlorofluoromethane	mg/kg	1	<1
		lodomethane	mg/kg	5	<5
		1,1-dichloroethene	mg/kg	0.1	<0.1
		Dichloromethane (Methylene chloride)	mg/kg	0.5	<0.5
		Allyl chloride	mg/kg	0.1	<0.1
		trans-1,2-dichloroethene	mg/kg	0.1	<0.1
		1,1-dichloroethane	mg/kg	0.1	<0.1
		cis-1,2-dichloroethene	mg/kg	0.1	<0.1
		Bromochloromethane	mg/kg	0.1	<0.1
		1,2-dichloroethane	mg/kg	0.1	<0.1
		1,1,1-trichloroethane	mg/kg	0.1	<0.1
		1,1-dichloropropene	mg/kg	0.1	<0.1
		Carbon tetrachloride	mg/kg	0.1	<0.1
		Dibromomethane	mg/kg	0.1	<0.1
		Trichloroethene (Trichloroethylene -TCE)	mg/kg	0.1	<0.1
		1,1,2-trichloroethane	mg/kg	0.1	<0.1
		1,3-dichloropropane	mg/kg	0.1	<0.1
		Tetrachloroethene (Perchloroethylene,PCE)	mg/kg	0.1	<0.1
		1,1,1,2-tetrachloroethane	mg/kg	0.1	<0.1
		cis-1,4-dichloro-2-butene	mg/kg	1	<1
		1,1,2,2-tetrachloroethane	mg/kg	0.1	<0.1
			mg/kg	0.1	<0.1
		1,2,3-trichloropropane			

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

VOC's in Soil (continued)

ample Number		Parameter	Units	LOR	Result
ample Number					
B097228.001	Halogenated Aliphatics	1,2-dibromo-3-chloropropane	mg/kg	0.1	<0.1
		Hexachlorobutadiene	mg/kg	0.1	<0.1
	Halogenated Aromatics	Chlorobenzene	mg/kg	0.1	<0.1
		Bromobenzene	mg/kg	0.1	<0.1
		2-chlorotoluene	mg/kg	0.1	<0.1
		4-chlorotoluene	mg/kg	0.1	<0.1
		1,3-dichlorobenzene	mg/kg	0.1	<0.1
		1,4-dichlorobenzene	mg/kg	0.1	<0.1
		1,2-dichlorobenzene	mg/kg	0.1	<0.1
		1,2,4-trichlorobenzene	mg/kg	0.1	<0.1
		1,2,3-trichlorobenzene	mg/kg	0.1	<0.1
	Monocyclic Aromatic	Benzene	mg/kg	0.1	<0.1
	Hydrocarbons	Toluene	mg/kg	0.1	0.1
	,	Ethylbenzene	mg/kg	0.1	<0.1
		m/p-xylene	mg/kg	0.2	<0.2
		o-xylene	mg/kg	0.1	<0.1
		Styrene (Vinyl benzene)	mg/kg	0.1	<0.1
		Isopropylbenzene (Cumene)	mg/kg	0.1	<0.1
		n-propylbenzene	mg/kg	0.1	<0.1
		1,3,5-trimethylbenzene	mg/kg	0.1	<0.1
		tert-butylbenzene	mg/kg	0.1	<0.1
		1,2,4-trimethylbenzene	mg/kg	0.1	<0.1
		sec-butylbenzene	mg/kg	0.1	<0.1
		p-isopropyltoluene	mg/kg	0.1	<0.1
		n-butylbenzene	mg/kg	0.1	<0.1
	Nitrogenous Compounds	Acrylonitrile	mg/kg	0.1	<0.1
		2-nitropropane	mg/kg	10	<10
	Oxygenated Compounds	Acetone (2-propanone)	mg/kg	10	<10
		MtBE (Methyl-tert-butyl ether)	mg/kg	0.1	<0.1
		Vinyl acetate	mg/kg	10	<10
		MEK (2-butanone)	mg/kg	10	<10
		MIBK (4-methyl-2-pentanone)		1	<1
			mg/kg	5	<5
	Delawalia MOO-	2-hexanone (MBK)	mg/kg		
	Polycyclic VOCs	Naphthalene	mg/kg	0.1	<0.1
	Sulphonated	Carbon disulfide	mg/kg	0.5	<0.5
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	94
		d4-1,2-dichloroethane (Surrogate)	%	-	105
		d8-toluene (Surrogate)	%	-	87
		Bromofluorobenzene (Surrogate)	%	-	96
	Totals	Total BTEX	mg/kg	0.6	<0.6
	Trihalomethanes	Chloroform	mg/kg	0.1	<0.1
		Bromodichloromethane	mg/kg	0.1	<0.1
		Chlorodibromomethane	mg/kg	0.1	<0.1
		Bromoform	mg/kg	0.1	<0.1
Cs in Water					(AU)-[ENV]AN433/
mple Number		Parameter	Units	LOR	Result
1010 Number 97140.001	Monocyclic Aromatic	Parameter Benzene	μg/L	0.5	<0.5
	Hydrocarbons			0.5	<0.5
	nydrocarbons		μg/L		
		Ethylbenzene	μg/L	0.5	<0.5
		m/p-xylene	μg/L	1	<1
		o-xylene	μg/L	0.5	<0.5
	Polycyclic VOCs	Naphthalene	μg/L	0.5	<0.5
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	123
		d4-1,2-dichloroethane (Surrogate)	%	-	110
		d8-toluene (Surrogate)	%	-	121
		Bromofluorobenzene (Surrogate)	%		77

Volatile Petroleum Hydrocarbons in Soil

Parameter

Method: ME-(AU)-[ENV]AN433/AN434/AN410

Units LOR

SE150039 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Volatile Petroleum Hydrocarbons in Soil (continued)

Method: ME-(AU)-[ENV]AN433/AN434/AN410

Sample Number		Parameter	Units	LOR	Result			
LB097118.001		TRH C6-C9	mg/kg	20	<20			
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	91			
		d4-1,2-dichloroethane (Surrogate)	%	-	98			
		d8-toluene (Surrogate)	%	-	88			
LB097228.001		TRH C6-C9	mg/kg	20	<20			
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	97			
		d4-1,2-dichloroethane (Surrogate)	%	-	110			
		d8-toluene (Surrogate)	%	-	112			
/olatile Petroleum Hy	drocarbons in Water			Method: ME-(AU)-[E	NVJAN433/AN434/AN4			
Sample Number		Parameter	Units	LOR	Result			
LB097140.001		TRH C6-C9	μg/L	40	<40			
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	123			
		d4-1,2-dichloroethane (Surrogate)	%	-	110			
		d8-toluene (Surrogate)	%	-	121			
		Bromofluorobenzene (Surrogate)	%	-	77			

Method: ME-(AU)-[ENV]AN002

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

Malathion

Chlorpyrifos (Chlorpyrifos Ethyl)

Parathion-ethyl (Parathion)

Azinphos-methyl (Guthion)

2-fluorobiphenyl (Surrogate)

d14-p-terphenyl (Surrogate)

Bromophos Ethyl

Methidathion

Ethion

Surrogates

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury (dissolved) in Water Method: ME-(AU)-[ENV]AN311/.								N311/AN312
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE150061.027	LB097282.014	Mercury	μg/L	0.0001	-0.0414	-0.0414	136	0

Mercury in Soil

Mercury in Soil Method: ME-(AU)-[El						ENVJAN312		
Original	Duplicate	Parameter	Units L	.OR	Original	Duplicate	Criteria %	RPD %
SE150032.043	LB097369.014	Mercury	mg/kg 0	0.01	0.0278720067	0.0250253231	200	0
SE150045.001	LB097369.024	Mercury	mg/kg 0	0.01	0.0104921775	0.0098838485	200	0

Moisture Content

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE150046.001	LB097116.011	% Moisture	%w/w	0.5	2.6	2.8	67	4
SE150048.002	LB097116.014	% Moisture	%w/w	0.5	7.6	7.8	43	2
SE150109.003	LB097225.006	% Moisture	%w/w	0.5	17.5	13.7	36	25

OC Pesticides in S	Soll						Method: ME	-(AU)-[ENV]A	N400/AN4
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE150057.038	LB097123.019		Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	200	0
			Alpha BHC	mg/kg	0.1	<0.1	<0.1	200	0
			Lindane	mg/kg	0.1	<0.1	<0.1	200	0
			Heptachlor	mg/kg	0.1	<0.1	<0.1	200	0
			Aldrin	mg/kg	0.1	<0.1	<0.1	200	0
			Beta BHC	mg/kg	0.1	<0.1	<0.1	200	0
			Delta BHC	mg/kg	0.1	<0.1	<0.1	200	0
			Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	200	0
			o,p'-DDE	mg/kg	0.1	<0.1	<0.1	200	0
			Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	200	0
			Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	200	0
			Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	200	0
			trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	200	0
			p,p'-DDE	mg/kg	0.1	<0.1	<0.1	200	0
			Dieldrin	mg/kg	0.2	<0.05	<0.05	200	0
			Endrin	mg/kg	0.2	<0.2	<0.2	200	0
			o,p'-DDD	mg/kg	0.1	<0.1	<0.1	200	0
			o,p'-DDT	mg/kg	0.1	<0.1	<0.1	200	0
			Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	200	0
			p,p'-DDD	mg/kg	0.1	<0.1	<0.1	200	0
			p,p'-DDT	mg/kg	0.1	<0.1	<0.1	200	0
			Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	200	0
			Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	200	0
			Methoxychlor	mg/kg	0.1	<0.1	<0.1	200	0
			Endrin Ketone	mg/kg	0.1	<0.1	<0.1	200	0
			Isodrin	mg/kg	0.1	<0.1	<0.1	200	0
			Mirex	mg/kg	0.1	<0.1	<0.1	200	0
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.15	0.16	30	4
P Pesticides in S	Soil						Method: ME	E-(AU)-[ENV]A	N400/AN
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE150039.005	LB097123.020		Dichlorvos	mg/kg	0.5	<0.5	0.03	200	0
			Dimethoate	mg/kg	0.5	<0.5	0	200	0
			Diazinon (Dimpylate)	mg/kg	0.5	<0.5	0	200	0
			Fenitrothion	mg/kg	0.2	<0.2	0	200	0
				_					

0

0

0

0

0

0

0

2

0.2

0.2

0.2

0.2

0.5

0.2

0.2

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

< 0.2

<0.2

<0.2

<0.2

<0.5

<0.2

<0.2

0.4

0.5

0.05

0

0

0.07

0

0

0.02

0.44

0.51

200

200

200

200

200

200

200

30

30

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE150039.005	LB097123.020		Naphthalene	mg/kg	0.1	0.6	0.68	46	19
			2-methylnaphthalene	mg/kg	0.1	0.2	0.29	68	19
			1-methylnaphthalene	mg/kg	0.1	0.2	0.28	69	20
			Acenaphthylene	mg/kg	0.1	1.4	1.56	37	9
			Acenaphthene	mg/kg	0.1	0.1	0.16	107	46
			Fluorene	mg/kg	0.1	0.7	0.84	43	15
			Phenanthrene	mg/kg	0.1	10	11.65	31	11
			Anthracene	mg/kg	0.1	2.5	2.75	34	8
			Fluoranthene	mg/kg	0.1	15	15.05	31	1
			Pyrene	mg/kg	0.1	23	19.51	30	17
			Benzo(a)anthracene	mg/kg	0.1	7.1	7.39	31	4
			Chrysene	mg/kg	0.1	6.4	6.85	32	6
			Benzo(b&j)fluoranthene	mg/kg	0.1	6.6	6.92	31	5
			Benzo(k)fluoranthene	mg/kg	0.1	4.6	4.92	32	7
			Benzo(a)pyrene	mg/kg	0.1	7.5	8.05	31	7
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	4.0	4.23	32	6
			Dibenzo(ah)anthracene	mg/kg	0.1	1.0	1.13	39	8
			Benzo(ghi)perylene	mg/kg	0.1	3.6	3.79	33	4
			Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>11</td><td>11.6414</td><td>12</td><td>7</td></lor=0<>	TEQ (mg/kg)	0.2	11	11.6414	12	7
			Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>11</td><td>11.6414</td><td>13</td><td>7</td></lor=lor<>	TEQ (mg/kg)	0.3	11	11.6414	13	7
			Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>11</td><td>11.6414</td><td>12</td><td>7</td></lor=lor>	TEQ (mg/kg)	0.2	11	11.6414	12	7
			Total PAH (18)	mg/kg	0.8	95	96.14	31	1
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.5	0.42	30	7
			2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.44	30	2
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.51	30	2
otal Recoverable	Metals in Soil/Waste	e Solids/Materials t	ICPOES				Method: ME	-(AU)-[ENV]AI	1040/AN3
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE150032.039	LB097266.014		Arsenic, As	mg/kg	3	3.754281015	73.8825031788	3 56	3

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE150032.039	LB097266.014	Arsenic, As	mg/kg	3	3.7542810157	3.8825031788	56	3
		Cadmium, Cd	mg/kg	0.3	0.1764275368	30.1715927430	200	0
		Chromium, Cr	mg/kg	0.3	9.8482193073	310.3588910663	35	5
		Copper, Cu	mg/kg	0.5	14.879742052	25.1121672674	33	2
		Lead, Pb	mg/kg	1	11.878829800	93.8296486858	32	5
		Nickel, Ni	mg/kg	0.5	7.3034497286	7.6792500491	37	5
		Zinc, Zn	mg/kg	0.5	35.817671879	69.3047945205	33	5
SE150039.004	LB097266.024	Arsenic, As	mg/kg	3	7	7	45	5
		Cadmium, Cd	mg/kg	0.3	0.4	0.5	99	21
		Chromium, Cr	mg/kg	0.3	18	18	33	0
		Copper, Cu	mg/kg	0.5	21	22	32	2
		Lead, Pb	mg/kg	1	27	28	34	6
		Nickel, Ni	mg/kg	0.5	1.9	2.2	54	16
		Zinc, Zn	mg/kg	0.5	18	19	41	5
SE150061.017	LB097267.014	Arsenic, As	mg/kg	3	8.4888150118	88.1243928161	42	4
		Cadmium, Cd	mg/kg	0.3	0.6445831595	0.5383255933	81	18
		Chromium, Cr	mg/kg	0.3	21.126806077	08.2233763137	33	15
		Copper, Cu	mg/kg	0.5	14.356117890	44.6428646053	33	2
		Lead, Pb	mg/kg	1	20.673968328	49.2217993725	35	7
		Nickel, Ni	mg/kg	0.5	3.9383978236	3.9517140637	43	0
		Zinc, Zn	mg/kg	0.5	21.729206647	20.8402491862	39	4
SE150109.002	LB097267.024	Arsenic, As	mg/kg	3	9	10	41	5
		Cadmium, Cd	mg/kg	0.3	0.9	0.9	64	1
		Chromium, Cr	mg/kg	0.3	18	18	33	2
		Copper, Cu	mg/kg	0.5	220	220	30	0
		Lead, Pb	mg/kg	1	140	110	31	24
		Nickel, Ni	mg/kg	0.5	11	11	34	4
		Zinc, Zn	mg/kg	0.5	480	580	30	18
race Metals (Dis	solved) in Water by ICPMS					Metho	od: ME-(AU)-[ENVIAN31
•	Duplicate	Parameter	Units	LOR				
Original	Duplicate	Parameter	Units	LOR				

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

									(ENVJAN:
Original	Duplicate		Parameter	Units	LOR	Original		Criteria %	RPD %
SE150075.003	LB097287.014		Zinc, Zn	μg/L	5	28	29	32	1
SE150106.001	LB097287.016		Arsenic, As	μg/L	1	3	3	53	2
			Cadmium, Cd	μg/L	0.1	<0.1	<0.1	200	0
			Chromium, Cr	µg/L	1	<1	<1	200	0
			Copper, Cu	μg/L	1	11			3
			Lead, Pb						0
				µg/L	1	<1			
			Nickel, Ni	µg/L	1	1			11
			Zinc, Zn	µg/L	5	57	58	24	2
RH (Total Recov	erable Hydrocarbons) in Soil					Meth	od: ME-(AU)-	[ENV]AN4
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	۶ RPD
SE150039.005	LB097123.020		TRH C10-C14	mg/kg	20	<20	0	200	0
			TRH C15-C28	mg/kg	45	220	234	50	8
			TRH C29-C36	mg/kg	45	82			23
			TRH C37-C40	mg/kg	100	<100			0
			TRH C10-C36 Total	mg/kg	110	300			12
			TRH C10-C40 Total	mg/kg	210	300			12
		TRH F Bands	TRH >C10-C16 (F2)	mg/kg	25	<25	0	200	0
			TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	<25	0	200	0
			TRH >C16-C34 (F3)	mg/kg	90	280	315	60	11
			TRH >C34-C40 (F4)	mg/kg	120	<120	0	200	0
SE150142.001	LB097249.017		TRH C10-C14	mg/kg	20	<20	<20		0
			TRH C15-C28	mg/kg	45	<45			0
			TRH C29-C36	mg/kg	45	<45			0
			TRH C37-C40	mg/kg	100	<100			0
			TRH C10-C36 Total	mg/kg	110	<110	<110	200	0
			TRH C10-C40 Total	mg/kg	210	<210	<210	200	0
		TRH F Bands	TRH >C10-C16 (F2)	mg/kg	25	<25	.1 <0.1 200 1 <1	200	0
			TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	<25	<25	200	0
			TRH >C16-C34 (F3)	mg/kg	90	<90	<90	200	0
						<120	<120	200	0
			TRH >C34-C40 (F4)	mg/kg	120	<120			0
'OC's in Soil			TRH >C34-C40 (F4)	mg/kg	120		Method: ME-	-(AU)-[ENV]A	N433/AN
Original	Duplicate					<120 Original	Method: ME-	-(AU)-[ENV]A	N433/AN RPD
	Duplicate LB097118.014	Fumigants	TRH >C34-C40 (F4)	mg/kg	120		Method: ME- Duplicate	- <mark>(AU)-[ENV]A</mark> Criteria %	N433/AI
Original		Fumigants	TRH >C34-C40 (F4) Parameter	mg/kg Units	120 LOR	Original	Method: ME- Duplicate <0.1	- <mark>(AU)-[ENV]A</mark> Criteria % 200	N433/AI RPD
Original		Fumigants	TRH >C34-C40 (F4) Parameter 2,2-dichloropropane	mg/kg Units mg/kg	120 LOR 0.1	Original <0.1	Method: ME- Duplicate <0.1 <0.1	-(AU)-[ENV]A Criteria % 200 200	N433/AI RPD 0
Original		Fumigants	TRH >C34-C40 (F4) Parameter 2,2-dichloropropane 1,2-dichloropropane	mg/kg Units mg/kg mg/kg mg/kg	120 LOR 0.1 0.1	Original <0.1 <0.1	Method: ME- Duplicate <0.1 <0.1 <0.1	(AU)-[ENV]Al Criteria % 200 200 200	N433/AI RPD 0
Original		Fumigants	TRH >C34-C40 (F4) Parameter 2,2-dichloropropane 1,2-dichloropropane cis-1,3-dichloropropene trans-1,3-dichloropropene	mg/kg Units mg/kg mg/kg mg/kg mg/kg	120 LOR 0.1 0.1 0.1 0.1	Original <0.1 <0.1 <0.1 <0.1 <0.1	Method: ME- Duplicate <0.1 <0.1 <0.1 <0.1	(AU)-[ENV]A Criteria % 200 200 200 200	N433/AI RPD 0 0 0 0
Original			TRH >C34-C40 (F4) Parameter 2,2-dichloropropane 1,2-dichloropropane cis-1,3-dichloropropene trans-1,3-dichloropropene 1,2-dibromoethane (EDB)	mg/kg Units mg/kg mg/kg mg/kg mg/kg mg/kg	120 LOR 0.1 0.1 0.1 0.1 0.1 0.1	Original <0.1	Method: ME- Duplicate <0.1 <0.1 <0.1 <0.1 <0.1	(AU)-[ENV]A Criteria % 200 200 200 200 200	N433/AI RPD 0 0 0 0 0
Driginal		Halogenated	TRH >C34-C40 (F4) Parameter 2,2-dichloropropane 1,2-dichloropropane cis-1,3-dichloropropene trans-1,3-dichloropropene 1,2-dibromoethane (EDB) Dichlorodifluoromethane (CFC-12)	mg/kg Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	120 LOR 0.1 0.1 0.1 0.1 0.1 0.1 1	Original <0.1	Method: ME- Duplicate <0.1	(AU)-[ENV]A Criteria % 200 200 200 200 200 200 200	N433/A RPD 0 0 0 0 0 0 0
Driginal			TRH >C34-C40 (F4) Parameter 2,2-dichloropropane cis-1,3-dichloropropane trans-1,3-dichloropropene 1,2-dibromoethane (EDB) Dichlorodifluoromethane (CFC-12) Chloromethane	mg/kg Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	120 LOR 0.1 0.1 0.1 0.1 0.1 1 1	Original <0.1	Method: ME- Duplicate <0.1 <0.1 <0.1 <0.1 <0.1 <1 <1	(AU)-[ENV]A Criteria % 200 200 200 200 200 200 200 200	N433/A RPD 0 0 0 0 0 0 0 0 0
Original		Halogenated	TRH >C34-C40 (F4) Parameter 2,2-dichloropropane 1,2-dichloropropane cis-1,3-dichloropropene trans-1,3-dichloropropene 1,2-dibromoethane (EDB) Dichlorodifluoromethane (CFC-12) Chloromethane Vinyl chloride (Chloroethene)	mg/kg Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	120 LOR 0.1 0.1 0.1 0.1 0.1 1 1 0.1	Original <0.1	Method: ME- Duplicate <0.1 <0.1 <0.1 <0.1 <0.1 <1 <1 <0.1	(AU)-[ENV]A Criteria % 200 200 200 200 200 200 200 200 200 20	N433/Al RPD 0 0 0 0 0 0 0 0 0 0 0 0 0
Original		Halogenated	TRH >C34-C40 (F4) Parameter 2,2-dichloropropane cis-1,3-dichloropropane trans-1,3-dichloropropene 1,2-dibromoethane (EDB) Dichlorodifluoromethane (CFC-12) Chloromethane	mg/kg Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	120 LOR 0.1 0.1 0.1 0.1 0.1 1 1	Original <0.1	Method: ME- Duplicate <0.1 <0.1 <0.1 <0.1 <0.1 <1 <1 <0.1	(AU)-[ENV]A Criteria % 200 200 200 200 200 200 200 200 200 20	N433/AI RPD 0 0 0 0 0 0 0 0 0 0
Original		Halogenated	TRH >C34-C40 (F4) Parameter 2,2-dichloropropane 1,2-dichloropropane cis-1,3-dichloropropene trans-1,3-dichloropropene 1,2-dibromoethane (EDB) Dichlorodifluoromethane (CFC-12) Chloromethane Vinyl chloride (Chloroethene)	mg/kg Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	120 LOR 0.1 0.1 0.1 0.1 0.1 1 1 0.1	Original <0.1	Method: ME- Duplicate <0.1	(AU)-[ENV]A Criteria % 200 200 200 200 200 200 200 200 200	N433/AI RPD 0 0 0 0 0 0 0 0 0 0 0 0 0
Driginal		Halogenated	TRH >C34-C40 (F4) Parameter 2,2-dichloropropane 1,2-dichloropropane cis-1,3-dichloropropene trans-1,3-dichloropropene 1,2-dibromoethane (EDB) Dichlorodifluoromethane (CFC-12) Chloromethane Vinyl chloride (Chloroethene) Bromomethane	mg/kg Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	120 LOR 0.1 0.1 0.1 0.1 1 1 1 0.1 1 1 1 1	Original <0.1	Method: ME- Duplicate <0.1	(AU)-[ENV]A Criteria % 200 200 200 200 200 200 200 200 200 20	N433/AI RPD 0 0 0 0 0 0 0 0 0 0 0 0 0
Driginal		Halogenated	TRH >C34-C40 (F4) Parameter 2,2-dichloropropane 1,2-dichloropropane cis-1,3-dichloropropene trans-1,3-dichloropropene 1,2-dibromoethane (EDB) Dichlorodifluoromethane (CFC-12) Chloromethane Vinyl chloride (Chloroethene) Bromomethane Chloroethane Trichlorofluoromethane	mg/kg Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	120 LOR 0.1 0.1 0.1 0.1 1 1 1 1 1 1 1	Original <0.1	Method: ME- Duplicate <0.1 <0.1 <0.1 <0.1 <1 <1 <0.1 <1 <1 <1 <1 <1 <1 <1 <1 <1	(AU)-[ENV]A Criteria % 200 200 200 200 200 200 200 200 200 20	N433/A RPD 0 0 0 0 0 0 0 0 0 0 0 0 0
Driginal		Halogenated	TRH >C34-C40 (F4) Parameter 2,2-dichloropropane 1,2-dichloropropane cis-1,3-dichloropropene trans-1,3-dichloropropene 1,2-dibromoethane (EDB) Dichlorodifluoromethane (CFC-12) Chloromethane Vinyl chloride (Chloroethene) Bromomethane Chloroethane Trichlorofluoromethane Iodomethane Iodomethane	mg/kg Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	120 LOR 0.1 0.1 0.1 0.1 1 1 1 1 1 1 5	Original <0.1	Method: ME- Duplicate <0.1 <0.1 <0.1 <0.1 <1 <1 <0.1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <5	(AU)-[ENV]A Criteria % 200 200 200 200 200 200 200 200 200 20	N433/A RPD 0 0 0 0 0 0 0 0 0 0 0 0 0
Driginal		Halogenated	TRH >C34-C40 (F4) Parameter 2,2-dichloropropane 1,2-dichloropropane cis-1,3-dichloropropene trans-1,3-dichloropropene 1,2-diblorodifluoromethane (EDB) Dichlorodifluoromethane (CFC-12) Chloromethane Vinyl chloride (Chloroethene) Bromomethane Chloroethane Trichlorofluoromethane Iodomethane 1,1-dichloroethene	mg/kg Units mg/kg	120 LOR 0.1 0.1 0.1 0.1 1 1 1 1 1 1 5 0.1	Original <0.1	Method: ME- Duplicate <0.1 <0.1 <0.1 <0.1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	(AU)-[ENV]A Criteria % 200 200 200 200 200 200 200 200 200 20	N433/A RPD 0 0 0 0 0 0 0 0 0 0 0 0 0
Driginal		Halogenated	TRH >C34-C40 (F4) Parameter 2,2-dichloropropane 1,2-dichloropropane cis-1,3-dichloropropene trans-1,3-dichloropropene 1,2-dibromoethane (EDB) Dichlorodifluoromethane (CFC-12) Chloromethane Vinyl chloride (Chloroethene) Bromomethane Chlorodthare Trichlorofluoromethane Iodomethane 1,1-dichloroethene Dichloromethane (Methylene chloride)	mg/kg Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	120 LOR 0.1 0.1 0.1 0.1 1 1 1 1 1 5 0.1 0.5	Original <0.1	Method: ME- Duplicate <0.1 <0.1 <0.1 <0.1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <5 <0.1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	(AU)-[ENV]A Criteria % 200 200 200 200 200 200 200 200 200 20	N433/A RPD 0 0 0 0 0 0 0 0 0 0 0 0 0
Driginal		Halogenated	TRH >C34-C40 (F4) Parameter 2,2-dichloropropane 1,2-dichloropropane cis-1,3-dichloropropene trans-1,3-dichloropropene 1,2-dibromoethane (EDB) Dichlorodifluoromethane (CFC-12) Chloromethane Vinyl chloride (Chloroethene) Bromomethane Chloroethane Trichlorofluoromethane Iodomethane 1,1-dichloroethene Dichloromethane (Methylene chloride) Allyl chloride	mg/kg Units mg/kg	120 LOR 0.1 0.1 0.1 1 1 1 1 5 0.1 0.5 0.1	Original <0.1	Method: ME- Duplicate <0.1 <0.1 <0.1 <0.1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	(AU)-[ENV]A Criteria % 200 200 200 200 200 200 200 200 200 20	N433/Al RPD 0 0 0 0 0 0 0 0 0 0 0 0 0
Driginal		Halogenated	TRH >C34-C40 (F4) Parameter 2,2-dichloropropane 1,2-dichloropropane cis-1,3-dichloropropene trans-1,3-dichloropropene 1,2-dibromoethane (EDB) Dichlorodifluoromethane (CFC-12) Chloromethane Vinyl chloride (Chloroethene) Bromomethane Chlorodthare Trichlorofluoromethane Iodomethane 1,1-dichloroethene Dichloromethane (Methylene chloride)	mg/kg Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	120 LOR 0.1 0.1 0.1 1 1 1 1 1 5 0.1 0.5 0.1 0.1	Original <0.1	Method: ME- Duplicate <0.1 <0.1 <0.1 <0.1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	(AU)-[ENV]AI Criteria % 200 200 200 200 200 200 200 200 200 20	N433/A RPD 0 0 0 0 0 0 0 0 0 0 0 0 0
Driginal		Halogenated	TRH >C34-C40 (F4) Parameter 2,2-dichloropropane 1,2-dichloropropane cis-1,3-dichloropropene trans-1,3-dichloropropene 1,2-dibromoethane (EDB) Dichlorodifluoromethane (CFC-12) Chloromethane Vinyl chloride (Chloroethene) Bromomethane Chloroethane Trichlorofluoromethane Iodomethane 1,1-dichloroethene Dichloromethane (Methylene chloride) Allyl chloride	mg/kg Units mg/kg	120 LOR 0.1 0.1 0.1 1 1 1 1 5 0.1 0.5 0.1	Original <0.1	Method: ME- Duplicate <0.1 <0.1 <0.1 <0.1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	(AU)-[ENV]AI Criteria % 200 200 200 200 200 200 200 200 200 20	N433/A RPD 0 0 0 0 0 0 0 0 0 0 0 0 0
Driginal		Halogenated	TRH >C34-C40 (F4) Parameter 2,2-dichloropropane 1,2-dichloropropane cis-1,3-dichloropropene trans-1,3-dichloropropene 1,2-dibromoethane (EDB) Dichlorodifluoromethane (CFC-12) Chloromethane Vinyl chloride (Chloroethene) Bromomethane Chloroethane Trichlorofluoromethane Iodomethane 1,1-dichloroethene Dichloromethane Alyl chloride trans-1,2-dichloroethene	mg/kg Units mg/kg	120 LOR 0.1 0.1 0.1 1 1 1 1 1 5 0.1 0.5 0.1 0.1	Original <0.1	Method: ME- Duplicate <0.1 <0.1 <0.1 <0.1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	(AU)-[ENV]AI Criteria % 200 200 200 200 200 200 200 200 200 20	N433/A RPD 0 0 0 0 0 0 0 0 0 0 0 0 0
Driginal		Halogenated	TRH >C34-C40 (F4) Parameter 2,2-dichloropropane 1,2-dichloropropane cis-1,3-dichloropropene trans-1,3-dichloropropene trans-1,3-dichloropropene 1,2-dibromoethane (EDB) Dichlorodifluoromethane (CFC-12) Chloromethane Vinyl chloride (Chloroethene) Bromomethane Chloroethane Trichlorofluoromethane Iodomethane 1,1-dichloroethene Dichloromethane (Methylene chloride) Allyl chloride trans-1,2-dichloroethene 1,1-dichloroethane	mg/kg Units mg/kg	120 LOR 0.1 0.1 0.1 0.1 1 1 1 1 5 0.1 0.5 0.1 0.1 0.1 0.5 0.1	Original <0.1	Method: ME- Duplicate <0.1 <0.1 <0.1 <0.1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	(AU)-[ENV]AI Criteria % 200 200 200 200 200 200 200 200 200 20	N433/A RPD 0
Driginal		Halogenated	TRH >C34-C40 (F4) Parameter 2,2-dichloropropane cis-1,3-dichloropropane cis-1,3-dichloropropene trans-1,3-dichloropropene trans-1,3-dichloropropene 1,2-dibromoethane (EDB) Dichlorodifluoromethane (CFC-12) Chloromethane Vinyl chloride (Chloroethene) Bromomethane Chloroethane Trichlorofluoromethane Iodomethane 1,1-dichloroethene Dichloromethane (Methylene chloride) Allyl chloride trans-1,2-dichloroethene 1,1-dichloroethane cis-1,2-dichloroethene	mg/kg Units mg/kg	120 LOR 0.1 0.1 0.1 0.1 1 1 1 1 1 5 0.1 0.5 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Original <0.1	Method: ME- Duplicate <0.1 <0.1 <0.1 <0.1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	(AU)-[ENV]A Criteria % 200 200 200 200 200 200 200 200 200 20	N433/AN RPD 0 0 0 0 0 0 0 0 0 0 0 0 0
Driginal		Halogenated	TRH >C34-C40 (F4) Parameter 2,2-dichloropropane 1,2-dichloropropane cis-1,3-dichloropropene trans-1,3-dichloropropene 1,2-dibromethane (EDB) Dichlorodifluoromethane (CFC-12) Chloromethane Vinyl chloride (Chloroethene) Bromomethane Chloroethane Trichlorofluoromethane Iodomethane 1,1-dichloroethene Dichloroethane 1,1-dichloroethene Dichloroethane 1,1-dichloroethene Dichloroethane 1,1-dichloroethene Bromochloromethane 1,1-dichloroethene 1,1-dichloroethene 1,1-dichloroethene 1,1-dichloroethene 1,1-dichloroethene 1,1-dichloroethane cis-1,2-dichloroethene Bromochloromethane 1,2-dichloroethene Bromochloromethane 1,2-dichloroethene	mg/kg Units mg/kg	120 LOR 0.1 0.1 0.1 0.1 1 1 1 1 1 1 5 0.1 0.5 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Original <0.1	Method: ME- Duplicate <0.1 <0.1 <0.1 <0.1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	(AU)-[ENV]A Criteria % 200 200 200 200 200 200 200 20	N433/AN RPD 0 0 0 0 0 0 0 0 0 0 0 0 0
Driginal		Halogenated	TRH >C34-C40 (F4) Parameter 2,2-dichloropropane 1,2-dichloropropane cis-1,3-dichloropropene trans-1,3-dichloropropene 1,2-dibromoethane (EDB) Dichlorodifluoromethane (CFC-12) Chloromethane Vinyl chloride (Chloroethene) Bromomethane Chloroethane Trichlorofluoromethane I.1-dichloroethene Dichloroethane 1,1-dichloroethene Dichloroethane 1,1-dichloroethene Dichloroethane 1,1-dichloroethene Dichloroethane 1,1-dichloroethene Dichloroethane 1,1-dichloroethene Bromochloromethane 1,1-dichloroethene Bromochloromethane 1,2-dichloroethene Bromochloromethane 1,2-dichloroethene Bromochloromethane 1,2-dichloroethene 1,1-trichloroethane 1,2-dichloroethane 1,1,1-trichloroethane	mg/kg Units mg/kg	120 LOR 0.1 0.1 0.1 0.1 1 1 1 1 1 1 1 1 0.1 0.	Original <0.1	Method: ME- Duplicate <0.1 <0.1 <0.1 <0.1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	(AU)-[ENV]A Criteria % 200 200 200 200 200 200 200 20	N433/AN RPD 0 0 0 0 0 0 0 0 0 0 0 0 0
Driginal		Halogenated	TRH >C34-C40 (F4) Parameter 2.2-dichloropropane 1,2-dichloropropane cis-1,3-dichloropropene trans-1,3-dichloropropene 1,2-dibromoethane (EDB) Dichlorodifluoromethane (CFC-12) Chloromethane Vinyl chloride (Chloroethene) Bromomethane Chloroethane Trichlorofluoromethane I.1dichloroethene Dichlorodifluoromethane I.1dichloroethene Dichloroethane 1,1dichloroethene Dichloromethane 1,1dichloroethene 1,1-dichloroethene 1,1-dichloroethene 1,1-dichloroethene 1,1-dichloroethene 1,2-dichloroethene 1,2-dichloroethane 1,2-dichloroethane 1,1-trichloroethane 1,1-trichloroethane 1,1-tichloroethane	mg/kg Units mg/kg	120 LOR 0.1 0.1 0.1 0.1 1 1 1 1 1 1 1 1 1 1 1 1 1	Original <0.1	Method: ME- Duplicate <0.1 <0.1 <0.1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	(AU)-[ENV]A Criteria % 200 200 200 200 200 200 200 20	N433/AV RPD 0 0 0 0 0 0 0 0 0 0 0 0 0
Driginal		Halogenated	TRH >C34-C40 (F4) Parameter 2,2-dichloropropane 1,2-dichloropropane cis-1,3-dichloropropene trans-1,3-dichloropropene trans-1,3-dichloropropene 1,2-dibromoethane (EDB) Dichlorodifluoromethane (CFC-12) Chloromethane Vinyl chloride (Chloroethene) Bromomethane Chloroethane Trichlorofluoromethane Iodomethane 1,1-dichloroethene Dichloromethane (Methylene chloride) Allyl chloride trans-1,2-dichloroethene 1,1-dichloroethene 1,1-dichloroethene 1,1-dichloroethene Bromochloromethane 1,2-dichloroethene Bromochloromethane 1,1-dichloroethene Bromochloromethane 1,1-dichloroethene Bromochloromethane 1,1-trichloroethene 1,1-dichloroethane 1,1,1-trichloroethane 1,1,1-trichloroethane 1,1-dichloropropene Carbon tetrachloride	mg/kg Units mg/kg	120 LOR 0.1 0.1 0.1 0.1 1 1 1 1 1 1 1 1 5 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Original <0.1	Method: ME- Duplicate <0.1 <0.1 <0.1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	(AU)-[ENV]A Criteria % 200 200 200 200 200 200 200 20	N433/A RPD 0
Driginal		Halogenated	TRH >C34-C40 (F4) Parameter 2.2-dichloropropane 1,2-dichloropropane cis-1,3-dichloropropene trans-1,3-dichloropropene 1,2-dibromoethane (EDB) Dichlorodifluoromethane (CFC-12) Chloromethane Vinyl chloride (Chloroethene) Bromomethane Chloroethane Trichlorofluoromethane I.1dichloroethene Dichlorodifluoromethane I.1dichloroethene Dichloroethane 1,1dichloroethene Dichloromethane 1,1dichloroethene 1,1-dichloroethene 1,1-dichloroethene 1,1-dichloroethene 1,1-dichloroethene 1,2-dichloroethene 1,2-dichloroethane 1,2-dichloroethane 1,1-trichloroethane 1,1-trichloroethane 1,1-tichloroethane	mg/kg Units mg/kg	120 LOR 0.1 0.1 0.1 0.1 1 1 1 1 1 1 1 1 1 1 1 1 1	Original <0.1	Method: ME- Duplicate <0.1 <0.1 <0.1 <0.1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <5 <0.1 <0.5 <0.1 <0.5 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	(AU)-[ENV]A Criteria % 200 200 200 200 200 200 200 20	N433/A RPD 0
Driginal		Halogenated	TRH >C34-C40 (F4) Parameter 2,2-dichloropropane 1,2-dichloropropane cis-1,3-dichloropropene trans-1,3-dichloropropene trans-1,3-dichloropropene 1,2-dibromoethane (EDB) Dichlorodifluoromethane (CFC-12) Chloromethane Vinyl chloride (Chloroethene) Bromomethane Chloroethane Trichlorofluoromethane Iodomethane 1,1-dichloroethene Dichloromethane (Methylene chloride) Allyl chloride trans-1,2-dichloroethene 1,1-dichloroethene 1,1-dichloroethene 1,1-dichloroethene Bromochloromethane 1,2-dichloroethene Bromochloromethane 1,1-dichloroethene Bromochloromethane 1,1-dichloroethene Bromochloromethane 1,1-trichloroethene 1,1-dichloroethane 1,1,1-trichloroethane 1,1,1-trichloroethane 1,1-dichloropropene Carbon tetrachloride	mg/kg Units mg/kg	120 LOR 0.1 0.1 0.1 0.1 1 1 1 1 1 1 1 1 5 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Original <0.1	Method: ME- Duplicate <0.1 <0.1 <0.1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	(AU)-[ENV]A Criteria % 200 200 200 200 200 200 200 20	N433/AN RPD 0 0 0 0 0 0 0 0 0 0 0 0 0
Driginal		Halogenated	TRH >C34-C40 (F4) Parameter 2,2-dichloropropane 1,2-dichloropropane cis-1,3-dichloropropene trans-1,3-dichloropropene 1,2-dibromoethane (EDB) Dichlorodifluoromethane (CFC-12) Chloromethane Vinyl chloride (Chloroethene) Bromomethane Chloroethane Trichlorofluoromethane Iodomethane 1,1-dichloroethene Dichloromethane (Methylene chloride) Allyl chloride trans-1,2-dichloroethene 1,1-dichloroethene Dichloromethane (is-1,2-dichloroethene 1,1-dichloroethene Bromochloromethane 1,2-dichloroethene Bromochloromethane 1,1-dichloroethene I,1,1-trichloroethane 1,1,1-trichloroethane 1,1,1-trichloroethane 1,1,1-trichloroethane 1,1-dichloroethane 1,1-dichloroethane 1,1-dichloropropene Carbon tetrachloride Dibromomethane	mg/kg Units mg/kg mg/kg </td <td>120 LOR 0.1 0.1 0.1 1 1 1 1 1 1 5 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1</td> <td>Original <0.1</td> <0.1	120 LOR 0.1 0.1 0.1 1 1 1 1 1 1 5 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Original <0.1	Method: ME- Duplicate <0.1 <0.1 <0.1 <0.1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <5 <0.1 <0.5 <0.1 <0.5 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	(AU)-[ENV]A Criteria % 200 200 200 200 200 200 200 20	N433/A RPD 0
Driginal		Halogenated	TRH >C34-C40 (F4) Parameter 2,2-dichloropropane 1,2-dichloropropane cis-1,3-dichloropropene trans-1,3-dichloropropene 1,2-dibromoethane (EDB) Dichlorodifluoromethane (CFC-12) Chloromethane Vinyl chloride (Chloroethene) Bromomethane Chloroethane Trichlorofluoromethane Iodomethane 1,1-dichloroethene Dichlorodethene 1,1-dichloroethene 1,1-dichloroethane 1,1-tichloroethane 1,1-tichloroethane 1,1-tichloroethane 1,1-tichloroethane 1,1-tichloroethane 1,1-tichloroethane	mg/kg Units mg/kg mg/kg </td <td>120 LOR 0.1 0.1 0.1 1 1 1 1 1 1 1 5 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1</td> <td>Original <0.1</td> <0.1	120 LOR 0.1 0.1 0.1 1 1 1 1 1 1 1 5 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Original <0.1	Method: ME- Duplicate <0.1 <0.1 <0.1 <0.1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	(AU)-[ENV]AI Criteria % 200 200 200 200 200 200 200 200 200 20	N433/AN RPD 0 0 0 0 0 0 0 0 0 0 0 0 0

21/3/2016

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

Driginal	tinued) Duplicate		Parameter	Units	LOR	Original		-(AU)-[ENV]A Criteria %	RPD
		I lala ana ata d							
SE150044.001	LB097118.014	Halogenated	1,1,1,2-tetrachloroethane	mg/kg	0.1	<0.1	<0.1	200	0
		Aliphatics	cis-1,4-dichloro-2-butene	mg/kg	1	<1	<1	200	0
			1,1,2,2-tetrachloroethane	mg/kg	0.1	<0.1	<0.1	200	0
			1,2,3-trichloropropane	mg/kg	0.1	<0.1	<0.1	200	0
			trans-1,4-dichloro-2-butene	mg/kg	1	<1	<1	200	0
			1,2-dibromo-3-chloropropane	mg/kg	0.1	<0.1	<0.1	200	0
			Hexachlorobutadiene	mg/kg	0.1	<0.1	<0.1	200	0
		Halogenated	Chlorobenzene	mg/kg	0.1	<0.1	<0.1	200	0
		Aromatics	Bromobenzene	mg/kg	0.1	<0.1	<0.1	200	0
			2-chlorotoluene	mg/kg	0.1	<0.1	<0.1	200	0
			4-chlorotoluene	mg/kg	0.1	<0.1	<0.1	200	0
			1,3-dichlorobenzene	mg/kg	0.1	<0.1	<0.1	200	0
			1,4-dichlorobenzene	mg/kg	0.1	<0.1	<0.1	200	0
			1,2-dichlorobenzene	mg/kg	0.1	<0.1	<0.1	200	0
			1,2,4-trichlorobenzene	mg/kg	0.1	<0.1	<0.1	200	0
			1,2,3-trichlorobenzene	mg/kg	0.1	<0.1	<0.1	200	0
		Monocyclic	Benzene	mg/kg	0.1	<0.1	<0.1	200	0
		Aromatic	Toluene	mg/kg	0.1	<0.1	<0.1	200	0
		, aonato	Ethylbenzene	mg/kg	0.1	<0.1	<0.1	200	0
			m/p-xylene	mg/kg	0.1	<0.1	<0.1	200	0
									0
			o-xylene	mg/kg	0.1	<0.1	<0.1	200	
			Styrene (Vinyl benzene)	mg/kg	0.1	<0.1	<0.1	200	0
			Isopropylbenzene (Cumene)	mg/kg	0.1	<0.1	<0.1	200	0
			n-propylbenzene	mg/kg	0.1	<0.1	<0.1	200	0
			1,3,5-trimethylbenzene	mg/kg	0.1	<0.1	<0.1	200	C
			tert-butylbenzene	mg/kg	0.1	<0.1	<0.1	200	0
			1,2,4-trimethylbenzene	mg/kg	0.1	<0.1	<0.1	200	(
			sec-butylbenzene	mg/kg	0.1	<0.1	<0.1	200	(
		p-isopropyltoluene	mg/kg	0.1	<0.1	<0.1	200	0	
			n-butylbenzene	mg/kg	0.1	<0.1	<0.1	200	0
		Nitrogenous	Acrylonitrile	mg/kg	0.1	<0.1	<0.1	200	C
		Compounds	2-nitropropane	mg/kg	10	<10	<10	200	(
		Oxygenated	Acetone (2-propanone)	mg/kg	10	<10	<10	200	(
		Compounds	MtBE (Methyl-tert-butyl ether)	mg/kg	0.1	<0.1	<0.1	200	(
			Vinyl acetate	mg/kg	10	<10	<10	200	C
			MEK (2-butanone)	mg/kg	10	<10	<10	200	(
			MIBK (4-methyl-2-pentanone)	mg/kg	1	<1	<1	200	(
			2-hexanone (MBK)	mg/kg	5	<5	<5	200	
		Polycyclic	Naphthalene	mg/kg	0.1	<0.1	<0.1	200	
		Sulphonated	Carbon disulfide		0.1	<0.1	<0.1	200	
				mg/kg	- 0.5				
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg		3.8	3.8	50	0
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.2	4.3	50	4
			d8-toluene (Surrogate)	mg/kg	-	4.4	4.7	50	ŧ
			Bromofluorobenzene (Surrogate)	mg/kg	-	4.2	4.2	50	(
		Totals	Total Xylenes*	mg/kg	0.3	<0.3	<0.3	200	(
			Total BTEX	mg/kg	0.6	<0.3	<0.3	200	(
		Trihalomethan	Chloroform	mg/kg	0.1	<0.1	<0.1	200	(
		es	Bromodichloromethane	mg/kg	0.1	<0.1	<0.1	200	0
			Chlorodibromomethane	mg/kg	0.1	<0.1	<0.1	200	(
			Bromoform	mg/kg	0.1	<0.1	<0.1	200	(
150114.009	LB097228.014	Fumigants	2,2-dichloropropane	mg/kg	0.1	<0.1	<0.1	200	(
			1,2-dichloropropane	mg/kg	0.1	<0.1	<0.1	200	(
			cis-1,3-dichloropropene	mg/kg	0.1	<0.1	<0.1	200	(
			trans-1,3-dichloropropene	mg/kg	0.1	<0.1	<0.1	200	(
			1,2-dibromoethane (EDB)	mg/kg	0.1	0	0	200	
		Halogenated	Dichlorodifluoromethane (CFC-12)	mg/kg	1	<1	<1	200	
		Aliphatics	Chloromethane	mg/kg	1	<1	<1	200	
		, upriados	Vinyl chloride (Chloroethene)	mg/kg	0.1	<0.1	<0.1	200	
			Bromomethane		1	0.1	0	200	
				mg/kg			<1	200	с с
			Chloroethane	mg/kg	1	<1			

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

Onininal	Dunlieste		Devemploy		LOD	Originat		Cuitoui - M	N433/AN
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD 9
SE150114.009	LB097228.014	Halogenated	Iodomethane	mg/kg	5	0	0	200	0
		Aliphatics	1,1-dichloroethene	mg/kg	0.1	<0.1	<0.1	200	0
			Dichloromethane (Methylene chloride)	mg/kg	0.5	<0.5	<0.5	200	0
			Allyl chloride	mg/kg	0.1	<0.1	<0.1	200	0
			trans-1,2-dichloroethene	mg/kg	0.1	<0.1	<0.1	200	0
			1,1-dichloroethane	mg/kg	0.1	<0.1	<0.1	200	0
			cis-1,2-dichloroethene	mg/kg	0.1	<0.1	<0.1	200	0
			Bromochloromethane	mg/kg	0.1	<0.1	<0.1	200	0
			1,2-dichloroethane	mg/kg	0.1	<0.1	<0.1	200	0
			1,1,1-trichloroethane	mg/kg	0.1	<0.1	<0.1	200	0
					0.1	<0.1	<0.1	200	0
			1,1-dichloropropene	mg/kg					
			Carbon tetrachloride	mg/kg	0.1	<0.1	<0.1	200	0
			Dibromomethane	mg/kg	0.1	0	0	200	0
			Trichloroethene (Trichloroethylene -TCE)	mg/kg	0.1	<0.1	<0.1	200	0
			1,1,2-trichloroethane	mg/kg	0.1	<0.1	<0.1	200	0
			1,3-dichloropropane	mg/kg	0.1	<0.1	<0.1	200	0
			Tetrachloroethene (Perchloroethylene,PCE)	mg/kg	0.1	<0.1	<0.1	200	0
			1,1,1,2-tetrachloroethane	mg/kg	0.1	<0.1	<0.1	200	0
			cis-1,4-dichloro-2-butene	mg/kg	1	<1	<1	200	0
			1,1,2,2-tetrachloroethane	mg/kg	0.1	<0.1	<0.1	200	0
			1,2,3-trichloropropane	mg/kg	0.1	<0.1	<0.1	200	0
			trans-1,4-dichloro-2-butene	mg/kg	1	<1	<1	200	0
			1,2-dibromo-3-chloropropane	mg/kg	0.1	<0.1	<0.1	200	0
			Hexachlorobutadiene	mg/kg	0.1	<0.1	<0.1	200	0
		Lelegensted	Chlorobenzene				<0.1	200	0
		Halogenated		mg/kg	0.1	<0.1			
		Aromatics	Bromobenzene	mg/kg	0.1	0	0	200	0
			2-chlorotoluene	mg/kg	0.1	<0.1	<0.1	200	0
			4-chlorotoluene	mg/kg	0.1	<0.1	<0.1	200	0
			1,3-dichlorobenzene	mg/kg	0.1	<0.1	<0.1	200	0
			1,4-dichlorobenzene	mg/kg	0.1	<0.1	<0.1	200	0
			1,2-dichlorobenzene	mg/kg	0.1	<0.1	<0.1	200	0
			1,2,4-trichlorobenzene	mg/kg	0.1	<0.1	<0.1	200	0
			1,2,3-trichlorobenzene	mg/kg	0.1	<0.1	<0.1	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	4.7	5.1	50	9
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	5.7	6.3	50	11
			d8-toluene (Surrogate)	mg/kg	_	4.4	4.8	50	8
			Bromofluorobenzene (Surrogate)	mg/kg		5.0	5.6	50	13
		Trihalomethan	Chloroform		0.1	<0.1	<0.1	200	0
				mg/kg					0
		es	Bromodichloromethane	mg/kg	0.1	<0.1	<0.1	200	
			Chlorodibromomethane	mg/kg	0.1	<0.1	<0.1	200	0
			Bromoform	mg/kg	0.1	0.02	0.02	200	0
E150114.010	LB097228.016	Fumigants	2,2-dichloropropane	mg/kg	0.1	<0.1	<0.1	200	0
			1,2-dichloropropane	mg/kg	0.1	<0.1	<0.1	200	0
			cis-1,3-dichloropropene	mg/kg	0.1	<0.1	<0.1	200	0
			trans-1,3-dichloropropene	mg/kg	0.1	<0.1	<0.1	200	0
			1,2-dibromoethane (EDB)	mg/kg	0.1	0	0	200	0
		Halogenated	Dichlorodifluoromethane (CFC-12)	mg/kg	1	<1	<1	200	0
		Aliphatics	Chloromethane	mg/kg	1	<1	<1	200	0
			Vinyl chloride (Chloroethene)	mg/kg	0.1	<0.1	<0.1	200	0
			Bromomethane	mg/kg	1	0	0	200	0
			Chloroethane	mg/kg	1	<1	<1	200	0
			Trichlorofluoromethane	mg/kg	1	<1	<1	200	0
			lodomethane	mg/kg	5	0	0	200	0
			1,1-dichloroethene	mg/kg	0.1	<0.1	<0.1	200	0
			Dichloromethane (Methylene chloride)	mg/kg	0.5	<0.5	<0.5	200	0
			Allyl chloride	mg/kg	0.1	<0.1	<0.1	200	0
			trans-1,2-dichloroethene	mg/kg	0.1	<0.1	<0.1	200	0
			1,1-dichloroethane	mg/kg	0.1	<0.1	<0.1	200	0
			cis-1,2-dichloroethene	mg/kg	0.1	<0.1	<0.1	200	0
			Dremeshleremethere		0.1	<0.1	<0.1	200	0
			Bromochloromethane	mg/kg	0.1	< 0.1	~ 0.1	200	

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE150114.010	LB097228.016	Halogenated	1,1,1-trichloroethane	mg/kg	0.1	<0.1	<0.1	200	0
		Aliphatics	1,1-dichloropropene	mg/kg	0.1	<0.1	<0.1	200	0
		·	Carbon tetrachloride	mg/kg	0.1	<0.1	<0.1	200	0
			Dibromomethane	mg/kg	0.1	0	0	200	0
			Trichloroethene (Trichloroethylene -TCE)	mg/kg	0.1	<0.1	<0.1	200	0
			1,1,2-trichloroethane	mg/kg	0.1	<0.1	<0.1	200	0
			1,3-dichloropropane	mg/kg	0.1	<0.1	<0.1	200	0
			Tetrachloroethene (Perchloroethylene,PCE)	mg/kg	0.1	<0.1	<0.1	200	0
			1,1,1,2-tetrachloroethane	mg/kg	0.1	<0.1	<0.1	200	0
			cis-1,4-dichloro-2-butene	mg/kg	1	<1	<1	200	0
			1,1,2,2-tetrachloroethane	mg/kg	0.1	<0.1	<0.1	200	0
			1,2,3-trichloropropane	mg/kg	0.1	<0.1	<0.1	200	0
			trans-1,4-dichloro-2-butene	mg/kg	1	<1	<1	200	0
			1,2-dibromo-3-chloropropane	mg/kg	0.1	<0.1	<0.1	200	0
			Hexachlorobutadiene	mg/kg	0.1	<0.1	<0.1	200	0
		Halogenated	Chlorobenzene	mg/kg	0.1	<0.1	<0.1	200	0
		Aromatics	Bromobenzene	mg/kg	0.1	0	0	200	0
			2-chlorotoluene	mg/kg	0.1	<0.1	<0.1	200	0
			4-chlorotoluene	mg/kg	0.1	<0.1	<0.1	200	0
			1,3-dichlorobenzene	mg/kg	0.1	<0.1	<0.1	200	0
			1,4-dichlorobenzene	mg/kg	0.1	<0.1	<0.1	200	0
			1,2-dichlorobenzene	mg/kg	0.1	<0.1	<0.1	200	0
			1,2,4-trichlorobenzene	mg/kg	0.1	<0.1	<0.1	200	0
			1,2,3-trichlorobenzene	mg/kg	0.1	<0.1	<0.1	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	4.3	4.2	50	4
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	5.3	5.2	50	2
			d8-toluene (Surrogate)	mg/kg	-	4.2	4.1	50	2
			Bromofluorobenzene (Surrogate)	mg/kg	-	4.6	4.6	50	0
		Trihalomethan	Chloroform	mg/kg	0.1	<0.1	<0.1	200	0
		es	Bromodichloromethane	mg/kg	0.1	<0.1	<0.1	200	0
			Chlorodibromomethane	mg/kg	0.1	<0.1	<0.1	200	0
			Bromoform	mg/kg	0.1	0.02	0.02	200	0
olatile Petroleum	Hydrocarbons in Soi	1				Metho	d: ME-(AU)-[E	NVJAN433/A	N434/AN
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD
SE150044.001	LB097118.014		TRH C6-C10	mg/kg	25	<25	<25	200	0
			TRH C6-C9	mg/kg	20	<20	<20	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	3.7	3.6	30	2
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.1	4.2	30	2
			d8-toluene (Surrogate)	mg/kg	-	3.7	3.8	30	3
			Bromofluorobenzene (Surrogate)	mg/kg	-	3.8	3.7	30	2
		VPH F Bands	Benzene (F0)	mg/kg	0.1	<0.1	<0.1	200	0
			TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	200	0

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Mercury in Soil					N	lethod: ME-(A	U)-[ENV]AN312
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB097369.002	Mercury	mg/kg	0.01	0.18	0.2	70 - 130	92

OC Pesticio	les in	Soil
--------------------	--------	------

C Pesticides in Soil					Method:	ME-(AU)-[EN	/JAN400/AN4
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery 9
LB097123.002	Heptachlor	mg/kg	0.1	0.2	0.2	60 - 140	85
	Aldrin	mg/kg	0.1	0.2	0.2	60 - 140	93
	Delta BHC	mg/kg	0.1	0.2	0.2	60 - 140	97
	Dieldrin	mg/kg	0.2	<0.2	0.2	60 - 140	91
	Endrin	mg/kg	0.2	<0.2	0.2	60 - 140	88
	p,p'-DDT	mg/kg	0.1	0.2	0.2	60 - 140	81
Surroga	ates Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.15	0.15	40 - 130	97
P Pesticides in Soil					Method:	ME-(AU)-[EN	/JAN400/AN4
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery
LB097123.002	Dichlorvos	mg/kg	0.5	2.0	2	60 - 140	101
	Diazinon (Dimpylate)	mg/kg	0.5	2.0	2	60 - 140	100
	Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	2.1	2	60 - 140	105
	Ethion	mg/kg	0.2	2.0	2	60 - 140	102
Surroga	ates 2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.5	40 - 130	96
	d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	40 - 130	96
AH (Polynuclear Aromatic	Hydrocarbons) in Soil				I	Nethod: ME-(A	U)-[ENV]AN4
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery
LB097123.002	Naphthalene	mg/kg	0.1	4.9	4	60 - 140	121
	Acenaphthylene	mg/kg	0.1	4.8	4	60 - 140	120
	Acenaphthene	mg/kg	0.1	4.7	4	60 - 140	118
	Phenanthrene	mg/kg	0.1	4.6	4	60 - 140	116
	Anthracene	mg/kg	0.1	5.2	4	60 - 140	129
	Fluoranthene	mg/kg	0.1	4.6	4	60 - 140	115
	Pyrene	mg/kg	0.1	4.7	4	60 - 140	117
	Benzo(a)pyrene	mg/kg	0.1	5.1	4	60 - 140	129
Surroga	ates d5-nitrobenzene (Surrogate)	mg/kg	-	0.4	0.5	40 - 130	80
	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.5	40 - 130	82
	d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	40 - 130	100
CBs in Soil					Method:	ME-(AU)-[EN	/JAN400/AN4
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery
LB097123.002	Arochlor 1260	mg/kg	0.2	0.4	0.4	60 - 140	109

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES

Total Recoverable Metals in	Soil/Waste Solids/Materials by ICPOES				Method:	ME-(AU)-[EN	/JAN040/AN320
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB097266.002	Arsenic, As	mg/kg	3	50	50	80 - 120	99
	Cadmium, Cd	mg/kg	0.3	50	50	80 - 120	99
	Chromium, Cr	mg/kg	0.3	50	50	80 - 120	100
	Copper, Cu	mg/kg	0.5	47	50	80 - 120	95
	Lead, Pb	mg/kg	1	49	50	80 - 120	99
	Nickel, Ni	mg/kg	0.5	50	50	80 - 120	101
	Zinc, Zn	mg/kg	0.5	49	50	80 - 120	98
LB097267.002	Arsenic, As	mg/kg	3	49	50	80 - 120	97
	Cadmium, Cd	mg/kg	0.3	50	50	80 - 120	100
	Chromium, Cr	mg/kg	0.3	49	50	80 - 120	98
	Copper, Cu	mg/kg	0.5	47	50	80 - 120	95
	Lead, Pb	mg/kg	1	49	50	80 - 120	99
	Nickel, Ni	mg/kg	0.5	49	50	80 - 120	98
	Zinc, Zn	mg/kg	0.5	50	50	80 - 120	100
Trace Metals (Dissolved) in V	etals (Dissolved) in Water by ICPMS					lethod: ME-(A	U)-[ENV]AN318
Comple Number	Deveneter	Unite					

Sample Number	Parameter	Units	LOR
Sample Number	Farallieter	Ullits	LUK

SE150039 R0

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Trace Metals (Diss					_)-[ENV]AN
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery
_B097287.002		Arsenic, As	μg/L	1	18	20	80 - 120	92
		Cadmium, Cd	μg/L	0.1	19	20	80 - 120	95
		Chromium, Cr	μg/L	1	19	20	80 - 120	97
		Copper, Cu	μg/L	1	20	20	80 - 120	100
		Lead, Pb	µg/L	1	19	20	80 - 120	97
		Nickel, Ni	µg/L	1	20	20	80 - 120	98
		Zinc, Zn	µg/L	5	19	20	80 - 120	96
	arable Hydrocarbo	ne) in Soil					Method: ME-(AU	
•	· ·	·		1.00				
Sample Number		Parameter	Units	LOR	Result	Expected		Recovery
LB097123.002		TRH C10-C14	mg/kg	20	41	40	60 - 140	103
		TRH C15-C28	mg/kg	45	<45	40	60 - 140	105
		TRH C29-C36	mg/kg	45	<45	40	60 - 140	88
	TRH F Bands	TRH >C10-C16 (F2)	mg/kg	25	42	40	60 - 140	105
		TRH >C16-C34 (F3)	mg/kg	90	<90	40	60 - 140	100
		TRH >C34-C40 (F4)	mg/kg	120	<120	20	60 - 140	85
_B097249.002		TRH C10-C14	mg/kg	20	41	40	60 - 140	103
		TRH C15-C28	mg/kg	45	<45	40	60 - 140	105
		TRH C29-C36	mg/kg	45	<45	40	60 - 140	88
	TRH F Bands	TRH >C10-C16 (F2)	mg/kg	25	42	40	60 - 140	105
		TRH >C16-C34 (F3)	mg/kg	90	<90	40	60 - 140	100
		TRH >C34-C40 (F4)	mg/kg	120	<120	20	60 - 140	85
•	erable Hydrocarbo	·					Method: ME-(AU	
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recover
_B097122.002		TRH C10-C14	μg/L	50	1300	1200	60 - 140	109
		TRH C15-C28	µg/L	200	1500	1200	60 - 140	126
		TRH C29-C36	µg/L	200	1600	1200	60 - 140	137
	TRH F Bands	TRH >C10-C16 (F2)	µg/L	60	1400	1200	60 - 140	117
		TRH >C16-C34 (F3)	μg/L	500	1700	1200	60 - 140	138
		TRH >C34-C40 (F4)	μg/L	500	830	600	60 - 140	138
/OC's in Soil			- 10 ⁻					
							ME-(AU)-[ENV]	
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recover
LB097118.002	Halogenated	1,1-dichloroethene	mg/kg	0.1	2.1	2.56	60 - 140	83
	Aliphatics	1,2-dichloroethane	mg/kg	0.1	2.9	2.56	60 - 140	113
		Trichloroethene (Trichloroethylene -TCE)	mg/kg	0.1	2.8	2.56	60 110	110
						2.00	60 - 140	127
	Halogenated	Chlorobenzene	mg/kg	0.1	3.3	2.56	60 - 140	
	Halogenated Monocyclic			0.1	3.3 2.4			84
		Chlorobenzene	mg/kg mg/kg		2.4	2.56 2.9	60 - 140 60 - 140	84 101
	Monocyclic	Chlorobenzene Benzene Toluene	mg/kg mg/kg mg/kg	0.1 0.1	2.4 2.9	2.56 2.9 2.9	60 - 140 60 - 140 60 - 140	101
	Monocyclic	Chlorobenzene Benzene Toluene Ethylbenzene	mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1	2.4 2.9 3.2	2.56 2.9 2.9 2.9	60 - 140 60 - 140 60 - 140 60 - 140	101 112
	Monocyclic	Chlorobenzene Benzene Toluene Ethylbenzene m/p-xylene	mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.2	2.4 2.9 3.2 6.5	2.56 2.9 2.9 2.9 5.8	60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	101 112 112
	Monocyclic Aromatic	Chlorobenzene Benzene Toluene Ethylbenzene m/p-xylene o-xylene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.2 0.1	2.4 2.9 3.2 6.5 3.1	2.56 2.9 2.9 2.9 5.8 2.9	60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	101 112 112 108
	Monocyclic	Chlorobenzene Benzene Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.2 0.1 -	2.4 2.9 3.2 6.5 3.1 3.7	2.56 2.9 2.9 2.9 5.8 2.9 5.8 2.9 5	60 - 140 60 - 140	101 112 112 108 74
	Monocyclic Aromatic	Chlorobenzene Benzene Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.2 0.1 -	2.4 2.9 3.2 6.5 3.1 3.7 4.6	2.56 2.9 2.9 2.9 5.8 2.9 5 5 5 5	60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	101 112 112 108 74 92
	Monocyclic Aromatic	Chlorobenzene Benzene Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.2 0.1 - -	2.4 2.9 3.2 6.5 3.1 3.7 4.6 4.1	2.56 2.9 2.9 5.8 2.9 5.8 2.9 5 5 5 5 5	60 - 140 60 - 140	101 112 112 108 74 92 81
	Monocyclic Aromatic Surrogates	Chlorobenzene Benzene Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.2 0.1 - - -	2.4 2.9 3.2 6.5 3.1 3.7 4.6 4.1 4.9	2.56 2.9 2.9 5.8 2.9 5 5 5 5 5 5 5 5	60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	101 112 112 108 74 92 81 97
	Monocyclic Aromatic Surrogates Trihalomethan	Chlorobenzene Benzene Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Chloroform	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.2 0.1 - - - 0.1	2.4 2.9 3.2 6.5 3.1 3.7 4.6 4.1 4.9 2.1	2.56 2.9 2.9 5.8 2.9 5 5 5 5 5 5 5 5 5 5 5 5 5	60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	101 112 112 108 74 92 81 97 82
_B097228.002	Monocyclic Aromatic Surrogates Trihalomethan Halogenated	Chlorobenzene Benzene Toluene Ethylbenzene m/p-xylene o-xylene d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) Chloroform 1,1-dichloroethene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.2 0.1 - - - 0.1 0.1 0.1	2.4 2.9 3.2 6.5 3.1 3.7 4.6 4.1 4.9 2.1 2.5	2.56 2.9 2.9 2.9 5.8 2.9 5 5 5 5 5 5 2.56 2.56	60 - 140 60 - 140	101 112 112 108 74 92 81 97 82 96
.B097228.002	Monocyclic Aromatic Surrogates Trihalomethan	Chlorobenzene Benzene Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) Bromofluorobenzene (Surrogate) Bromofluorobenzene (Surrogate) Chloroform 1,1-dichloroethane	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.2 0.1 - - 0.1 0.1 0.1 0.1	2.4 2.9 3.2 6.5 3.1 3.7 4.6 4.1 4.9 2.1 2.5 3.0	2.56 2.9 2.9 5.8 2.9 5 5 5 5 5 5 5 2.56 2.56 2.56	60 - 140 60 - 140	101 112 108 74 92 81 97 82 96 119
_B097228.002	Monocyclic Aromatic Surrogates Trihalomethan Halogenated	Chlorobenzene Benzene Toluene Ethylbenzene m/p-xylene o-xylene d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) Chloroform 1,1-dichloroethene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.2 0.1 - - - 0.1 0.1 0.1	2.4 2.9 3.2 6.5 3.1 3.7 4.6 4.1 4.9 2.1 2.5 3.0 1.8	2.56 2.9 2.9 2.9 5.8 2.9 5 5 5 5 5 5 2.56 2.56	60 - 140 60 - 140	101 112 112 108 74 92 81 97 82 96
.B097228.002	Monocyclic Aromatic Surrogates Trihalomethan Halogenated	Chlorobenzene Benzene Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) Bromofluorobenzene (Surrogate) Bromofluorobenzene (Surrogate) Chloroform 1,1-dichloroethane	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.2 0.1 - - 0.1 0.1 0.1 0.1	2.4 2.9 3.2 6.5 3.1 3.7 4.6 4.1 4.9 2.1 2.5 3.0	2.56 2.9 2.9 5.8 2.9 5 5 5 5 5 5 5 2.56 2.56 2.56	60 - 140 60 - 140	101 112 108 74 92 81 97 82 96 119
.B097228.002	Monocyclic Aromatic Surrogates Trihalomethan Halogenated Aliphatics	Chlorobenzene Benzene Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Chloroform 1,1-dichloroethane 1,2-dichloroethane Trichloroethane Trichloroethane Trichloroethane	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.2 0.1 - - 0.1 0.1 0.1 0.1 0.1 0.1	2.4 2.9 3.2 6.5 3.1 3.7 4.6 4.1 4.9 2.1 2.5 3.0 1.8	2.56 2.9 2.9 5.8 2.9 5 5 5 5 5 5 2.56 2.56 2.56 2.56	60 - 140 60 - 140	101 112 108 74 92 81 97 82 96 119 70
_B097228.002	Monocyclic Aromatic Surrogates Trihalomethan Halogenated Aliphatics Halogenated	Chlorobenzene Benzene Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Chloroform 1,1-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloroethane Chloroform 1,1-dichloroethane Chlorobenzene Chlorobenzene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.2 0.1 - - 0.1 0.1 0.1 0.1 0.1 0.1 0.1	2.4 2.9 3.2 6.5 3.1 3.7 4.6 4.1 4.1 4.9 2.1 2.5 3.0 1.8 2.8	2.56 2.9 2.9 5.8 2.9 5 5 5 5 5 5 5 2.56 2.56 2.56 2.56 2.56	60 - 140 60 - 140	101 112 108 74 92 81 97 82 96 119 70 109
_B097228.002	Monocyclic Aromatic Surrogates Trihalomethan Halogenated Aliphatics Halogenated Monocyclic	Chlorobenzene Benzene Toluene Ethylbenzene m/p-xylene o-xylene datoromethane (Surrogate) dd-1,2-dichloroethane (Surrogate) Bromofluorobenzene (Surrogate) Bromofluorobenzene (Surrogate) Chloroform 1,1-dichloroethane Trichloroethane Trichloroethane Chlorobenzene Benzene	mg/kg	0.1 0.1 0.2 0.1 - - 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	2.4 2.9 3.2 6.5 3.1 3.7 4.6 4.1 4.9 2.1 2.5 3.0 1.8 2.8 3.2	2.56 2.9 2.9 5.8 2.9 5 5 5 5 5 5 5 5 5 5 5 2.56 2.56 2.56 2.	60 - 140 60 - 140	101 112 108 74 92 81 97 82 96 119 70 109 112
_B097228.002	Monocyclic Aromatic Surrogates Trihalomethan Halogenated Aliphatics Halogenated Monocyclic	Chlorobenzene Benzene Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Chloroform 1,1-dichloroethane Trichloroethane Trichloroethane Chlorobenzene Benzene Toluene	mg/kg	0.1 0.1 0.2 0.1 - - 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	2.4 2.9 3.2 6.5 3.1 3.7 4.6 4.1 4.9 2.1 2.5 3.0 1.8 2.8 3.2 2.5	2.56 2.9 2.9 5.8 2.9 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	60 - 140 60 - 140	101 112 108 74 92 81 97 82 96 119 70 109 112 86
LB097228.002	Monocyclic Aromatic Surrogates Trihalomethan Halogenated Aliphatics Halogenated Monocyclic	Chlorobenzene Benzene Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Chloroform 1,1-dichloroethene 1,2-dichloroethane Trichloroethene (Trichloroethylene -TCE) Chlorobenzene Benzene Toluene Ethylbenzene m/p-xylene	mg/kg	0.1 0.1 0.2 0.1 - - 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	2.4 2.9 3.2 6.5 3.1 3.7 4.6 4.1 4.9 2.1 2.5 3.0 1.8 2.8 3.2 2.5 2.6 5.2	2.56 2.9 2.9 5.8 2.9 5 5 5 5 5 5 2.56 2.56 2.56 2.56 2.56 2.	60 - 140 60 - 140	101 112 108 74 92 81 97 82 96 119 70 109 119 70 0 109 86 89
_B097228.002	Monocyclic Aromatic Surrogates Trihalomethan Halogenated Aliphatics Halogenated Monocyclic Aromatic	Chlorobenzene Benzene Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Chloroform 1,1-dichloroethane Trichloroethane Trichloroethane Chlorobenzene Benzene Toluene Ethylbenzene m/p-xylene o-xylene	mg/kg	0.1 0.1 0.2 0.1 - - - 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	2.4 2.9 3.2 6.5 3.1 3.7 4.6 4.1 4.9 2.1 2.5 3.0 1.8 2.8 3.2 2.5 2.6 5.2 2.8	2.56 2.9 2.9 5.8 2.9 5 5 5 5 5 5 2.56 2.56 2.56 2.56 2.56 2.	60 - 140 60 - 140	101 112 108 74 92 81 97 82 96 119 70 0 109 112 86 89 89 95
_B097228.002	Monocyclic Aromatic Surrogates Trihalomethan Halogenated Aliphatics Halogenated Monocyclic	Chlorobenzene Benzene Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) d8-toluene (Surrogate) Chloroform 1,1-dichloroethane 1,2-dichloroethane Trichloroethane 1,2-dichloroethane Trichloroethane Trichloroethane Chlorobenzene Benzene Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate)	mg/kg	0.1 0.1 0.2 0.1 - - 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	2.4 2.9 3.2 6.5 3.1 3.7 4.6 4.1 4.9 2.1 2.5 3.0 1.8 2.8 3.2 2.5 2.6 5.2 2.8 4.7	2.56 2.9 2.9 5.8 2.9 5 5 5 5 5 5 2.56 2.56 2.56 2.56 2.56 2.	60 - 140 60 - 140	101 112 108 74 92 81 97 82 96 119 70 109 112 86 89 89 95 94
_B097228.002	Monocyclic Aromatic Surrogates Trihalomethan Halogenated Aliphatics Halogenated Monocyclic Aromatic	Chlorobenzene Benzene Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Chloroform 1,1-dichloroethane Trichloroethane Trichloroethane Trichloroethane Trichloroethane Tholuene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate)	mg/kg	0.1 0.1 0.2 0.1 - - 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	2.4 2.9 3.2 6.5 3.1 3.7 4.6 4.1 4.9 2.1 2.5 3.0 1.8 2.8 3.2 2.5 2.6 5.2 2.8 4.7 6.0	2.56 2.9 2.9 5.8 2.9 5 5 5 5 5 5 5 2.56 2.56 2.56 2.56 2.56	60 - 140 60 - 140	101 112 108 74 92 81 97 82 96 119 70 109 119 70 109 112 86 89 89 95 94
.B097228.002	Monocyclic Aromatic Surrogates Trihalomethan Halogenated Aliphatics Halogenated Monocyclic Aromatic	Chlorobenzene Benzene Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Chloroform 1,1-dichloroethane Trichloroethane Trichloroethane Trichloroethane Tholuene Ethylbenzene Benzene Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane	mg/kg mg/kg	0.1 0.1 0.2 0.1 - - 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	2.4 2.9 3.2 6.5 3.1 3.7 4.6 4.1 4.9 2.1 2.5 3.0 1.8 2.8 3.2 2.5 2.6 5.2 2.8 4.7 6.0 4.0	2.56 2.9 2.9 5.8 2.9 5 5 5 5 5 5 5 5 5 5 2.56 2.56 2.56 2.56	60 - 140 60 - 140	101 112 108 74 92 81 97 82 96 119 70 109 119 70 109 112 86 89 89 95 94 121 79
LB097228.002	Monocyclic Aromatic Surrogates Trihalomethan Halogenated Aliphatics Halogenated Monocyclic Aromatic	Chlorobenzene Benzene Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Chloroform 1,1-dichloroethane Trichloroethane Trichloroethane Trichloroethane Trichloroethane Tholuene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate)	mg/kg	0.1 0.1 0.2 0.1 - - 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	2.4 2.9 3.2 6.5 3.1 3.7 4.6 4.1 4.9 2.1 2.5 3.0 1.8 2.8 3.2 2.5 2.6 5.2 2.8 4.7 6.0	2.56 2.9 2.9 5.8 2.9 5 5 5 5 5 5 5 2.56 2.56 2.56 2.56 2.56	60 - 140 60 - 140	101 112 108 74 92 81 97 82 96 119 70 109 119 70 86 89 89 95 94

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Comple Number		Deveneter	Herte	LOR	Decult	Evenented	Critorio	Decourse
Sample Number		Parameter	Units		Result	Expected	Criteria %	Recovery %
LB097140.002	Monocyclic	Benzene	μg/L	0.5	51	45.45	60 - 140	112
	Aromatic	Toluene	μg/L	0.5	51	45.45	60 - 140	112
		Ethylbenzene	μg/L	0.5	51	45.45	60 - 140	112
		m/p-xylene	µg/L	1	100	90.9	60 - 140	113
		o-xylene	μg/L	0.5	51	45.45	60 - 140	112
	Surrogates	Dibromofluoromethane (Surrogate)	µg/L	-	4.8	5	60 - 140	97
		d4-1,2-dichloroethane (Surrogate)	μg/L	-	4.8	5	60 - 140	96
		d8-toluene (Surrogate)	μg/L	-	4.8	5	60 - 140	96
		Bromofluorobenzene (Surrogate)	μg/L	-	5.4	5	60 - 140	107
/olatile Petroleum	Hydrocarbons in §	Soil				lethod: ME-(Al	J)-[ENV]AN43	3/AN434/AN4
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB097118.002		TRH C6-C10	mg/kg	25	<25	24.65	60 - 140	91
		TRH C6-C9	mg/kg	20	<20	23.2	60 - 140	81
	Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	4.6	5	60 - 140	93
		d4-1,2-dichloroethane (Surrogate)	mg/kg	-	5.1	5	60 - 140	101
		d8-toluene (Surrogate)	mg/kg	-	4.8	5	60 - 140	96
		Bromofluorobenzene (Surrogate)	mg/kg	-	5.5	5	60 - 140	109
	VPH F Bands	TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	7.25	60 - 140	95
LB097228.002		TRH C6-C10	mg/kg	25	<25	24.65	60 - 140	99
		TRH C6-C9	mg/kg	20	20	23.2	60 - 140	88
	Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	5.2	5	60 - 140	104
		d4-1,2-dichloroethane (Surrogate)	mg/kg	-	6.1	5	60 - 140	122
		d8-toluene (Surrogate)	mg/kg	-	6.4	5	60 - 140	127
		Bromofluorobenzene (Surrogate)	mg/kg	-	6.0	5	60 - 140	121
	VPH F Bands	TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	7.25	60 - 140	101
/olatile Petroleum	Hydrocarbons in \	Vater				lethod: ME-(Al	J)-[ENV]AN43	3/AN434/AN4
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB097140.002		TRH C6-C10	µg/L	50	940	946.63	60 - 140	100
		TRH C6-C9	μg/L	40	770	818.71	60 - 140	94
	Surrogates	Dibromofluoromethane (Surrogate)	μg/L	-	4.8	5	60 - 140	97
		d4-1,2-dichloroethane (Surrogate)	μg/L	-	4.8	5	60 - 140	96
		d8-toluene (Surrogate)	μg/L	-	4.8	5	60 - 140	96
		Bromofluorobenzene (Surrogate)	μg/L	-	5.4	5	60 - 140	107
			-9°=			-		

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury (dissolved	d) in Water					Method: ME	-(AU)-[ENV	JAN311/AN312
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE150019.056	LB097282.004	Mercury	mg/L	0.0001	0.0083	-0.051	0.008	105

Mercury in Soil

Mercury in Soil				Meth	od: ME-(Al	J)-[ENV]AN312		
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE150032.034	LB097369.004	Mercury	mg/kg	0.01	0.17	0.01296432023	0.2	79

QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery
E150032.030	LB097266.004		Arsenic, As	mg/kg	3	45	4.65393441650	50	81
			Cadmium, Cd	mg/kg	0.3	43	0.1061703125	50	86
			Chromium, Cr	mg/kg	0.3	51	6.70895655439	50	88
			Copper, Cu	mg/kg	0.5	51	10.47849106578	50	80
			Lead, Pb	mg/kg	1	54	13.7265388796€	50	80
			Nickel, Ni	mg/kg	0.5	49	4.31906783681	50	89
			Zinc, Zn	mg/kg	0.5	59	16.89501778937	50	85
E150039.005	LB097267.004		Arsenic, As	mg/kg	3	50	7	50	87
			Cadmium, Cd	mg/kg	0.3	43	0.9	50	85
			Chromium, Cr	mg/kg	0.3	56	15	50	81
			Copper, Cu	mg/kg	0.5	81	46	50	70 ④
			Lead, Pb	mg/kg	1	320	360	50	-67 ④
			Nickel, Ni	mg/kg	0.5	47	5.9	50	82
			Zinc, Zn	mg/kg	0.5	380	440	50	-129 ④
maa Matala (Di	eachied) in Meter by								
	ssolved) in Water by					_		od: ME-(AU	
C Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recover
E150022.001	LB097287.004		Arsenic, As	µg/L	1	21	<1	20	105
			Cadmium, Cd	µg/L	0.1	18	<0.1	20	91
			Chromium, Cr	µg/L	1	18	<1	20	91
			Copper, Cu	µg/L	1	17	<1	20	84
			Lead, Pb	µg/L	1	19	<1	20	96
			Nickel, Ni	µg/L	1	18	<1	20	87
			Zinc, Zn	µg/L	5	77	61	20	80
RH (Total Reco	verable Hydrocarbon	s) in Soil					Meth	od: ME-(AU)-[ENV]AN4
QC Sample	Sample Number		Parameter	Units	LOR	Original	Spike I	Recovery%	6
SE150118.001	LB097249.018		TRH C10-C14			0	40		
				mg/kg	20	0	40	88	
SE150118.001	2007240.010			mg/kg		0	40	91	
SE150118.001	2007240.010		TRH C15-C28	mg/kg	45		40	91	
SE150118.001	2007240.010		TRH C15-C28 TRH C29-C36	mg/kg mg/kg	45 45	0			_
SE150118.001	22007240.010		TRH C15-C28 TRH C29-C36 TRH C37-C40	mg/kg mg/kg mg/kg	45 45 100	0 0 0	40 40	91 98	
SE150118.001	22007240.010		TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total	mg/kg mg/kg mg/kg mg/kg	45 45 100 110	0 0 0 0	40 40 -	91 98 -	
SE150118.001		TRH F Bands	TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH C10-C40 Total	mg/kg mg/kg mg/kg mg/kg mg/kg	45 45 100 110 210	0 0 0 0	40 40 - - -	91 98 - - -	
SE150118.001		TRH F Bands	TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH C10-C40 Total TRH >C10-C16 (F2)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	45 45 100 110 210 25	0 0 0 0 0	40 40 - - - 40	91 98 - - - 92	
SE150118.001		TRH F Bands	TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH C10-C40 Total TRH >C10-C40 (F2) TRH >C10-C16 (F2) - Naphthalene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	45 45 100 110 210 25 25 25	0 0 0 0 0 0 0	40 40 - - - 40 -	91 98 - - - 92 -	
SE150118.001		TRH F Bands	TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH C10-C40 Total TRH >C10-C16 (F2) TRH >C10-C16 (F2) - Naphthalene TRH >C10-C34 (F3)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	45 45 100 110 210 25 25 90	0 0 0 0 0 0 0 0 0	40 40 - - 40 40	91 98 - - - 92	
		TRH F Bands	TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH C10-C40 Total TRH >C10-C40 (F2) TRH >C10-C16 (F2) - Naphthalene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	45 45 100 110 210 25 25 25	0 0 0 0 0 0 0	40 40 - - 40 - 40 - 40 -	91 98 - - 92 - 98 -	
OC's in Soll			TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH C10-C40 Total TRH >C10-C40 Total TRH >C10-C16 (F2) TRH >C10-C16 (F2) - Naphthalene TRH >C16-C34 (F3) TRH >C34-C40 (F4)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	45 45 100 210 25 25 90 120	0 0 0 0 0 0 0 0	40 40 - - 40 - 40 - Method: ME-	91 98 - - 92 - 98 - - (AU)-[ENV	
<mark>DC's in Soli</mark> QC Sample	Sample Number		TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH C10-C40 Total TRH >C10-C40 Total TRH >C10-C16 (F2) TRH >C10-C16 (F2) - Naphthalene TRH >C16-C34 (F3) TRH >C34-C40 (F4)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	45 45 100 110 25 25 90 120 LOR	0 0 0 0 0 0 0 0 0 0 8 8 8 8	40 40 - - 40 - 40 - Method: ME- Original	91 98 - - 92 - 98 -	AN433/AN4 Recover
DC's in Soll			TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH c10-C40 Total TRH >C10-C40 Total TRH >C10-C16 (F2) TRH >C10-C16 (F2) - Naphthalene TRH >C10-C34 (F3) TRH >C3-C40 (F4)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	45 45 100 110 25 25 90 120 LOR 0.1	0 0 0 0 0 0 0 0 0 8 8 8 8 8 8 8 8 8 8 8	40 40 - - 40 - 40 - Method: ME- Original <0.1	91 98 - - 92 - 98 - - (AU)-[ENV	
<mark>DC's in Soll</mark> QC Sample	Sample Number		TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH C10-C40 Total TRH >C10-C40 Total TRH >C10-C16 (F2) TRH >C10-C16 (F2) - Naphthalene TRH >C16-C34 (F3) TRH >C34-C40 (F4)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	45 45 100 110 25 25 90 120 LOR	0 0 0 0 0 0 0 0 0 0 8 8 8 8	40 40 - - 40 - 40 - Method: ME- Original	91 98 - - 92 - 98 - - (AU)-[ENV	Recover
<mark>DC's in Soll</mark> QC Sample	Sample Number		TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH c10-C40 Total TRH >C10-C40 Total TRH >C10-C16 (F2) TRH >C10-C16 (F2) - Naphthalene TRH >C10-C34 (F3) TRH >C3-C40 (F4)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	45 45 100 110 25 25 90 120 LOR 0.1	0 0 0 0 0 0 0 0 0 8 8 8 8 8 8 8 8 8 8 8	40 40 - - 40 - 40 - Method: ME- Original <0.1	91 98 - - 92 - 98 - (AU)-[ENV] Spike -	Recover
<mark>DC's in Soll</mark> QC Sample	Sample Number		TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH >C10-C40 Total TRH >C10-C40 Total TRH >C10-C16 (F2) TRH >C10-C16 (F2) TRH >C10-C16 (F2) TRH >C10-C34 (F3) TRH >C3-C40 (F4)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	45 45 100 110 25 25 90 120 LOR 0.1 0.1	0 0 0 0 0 0 0 0 8 8 8 8 8 8 8 8 8 9 8 9	40 40 - - 40 - 40 - Mathod: ME- Original <0.1 <0.1	91 98 - 92 - 98 - (AU)-[ENV] Spike -	Recover
<mark>DC's in Soll</mark> QC Sample	Sample Number		TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH >C10-C40 Total TRH >C10-C40 Total TRH >C10-C16 (F2) TRH >C10-C16 (F2) TRH >C10-C16 (F2) TRH >C10-C16 (F3) TRH >C16-C34 (F3) TRH >C34-C40 (F4) Parameter 2,2-dichloropropane 1,2-dichloropropane cis-1,3-dichloropropene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	45 45 100 110 25 25 90 120 LOR 0.1 0.1 0.1	0 0 0 0 0 0 0 0 0 8 8 8 8 8 9 1 4 0.1 4 0.1	40 40 - - 40 - Mathod: ME- Original <0.1 <0.1 <0.1	91 98 - 92 - 98 - (AU)-[ENV] Spike -	Recover
<mark>DC's in Soll</mark> QC Sample	Sample Number		TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH >C10-C40 Total TRH >C10-C40 Total TRH >C10-C16 (F2) TRH >C10-C16 (F2) TRH >C10-C16 (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4) Parameter 2,2-dichloropropane 1,2-dichloropropane cis-1,3-dichloropropene trans-1,3-dichloropropene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	45 45 100 110 25 25 90 120 LOR 0.1 0.1 0.1 0.1 0.1	0 0 0 0 0 0 0 0 0 0 8 8 8 8 8 8 9 7 8 9 7 8 9 7 8 9 7 9 7 9	40 40 - - 40 - Method: ME- Original <0.1 <0.1 <0.1 <0.1 <0.1	91 98 - - 92 - 98 - (AU)-[ENV] Spike - -	Recover
<mark>DC's in Soll</mark> QC Sample	Sample Number	Fumigants	TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH >C10-C40 Total TRH >C10-C40 Total TRH >C10-C16 (F2) TRH >C10-C16 (F2) TRH >C10-C16 (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4) Parameter 2,2-dichloropropane 1,2-dichloropropane cis-1,3-dichloropropene 1,2-dibromoethane (EDB)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	45 45 100 110 25 25 90 120 LOR 0.1 0.1 0.1 0.1 0.1 0.1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	40 40 - - 40 - Method: ME- Original <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	91 98 - - 92 - 98 - (AU)-[ENV] Spike - - - - -	Recover
<mark>DC's in Soll</mark> QC Sample	Sample Number	Fumigants	TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH >C10-C40 (F2) TRH >C10-C40 (F2) TRH >C10-C40 (F4) Parameter 2,2-dichloropropane 1,2-dichloropropane cis-1,3-dichloropropene trans-1,3-dichloropropene 1,2-dibromoethane (EDB) Dichlorodifluoromethane (CFC-12)	mg/kg	45 45 100 110 25 25 90 120 LOR 0.1 0.1 0.1 0.1 0.1 0.1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	40 40 - - 40 - Method: ME- Original <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <1	91 98 - - 92 - 98 - (AU)-[ENV] Spike - - - - - -	Recover
D <mark>C's in Soll</mark> IC Sample	Sample Number	Fumigants	TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH C10-C36 Total TRH C10-C40 Total TRH >C10-C16 (F2) TRH >C10-C16 (F2) TRH >C10-C16 (F2) TRH >C10-C36 (F3) TRH >C34-C40 (F4) Parameter 2,2-dichloropropane cis-1,3-dichloropropene trans-1,3-dichloropropene 1,2-dibromoethane (EDB) Dichlorodifluoromethane	mg/kg mg/kg	45 45 100 110 25 25 90 120 LOR 0.1 0.1 0.1 0.1 0.1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	40 40 - - 40 - - Method: ME- Original <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <1 <1	91 98 - - 92 - 98 98 - - (AU)-[ENV] Spike - - - - - - - - - - - - - -	Recover

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

	ontinued)					_]AN433/AN4
C Sample	Sample Numbe	r	Parameter	Units	LOR	Result	Original	Spike	Recover
E150039.010	LB097228.004	Halogenated	Trichlorofluoromethane	mg/kg	1	<1	<1	-	-
		Aliphatics	Iodomethane	mg/kg	5	<5	<5	-	-
			1,1-dichloroethene	mg/kg	0.1	2.0	<0.1	2.56	79
			Dichloromethane (Methylene chloride)	mg/kg	0.5	<0.5	<0.5	-	-
			Allyl chloride	mg/kg	0.1	<0.1	<0.1	-	-
			trans-1,2-dichloroethene	mg/kg	0.1	<0.1	<0.1	-	-
			1,1-dichloroethane	mg/kg	0.1	<0.1	<0.1	-	-
			cis-1,2-dichloroethene	mg/kg	0.1	<0.1	<0.1	-	-
			Bromochloromethane	mg/kg	0.1	<0.1	<0.1	-	-
			1,2-dichloroethane	mg/kg	0.1	2.5	<0.1	2.56	96
			1,1,1-trichloroethane	mg/kg	0.1	<0.1	<0.1	-	-
			1,1-dichloropropene	mg/kg	0.1	<0.1	<0.1	-	-
			Carbon tetrachloride	mg/kg	0.1	<0.1	<0.1	-	-
			Dibromomethane	mg/kg	0.1	<0.1	<0.1	-	
			Trichloroethene (Trichloroethylene -TCE)	mg/kg	0.1	1.6	<0.1	2.56	61
			1,1,2-trichloroethane		0.1	<0.1	<0.1	-	
				mg/kg				-	
			1,3-dichloropropane	mg/kg	0.1	<0.1	<0.1		
			Tetrachloroethene (Perchloroethylene,PCE)	mg/kg	0.1	<0.1	<0.1	-	-
		1,1,1,2-tetrachloroethane	mg/kg	0.1	<0.1	<0.1	-	-	
			cis-1,4-dichloro-2-butene	mg/kg	1	<1	<1	-	-
			1,1,2,2-tetrachloroethane	mg/kg	0.1	<0.1	<0.1	-	-
			1,2,3-trichloropropane	mg/kg	0.1	<0.1	<0.1	-	-
		trans-1,4-dichloro-2-butene	mg/kg	1	<1	<1	-	-	
		1,2-dibromo-3-chloropropane	mg/kg	0.1	<0.1	<0.1	-	-	
			Hexachlorobutadiene	mg/kg	0.1	<0.1	<0.1	-	-
		Halogenated	Chlorobenzene	mg/kg	0.1	2.5	<0.1	2.56	96
		Aromatics	Bromobenzene	mg/kg	0.1	<0.1	<0.1	-	-
			2-chlorotoluene	mg/kg	0.1	<0.1	<0.1	-	-
			4-chlorotoluene	mg/kg	0.1	<0.1	<0.1	-	-
			1,3-dichlorobenzene	mg/kg	0.1	<0.1	<0.1	-	-
			1,4-dichlorobenzene	mg/kg	0.1	<0.1	<0.1	-	-
			1,2-dichlorobenzene	mg/kg	0.1	<0.1	<0.1	-	-
			1,2,4-trichlorobenzene	mg/kg	0.1	<0.1	<0.1	-	-
			1,2,3-trichlorobenzene	mg/kg	0.1	<0.1	<0.1	-	-
		Monocyclic	Benzene	mg/kg	0.1	2.6	<0.1	2.9	90
		Aromatic	Toluene	mg/kg	0.1	2.2	<0.1	2.9	75
		/ ionato	Ethylbenzene	mg/kg	0.1	2.3	<0.1	2.9	78
					0.1	4.5	<0.1	5.8	77
			m/p-xylene	mg/kg					
			o-xylene	mg/kg	0.1	2.4	<0.1	2.9	82
			Styrene (Vinyl benzene)	mg/kg	0.1	<0.1	<0.1		-
			Isopropylbenzene (Cumene)	mg/kg	0.1	<0.1	<0.1	-	-
			n-propylbenzene	mg/kg	0.1	<0.1	<0.1	-	-
			1,3,5-trimethylbenzene	mg/kg	0.1	<0.1	<0.1	-	-
			tert-butylbenzene	mg/kg	0.1	<0.1	<0.1	-	-
			1,2,4-trimethylbenzene	mg/kg	0.1	<0.1	<0.1	-	-
			sec-butylbenzene	mg/kg	0.1	<0.1	<0.1	-	-
			p-isopropyltoluene	mg/kg	0.1	<0.1	<0.1	-	-
			n-butylbenzene	mg/kg	0.1	<0.1	<0.1	-	-
		Nitrogenous	Acrylonitrile	mg/kg	0.1	<0.1	<0.1	-	-
		Compounds	2-nitropropane	mg/kg	10	<10	<10	-	-
		Oxygenated	Acetone (2-propanone)	mg/kg	10	<10	<10	-	-
		Compounds	MtBE (Methyl-tert-butyl ether)	mg/kg	0.1	<0.1	<0.1	-	-
			Vinyl acetate	mg/kg	10	<10	<10	-	-
			MEK (2-butanone)	mg/kg	10	<10	<10	-	-
			MIBK (4-methyl-2-pentanone)	mg/kg	1	<1	<1	-	-
			2-hexanone (MBK)		5	<5	<5		
		Polycyclic		mg/kg				-	-
		Polycyclic	Naphthalene	mg/kg	0.1	<0.1	<0.1		
		Sulphonated	Carbon disulfide	mg/kg	0.5	<0.5	<0.5	-	-
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	4.0	3.7	-	79
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.7	4.3	-	93
			d8-toluene (Surrogate)	mg/kg	-	4.9	4.0	-	98

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

OC's in Soil (co	ntinued)						Method: ME	-(AU)-[ENV	JAN433/AN43
QC Sample	Sample Number	r	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE150039.010	LB097228.004	Surrogates	Bromofluorobenzene (Surrogate)	mg/kg	-	4.7	3.7	-	94
		Totals	Total Xylenes*	mg/kg	0.3	6.9	<0.3	-	-
			Total BTEX	mg/kg	0.6	14	<0.6	-	-
		Trihalometha	Chloroform	mg/kg	0.1	2.5	<0.1	2.56	98
		nes	Bromodichloromethane	mg/kg	0.1	<0.1	<0.1	-	-
			Chlorodibromomethane	mg/kg	0.1	<0.1	<0.1	-	-
			Bromoform	mg/kg	0.1	<0.1	<0.1	-	-
olatile Petroleu	m Hydrocarbons in S	Soil				Meth	nod: ME-(AU)-[I	ENVJAN433	/AN434/AN41
QC Sample	Sample Number	r _	Parameter	Units	LOR	Result	Original	Spike	Recovery
SE150039.001	LB097118.004		TRH C6-C10	mg/kg	25	<25	<25	24.65	91
			TRH C6-C9	mg/kg	20	<20	<20	23.2	81
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	4.0	5.0	-	80
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.4	5.3	-	88
			d8-toluene (Surrogate)	mg/kg	-	4.4	5.1	-	87
			Bromofluorobenzene (Surrogate)	mg/kg	-	4.4	4.6	-	88
		VPH F	Benzene (F0)	mg/kg	0.1	2.4	<0.1	-	-
		Bands	TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	7.25	106
SE150039.010	LB097228.004		TRH C6-C10	mg/kg	25	<25	<25	24.65	90
			TRH C6-C9	mg/kg	20	<20	<20	23.2	78
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	4.0	3.7	-	79
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.7	3.6	-	93
			d8-toluene (Surrogate)	mg/kg	-	4.9	3.6	-	98
			Bromofluorobenzene (Surrogate)	mg/kg	-	4.7	3.7	-	94
		VPH F	Benzene (F0)	mg/kg	0.1	2.1	<0.1	-	-
		Bands	TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	7.25	113

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spike duplicates were required for this job.

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover the performance of this service.
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- ② RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ④ Recovery failed acceptance criteria due to matrix interference.
- Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- O LOR was raised due to dilution of significantly high concentration of analyte in sample.
- Image: Image:
- Recovery failed acceptance criteria due to sample heterogeneity.
- [®] LOR was raised due to high conductivity of the sample (required dilution).
- t Refer to Analytical Report comments for further information.

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service, available on request and accessible at http://www.sgs.com/en/terms-and-conditions. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained herein reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This test report shall not be reproduced, except in full.

STATEMENT OF QA/QC PERFORMANCE

CLIENT DETAILS		LABORATORY DETAI	ILS
Contact	Mariana Torres	Manager	Huong Crawford
Client	Environmental Investigations	Laboratory	SGS Alexandria Environmental
Address	Suite 6.01, 55 Miller Street NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	02 9516 0722	Telephone	+61 2 8594 0400
Facsimile	02 9516 0741	Facsimile	+61 2 8594 0499
Email	mariana.torres@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E22913 Regent St & Trafalgar St	SGS Reference	SE150233 R0
Order Number	E22913	Date Received	18 Mar 2016
Samples	29	Date Reported	30 Mar 2016

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document and was supplied by the Client. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met with the exception of the following:

DuplicateTotal Recoverable Metals in Soil/Waste Solids/Materials by ICPOES1 itemMatrix SpikeTotal Recoverable Metals in Soil/Waste Solids/Materials by ICPOES2 items

Sample counts by matrix	29 Soil	Type of documentation received	COC	
Date documentation received	18/3/2016	Samples received in good order	Yes	
Samples received without headspace	Yes	Sample temperature upon receipt	6.1°C	
Sample container provider	SGS	Turnaround time requested	Standard	
Samples received in correct containers	Yes	Sufficient sample for analysis	Yes	
Sample cooling method	Ice Bricks	Samples clearly labelled	Yes	
Complete documentation received	Yes			

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St Alexandria NSW 2015 PO Box 6432 Bourke Rd BC Alexandria NSW 2015

Australia t + Australia f +

t +61 2 8594 0400 www.sgs.com.au f +61 2 8594 0499

Member of the SGS Group

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Fibre Identification in soil Method: ME-(AU)-[ENV]AN602 Sample Name Analysis Due Analysed Sample No. QC Ref Sampled Received Extraction Due Extracted BH16 0.4-0.5 ZLB SE150233 015 LB097722 17 Mar 2016 18 Mar 2016 17 Mar 2017 23 Mar 2016 17 Mar 2017 29 Mar 2016 BH17 0.5-0.6_ZLB SE150233.016 LB097722 17 Mar 2016 18 Mar 2016 17 Mar 2017 23 Mar 2016 29 Mar 2016 17 Mar 2017 BH18 0.4-0.5 ZLB SE150233.017 LB097722 17 Mar 2016 18 Mar 2016 17 Mar 2017 23 Mar 2016 17 Mar 2017 29 Mar 2016 BH19 0.4-0.5_ZLB SE150233.018 LB097722 17 Mar 2016 18 Mar 2016 17 Mar 2017 23 Mar 2016 17 Mar 2017 29 Mar 2016 BH20 0.4-0.5 ZLB SE150233.019 LB097722 17 Mar 2016 18 Mar 2016 17 Mar 2017 23 Mar 2016 17 Mar 2017 29 Mar 2016 17 Mar 2016 29 Mar 2016 BH21 0.4-0.5_ZLB SE150233.020 LB097722 18 Mar 2016 17 Mar 2017 23 Mar 2016 17 Mar 2017 BH22 0.4-0.5 ZLB SE150233.021 LB097722 17 Mar 2016 18 Mar 2016 17 Mar 2017 17 Mar 2017 29 Mar 2016 23 Mar 2016 BH23 0.4-0.5 ZLB SE150233.022 LB097722 17 Mar 2016 18 Mar 2016 17 Mar 2017 23 Mar 2016 17 Mar 2017 29 Mar 2016 BH24 0.4-0.5_ZLB SE150233.023 LB097722 17 Mar 2016 18 Mar 2016 17 Mar 2017 23 Mar 2016 17 Mar 2017 29 Mar 2016 BH25 0.3-0.4_ZLB SE150233.024 LB097722 17 Mar 2016 18 Mar 2016 17 Mar 2017 23 Mar 2016 17 Mar 2017 29 Mar 2016 LB097722 BH26 0.4-0.5 ZLB SE150233.025 17 Mar 2016 18 Mar 2016 17 Mar 2017 23 Mar 2016 17 Mar 2017 29 Mar 2016 BH27 0.2-0.3 ZLB SE150233.026 LB097722 17 Mar 2016 18 Mar 2016 17 Mar 2017 23 Mar 2016 17 Mar 2017 29 Mar 2016 Method: ME-(AU)-[ENVIAN312 Mercurv in Soil Sample Name Sample No. Sampled Received Analysed QC Ref Extraction Due Extracted Analysis Due BH16 0.4-0.5 SE150233.001 LB097696 17 Mar 2016 18 Mar 2016 14 Apr 2016 23 Mar 2016 14 Apr 2016 29 Mar 2016 BH17 0.9-1.0 SE150233.002 LB097696 17 Mar 2016 18 Mar 2016 14 Apr 2016 14 Apr 2016 29 Mar 2016 23 Mar 2016 BH18 0 4-0 5 SE150233.003 I B097696 17 Mar 2016 18 Mar 2016 14 Apr 2016 23 Mar 2016 14 Apr 2016 29 Mar 2016 BH20 3.3-3.4 SE150233.004 LB097696 17 Mar 2016 18 Mar 2016 14 Apr 2016 23 Mar 2016 14 Apr 2016 29 Mar 2016 BH21 0.4-0.5 SE150233.005 LB097696 17 Mar 2016 18 Mar 2016 14 Apr 2016 23 Mar 2016 14 Apr 2016 29 Mar 2016 18 Mar 2016 BH21 1.4-1.5 SE150233.006 LB097696 17 Mar 2016 14 Apr 2016 23 Mar 2016 14 Apr 2016 29 Mar 2016 BH22 0.4-0.5 SE150233.007 LB097696 17 Mar 2016 18 Mar 2016 14 Apr 2016 23 Mar 2016 14 Apr 2016 29 Mar 2016 BH22 1.1-1.2 SE150233.008 LB097696 17 Mar 2016 18 Mar 2016 14 Apr 2016 23 Mar 2016 14 Apr 2016 29 Mar 2016 BH23 0.4-0.5 SE150233.009 LB097696 17 Mar 2016 18 Mar 2016 14 Apr 2016 23 Mar 2016 14 Apr 2016 29 Mar 2016 BH23 1.4-1.5 SE150233.010 LB097696 17 Mar 2016 18 Mar 2016 14 Apr 2016 23 Mar 2016 14 Apr 2016 29 Mar 2016 BH24 0.4-0.5 SE150233.011 LB097696 17 Mar 2016 18 Mar 2016 14 Apr 2016 23 Mar 2016 14 Apr 2016 29 Mar 2016 BH24 2.4-2.5 SE150233.012 LB097697 17 Mar 2016 18 Mar 2016 14 Apr 2016 23 Mar 2016 14 Apr 2016 29 Mar 2016 BH25 0.3-0.4 SE150233.013 LB097697 17 Mar 2016 18 Mar 2016 14 Apr 2016 23 Mar 2016 14 Apr 2016 29 Mar 2016 BH27 2.3-2.4 SE150233.014 LB097697 17 Mar 2016 18 Mar 2016 14 Apr 2016 23 Mar 2016 14 Apr 2016 29 Mar 2016 QD2 LB097697 SE150233.027 17 Mar 2016 18 Mar 2016 14 Apr 2016 23 Mar 2016 14 Apr 2016 29 Mar 2016 14 Apr 2016 29 Mar 2016 QD3 SE150233.028 LB097697 17 Mar 2016 18 Mar 2016 14 Apr 2016 23 Mar 2016 oisture Content Method: ME-(AU)-[ENV]AN002 Sample Name Sample No. QC Ref Sampled Received Extraction Due Extracted Analysis Due Analysed BH16 0.4-0.5 SE150233.001 LB097486 17 Mar 2016 18 Mar 2016 31 Mar 2016 21 Mar 2016 26 Mar 2016 24 Mar 2016 BH17 0.9-1.0 SE150233.002 LB097486 17 Mar 2016 18 Mar 2016 31 Mar 2016 21 Mar 2016 26 Mar 2016 24 Mar 2016 18 Mar 2016 SE150233.003 BH18 0.4-0.5 LB097486 17 Mar 2016 31 Mar 2016 21 Mar 2016 26 Mar 2016 24 Mar 2016 BH20 3.3-3.4 SE150233.004 LB097486 17 Mar 2016 18 Mar 2016 31 Mar 2016 21 Mar 2016 26 Mar 2016 24 Mar 2016 BH21 0.4-0.5 SE150233.005 LB097486 17 Mar 2016 18 Mar 2016 31 Mar 2016 21 Mar 2016 26 Mar 2016 24 Mar 2016 BH21 1.4-1.5 SE150233.006 LB097486 17 Mar 2016 18 Mar 2016 31 Mar 2016 21 Mar 2016 26 Mar 2016 24 Mar 2016 17 Mar 2016 18 Mar 2016 21 Mar 2016 24 Mar 2016 BH22 0.4-0.5 SE150233.007 I B097486 31 Mar 2016 26 Mar 2016 BH22 1.1-1.2 SE150233.008 LB097486 17 Mar 2016 18 Mar 2016 31 Mar 2016 21 Mar 2016 26 Mar 2016 24 Mar 2016 BH23 0.4-0.5 SE150233.009 LB097486 17 Mar 2016 18 Mar 2016 31 Mar 2016 21 Mar 2016 26 Mar 2016 24 Mar 2016 BH23 1.4-1.5 SE150233.010 LB097486 17 Mar 2016 18 Mar 2016 31 Mar 2016 21 Mar 2016 26 Mar 2016 24 Mar 2016 BH24 0.4-0.5 18 Mar 2016 SE150233.011 LB097486 17 Mar 2016 31 Mar 2016 21 Mar 2016 26 Mar 2016 24 Mar 2016 24 Mar 2016 BH24 2.4-2.5 SE150233.012 LB097486 17 Mar 2016 18 Mar 2016 31 Mar 2016 21 Mar 2016 26 Mar 2016 BH25 0.3-0.4 SE150233.013 LB097486 17 Mar 2016 18 Mar 2016 31 Mar 2016 26 Mar 2016 21 Mar 2016 24 Mar 2016 BH27 2.3-2.4 SE150233.014 LB097486 17 Mar 2016 18 Mar 2016 31 Mar 2016 21 Mar 2016 26 Mar 2016 24 Mar 2016 QD2 SE150233.027 LB097486 17 Mar 2016 18 Mar 2016 31 Mar 2016 21 Mar 2016 26 Mar 2016 24 Mar 2016 QD3 SE150233.028 LB097486 17 Mar 2016 18 Mar 2016 31 Mar 2016 21 Mar 2016 26 Mar 2016 24 Mar 2016 21 Mar 2016 QTB1 SE150233.029 LB097486 17 Mar 2016 18 Mar 2016 31 Mar 2016 26 Mar 2016 24 Mar 2016 **OC Pesticides in Soi** Method: ME-(AU)-[ENV]AN400/AN420 Sample Name QC Ref Analysed Sample No. Sampled Received Extraction Due Extracted Analysis Due BH16 0.4-0.5 SE150233.001 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 29 Mar 2016 BH17 0.9-1.0 SE150233.002 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 29 Mar 2016 BH18 0.4-0.5 18 Mar 2016 29 Mar 2016 SE150233.003 LB097548 17 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 BH20 3.3-3.4 SE150233.004 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 29 Mar 2016 BH21 0.4-0.5 SE150233.005 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 29 Mar 2016 BH21 1.4-1.5 LB097548 SE150233.006 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 29 Mar 2016

BH22 0.4-0.5

SE150233.007

LB097548

17 Mar 2016

18 Mar 2016

31 Mar 2016

22 Mar 2016

01 May 2016

29 Mar 2016

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

OC Pesticides in Soil (continued)

Bit Part of the sector of t	OC Pesticides in Soil (cont	tinued)						Method: ME-(AU)-[ENV]AN400/AN420
BR-93 0-45BF-93 0-45BF-93 0-46PT-MP 2016BF-92 0-47 0-48DF-MP 2016DF-MP 2016	Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
Berls 1-15SelectionControl with a control with	BH22 1.1-1.2	SE150233.008	LB097548	17 Mar 2016	18 Mar 2016	31 Mar 2016	22 Mar 2016	01 May 2016	29 Mar 2016
Brief 0.6.5.StressonSt	BH23 0.4-0.5	SE150233.009	LB097548	17 Mar 2016	18 Mar 2016	31 Mar 2016	22 Mar 2016	01 May 2016	29 Mar 2016
Brief 2-4.5.1Brief 2007 BOf Twy 2016Of Way	BH23 1.4-1.5	SE150233.010	LB097548	17 Mar 2016	18 Mar 2016	31 Mar 2016	22 Mar 2016	01 May 2016	29 Mar 2016
Bit Bit DisplayBit DisplayBit DisplayBit DisplayBit DisplayBit DisplayBit DisplayBit Display </td <td>BH24 0.4-0.5</td> <td>SE150233.011</td> <td>LB097548</td> <td>17 Mar 2016</td> <td>18 Mar 2016</td> <td>31 Mar 2016</td> <td>22 Mar 2016</td> <td>01 May 2016</td> <td>29 Mar 2016</td>	BH24 0.4-0.5	SE150233.011	LB097548	17 Mar 2016	18 Mar 2016	31 Mar 2016	22 Mar 2016	01 May 2016	29 Mar 2016
Birl 23.2.1Birl 23.2.1Birl 23.2.1Dirly 23.1Dirly 23.1 </td <td>BH24 2.4-2.5</td> <td>SE150233.012</td> <td>LB097548</td> <td>17 Mar 2016</td> <td>18 Mar 2016</td> <td>31 Mar 2016</td> <td>22 Mar 2016</td> <td>01 May 2016</td> <td>29 Mar 2016</td>	BH24 2.4-2.5	SE150233.012	LB097548	17 Mar 2016	18 Mar 2016	31 Mar 2016	22 Mar 2016	01 May 2016	29 Mar 2016
OZCBis GRUGD (MC)Bis MC (MC) <td>BH25 0.3-0.4</td> <td>SE150233.013</td> <td>LB097548</td> <td>17 Mar 2016</td> <td>18 Mar 2016</td> <td>31 Mar 2016</td> <td>22 Mar 2016</td> <td>01 May 2016</td> <td>29 Mar 2016</td>	BH25 0.3-0.4	SE150233.013	LB097548	17 Mar 2016	18 Mar 2016	31 Mar 2016	22 Mar 2016	01 May 2016	29 Mar 2016
OZCBis GRUGD (MC)Bis MC (MC) <td>BH27 2.3-2.4</td> <td>SE150233.014</td> <td>LB097548</td> <td>17 Mar 2016</td> <td>18 Mar 2016</td> <td>31 Mar 2016</td> <td>22 Mar 2016</td> <td></td> <td>29 Mar 2016</td>	BH27 2.3-2.4	SE150233.014	LB097548	17 Mar 2016	18 Mar 2016	31 Mar 2016	22 Mar 2016		29 Mar 2016
QCDBin Born (Bin Born)Diff and (Bin Born)D	QD2								
Predicts volUnit of the state	QD3							30 Apr 2016	
air dis 4.3.bit 10000bit 1000001 1 Mar 20101 Mar 20102 Mar 20100 May 20102 Mar 2010Bit 72 A-100Bit 200001 Mar 20101 Mar 20102 Mar 20100 May 20102 Mar 2010Bit 100000Bit 200001 Mar 20101 Mar 20102 Mar 20100 May 20102 Mar 2010Bit 100000Bit 200001 Mar 20101 Mar 20102 Mar 20100 May 20102 Mar 2010Bit 100000Bit 200001 Mar 20101 Mar 20102 Mar 20100 May 20102 Mar 2010Bit 200000Bit 2000001 Mar 20101 Mar 20102 Mar 20100 May 20102 Mar 2010Bit 200000Bit 200000Bit 2000001 Mar 20102 Mar 20100 May 20102 Mar 2010Bit 200000Bit 200000Bit 2000001 Mar 20102 Mar 20100 Mar 20102 Mar 2010Bit 200000Bit 200000Bit 200000Bit 2000002 Mar 20100 Mar 20102 Mar 2010Bit 200000Bit 200000Bit 200000Bit 2000002 Mar 20100 Mar 20102 Mar 2010Bit 200000Bit 200000Bit 200000Bit 2000002 Mar 20100 Mar 20102 Mar 2010Bit 200000Bit 200000Bit 200000Bit 2000002 Mar 20100 Mar 20102 Mar 2010Bit 200000Bit 200000Bit 200000Bit 200000Bit 2000002 Mar 20100 Mar 20102 Mar 2010Bit 200000Bit 200000Bit 200000Bit 200000Bit 2000002 Mar 20100 Mar 20100 Mar 2010<	OP Pesticides in Soil							Method: ME-(AU)-[ENV]AN400/AN420
air dis 4.3.bit 10000bit 1000001 1 Mar 20101 Mar 20102 Mar 20100 May 20102 Mar 2010Bit 72 A-100Bit 200001 Mar 20101 Mar 20102 Mar 20100 May 20102 Mar 2010Bit 100000Bit 200001 Mar 20101 Mar 20102 Mar 20100 May 20102 Mar 2010Bit 100000Bit 200001 Mar 20101 Mar 20102 Mar 20100 May 20102 Mar 2010Bit 100000Bit 200001 Mar 20101 Mar 20102 Mar 20100 May 20102 Mar 2010Bit 200000Bit 2000001 Mar 20101 Mar 20102 Mar 20100 May 20102 Mar 2010Bit 200000Bit 200000Bit 2000001 Mar 20102 Mar 20100 May 20102 Mar 2010Bit 200000Bit 200000Bit 2000001 Mar 20102 Mar 20100 Mar 20102 Mar 2010Bit 200000Bit 200000Bit 200000Bit 2000002 Mar 20100 Mar 20102 Mar 2010Bit 200000Bit 200000Bit 200000Bit 2000002 Mar 20100 Mar 20102 Mar 2010Bit 200000Bit 200000Bit 200000Bit 2000002 Mar 20100 Mar 20102 Mar 2010Bit 200000Bit 200000Bit 200000Bit 2000002 Mar 20100 Mar 20102 Mar 2010Bit 200000Bit 200000Bit 200000Bit 200000Bit 2000002 Mar 20100 Mar 20102 Mar 2010Bit 200000Bit 200000Bit 200000Bit 200000Bit 2000002 Mar 20100 Mar 20100 Mar 2010<	Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analvsis Due	Analysed
bit Pro1-0.0Set State 2000Libro Pro1Set NormalSet Norma									
Brite 0.45.4Effects 0.0000Elements 0.00000Private 0.000000Private 0.0000000Private 0.00000000Private 0.00000000000000000000000000000000000								•	
BetaSet 1022.03.04LB077481 Y Me 20161 9 Me 20163 Y Me 20162 Y Me 20160 Me y 2016<									
Bert 1 44.5 SET 0023.006 LB07746 1 7 Me 2016 18 Mer 2016 3 1 Me 2016 22 Mer 2016 0 1 Mer 2018 24 Mer 2016 Bert 1 44.15 SET 0023.007 LB007746 1 7 Me 2016 18 Mer 2016 31 Me 2016 22 Mer 2016 0 1 Mer 2018 24 Mer 2016 Bert 2 1.1.2 SET 0023.007 LB007746 1 7 Me 2016 18 Mer 2016 31 Me 2016 22 Mer 2016 0 1 Mer 2018 24 Mer 2016 Bert 2 1.1.2 SET 0023.007 LB007746 1 7 Mer 2016 16 Mer 2016 31 Me 2016 22 Mer 2016 0 1 Mer 2016 24 Mer 2016 Bert 2 1.1.2 SET 0023.003 LB007746 1 7 Mer 2016 16 Mer 2016 31 Me 2016 22 Mer 2016 0 1 Mer 2016 24 Mer 2016 Bert 4 4.4.5 SET 0023.013 LB007748 1 7 Mer 2016 16 Mer 2016 31 Me 2016 21 Mer 2016 0 1 Mer 2016 24 Mer 2016 24 Mer 2016 Bert 4 2.4.5 SET 0023.013 LB007748 1 7 Mer 2016 16 Mer 2016 31 Mer 2016 21 Mer 2016 0 1 Mer 2016 24 Mer 2016 Bert 4 2.4.5 SET 0023.020 LB007748 1 7 Mer 2016 16 Mer 2016 31 Mer 2016									
Bit1								•	
bit2									
Bit Bit 21:1-1 Bit Star 2016 LB07744 17 Mar 2016 14 Mar 2016 21 Mar 2016 24 Mar 2016 Bit 23:0-4.5 SE 150233.001 LB07744 17 Mar 2016 18 Mar 2016 21 Mar 2016 24 Mar 2016 24 Mar 2016 Bit 23:1-4.1.5 SE 150233.011 LB07744 17 Mar 2016 18 Mar 2016 31 Mar 2016 24 Mar 2016 01 Mar 2016 24 Mar 2016 Bit 23:1-4.1.5 SE 150233.011 LB07744 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 Mar 2016 24 Mar 2016 Bit 23:2-3.0 SE 150233.011 LB07748 17 Mar 2016 18 Mar 2016 31 Mar 2016 21 Mar 2016 30 Ap 2016 24 Mar 2016 DD2 SE 150233.021 LB07748 17 Mar 2016 18 Mar 2016 31 Mar 2016 21 Mar 2016 30 Ap 2016 24 Mar 2016 DD3 SE 150233.021 LB07748 17 Mar 2016 18 Mar 2016 31 Mar 2016 21 Mar 2016 Analysis Bour Analysis Bour BH10 0-1.5 SE 150233.001 LB07748 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 M Mar 2016 24 Mar 2016 BH10 0-1.5									
BH23 0.4.5. SE19223.019 LB907546 17 Mar 2016 18 Mar 2016 21 Mar 2016								· · · · · · · · · · · · · · · · · · ·	
BH23 SE19223.010 LB997546 17 Mer 2016 19 Mer 2016 31 Mer 2016 22 Mer 2016 O1 Mery 2016 24 Mer 2016 BH20 4.4.5 SE15023.012 LB997546 17 Mer 2016 18 Mer 2016 31 Mer 2016 22 Mer 2016 O1 Mery 2016 24 Mer 2016 BH26 A.4.5 SE15023.012 LB997546 17 Mer 2016 18 Mer 2016 31 Mar 2016 22 Mer 2016 O1 Mery 2016 24 Mer 2016 BH27 S.2.4 SE15023.027 LB997476 17 Mer 2016 18 Mer 2016 31 Mar 2016 21 Mer 2016 30 Age 2016 24 Mer 2016 DQ3 SE15023.027 LB997476 17 Mer 2016 18 Mer 2016 31 Mar 2016 21 Mer 2016 30 Age 2016 24 Mer 2016 DA1 SE15023.027 LB997476 17 Mer 2016 18 Mer 2016 31 Mar 2016 21 Mer 2016 30 Age 2016 24 Mer 2016 DH10 SE15023.020 LB997546 17 Mer 2016 18 Mer 2016 31 Mer 2016 22 Mer 2016 01 Mery 2016 24 Mer 2016 DH10 SE15023.007 LB997546 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
Bite 34.4.5.5 SE 169233.011 LB07748 17 Mar 2016 18 Mar 2016 21 Mar 2016 22 Mar 2016 0.1 Mar 2016 24 Mar 2016 Bite 24 Ar 25.5 SE 169233.013 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 0.1 Mar 2016 24 Mar 2016 Bite 25 Ar 24.4 SE 169233.011 LB097748 17 Mar 2016 18 Mar 2016 31 Mar 2016 21 Mar 2016 30 Agr 2016 24 Mar 2016 QD2 SE 169233.021 LB097748 17 Mar 2016 18 Mar 2016 31 Mar 2016 21 Mar 2016 30 Agr 2016 24 Mar 2016 QD3 SE 169233.021 LB097478 17 Mar 2016 18 Mar 2016 31 Mar 2016 21 Mar 2016 30 Agr 2016 24 Mar 2016 QD4 SE 169233.001 LB09748 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 0.1 Mar 2016 24 Mar 2016 BH16 Ad-45 SE 169233.001 LB09748 17 Mar 2016 18 Mar 2016 31 Mar 2016 24 Mar 2016 0.1 Mar 2016 24 Mar 2016 BH16 Ad-5 SE 169233.001 LB09748 17 Mar 2016 18 Mar 2016 31 Mar 2016 24 Mar 2016 24 Mar 2016								· · · · · · · · · · · · · · · · · · ·	
Bite 24.2-5. SE 16023.3012 LB07748 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 0.1 May 2016 24 Mar 2016 Bite 25 3.2-4. SE 16023.3013 LB07748 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 0.1 May 2016 24 Mar 2016 DQ2 SE 16023.3021 LB077478 17 Mar 2016 18 Mar 2016 31 Mar 2016 21 Mar 2016 30 Agr 2016 24 Mar 2016 QD2 SE 16023.3021 LB077478 17 Mar 2016 18 Mar 2016 31 Mar 2016 21 Mar 2016 30 Agr 2016 24 Mar 2016 CM2 Mar 2016 CM Mar 2016 18 Mar 2016 18 Mar 2016 18 Mar 2016 21 Mar 2016 0.1 May 2016 24 Mar 2016 SB116 A6.05 SE 16023.3001 LB07748 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2018 0.1 May 2016 24 Mar 2016 B1810 A6.05 SE 16023.3004 LB07748 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 0.1 May 2016 24 Mar 2016 B1820 A6.5 SE 16023.3004 LB07748 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 0.1 May 2016								· · · · · · · · · · · · · · · · · · ·	
BH26 30-0.4 SE 150233 0.13 LB007548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 24 Mar 2016 0.02 SE 150233.07 LB007778 17 Mar 2016 18 Mar 2016 21 Mar 2016 21 Mar 2016 0.04 Mar 2016 24 Mar 2016 0.03 SE 150233.02 LB007778 17 Mar 2016 18 Mar 2016 21 Mar 2016 30 Apr 2016 24 Mar 2016 0.04 SE 150233.02 LB007748 17 Mar 2016 18 Mar 2016 21 Mar 2016 30 Apr 2016 24 Mar 2016 0.05 SE 150233.001 LB007548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2015 24 Mar 2016 0.04 Apr 2015 SE 150233.001 LB007548 17 Mar 2016 18 Mar 2016 31 Mar 2016 21 Mar 2016 01 May 2015 24 Mar 2016 0.04 Apr 2016 LB007548 17 Mar 2016 18 Mar 2016 31 Mar 2016 21 Mar 2016 01 May 2016 24 Mar 2016 0.04 Apr 2016 LB007548 17 Mar 2016 18 Mar 2016 21 Mar 2016 01 May 2016 24 Mar 201									
BH27 2.3.2.4 SE E10223.0.12 LB007/H9 17 Mar 2016 18 Mar 2016 31 Mar 2016 21 Mar 2016 20 Mar 2016 21 Mar 2016 20 Mar 2016 21 Mar 2016 20 Mar 2016 21 Mar 2016									
DD2 SE 19023.027 LB97778 17 Mar 2016 18 Mar 2016 31 Mar 2016 21 Mar 2016 20 Mar 2016 24 Mar 2016 DD3 SE 19023.027 LB97778 17 Mar 2016 18 Mar 2016 31 Mar 2016 21 Mar 2016 20 Mar 2016 24 Mar 2016 All (Polynuclear Aromatic Hydrocarbons) In Solt Corr C Ref Sample A Rocelved Extraction Dus Extracted Analysis Dus Analysis Dus Sample Name Sample No. CC Ref Sample Ni 18 Mar 2016 31 Mar 2016 22 Mar 2016 O1 May 2016 24 Mar 2016 BH10 0-0.5 SE10023.003 LB007548 17 Mar 2016 18 Mar 2016 31 Mar 2016 24 Mar 2016 24 Mar 2016 BH20 3.4.3 SE10023.003 LB007548 17 Mar 2016 18 Mar 2016 31 Mar 2016 24 Mar 2016 Mar 2016 24 Mar 2016				17 Mar 2016	18 Mar 2016	31 Mar 2016	22 Mar 2016	01 May 2016	
DD3 SE 19023.028 LB09778 17 Mar 2016 18 Mar 2016 21 Mar 2016 21 Mar 2016 24 M	BH27 2.3-2.4	SE150233.014	LB097548	17 Mar 2016	18 Mar 2016	31 Mar 2016	22 Mar 2016	01 May 2016	24 Mar 2016
Art Octo Cert Sample Non OC Ref Sample Accelved Extraction Due Extracted Analysed Analysed BH16 0-4.0.5 SE150233 001 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 21 Mar 2016 01 May 2016 24 Mar 2016 01 May 2016	QD2	SE150233.027	LB097478	17 Mar 2016	18 Mar 2016	31 Mar 2016	21 Mar 2016	30 Apr 2016	24 Mar 2016
Sample Name Sample No. QC Ref Sample delta Received Extraction Due Extracted Analysis Due Analysed BH16 0.4-0.5 SE150233.001 LB007548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 24 Mar 2016 BH18 0.4-0.5 SE150233.003 LB007548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 24 Mar 2016 BH2 0.4-0.5 SE150233.004 LB007548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 24 Mar 2016 BH2 0.4-0.5 SE150233.005 LB007548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 24 Mar 2016 BH2 0.4-0.5 SE150233.007 LB007548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 24 Mar 2016 BH2 0.4-0.5 SE150233.009 LB007548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 24 Mar 2016 BH23 0.4-0.5 SE150233.01 LB007548 <	QD3	SE150233.028	LB097478	17 Mar 2016	18 Mar 2016	31 Mar 2016	21 Mar 2016	30 Apr 2016	24 Mar 2016
BH16 0.4-0.5 SE150233.001 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2018 01 May 2016 24 Mar 2016 BH17 0.4-0. SE150233.002 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2018 01 May 2016 24 Mar 2016 BH18 0.4-0.5 SE150233.004 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2018 01 May 2016 24 Mar 2016 BH21 0.4-0.5 SE150233.005 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 24 Mar 2016 BH21 0.4-0.5 SE150233.000 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 24 Mar 2016 BH22 1.4-1.5 SE15023.000 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 24 Mar 2016 BH23 0.4-0.5 SE15023.010 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 24 Mar 2016 BH24 0.4-0.5 SE15023.0.01 LB097548	PAH (Polynuclear Aromatic	c Hydrocarbons) in Soil						Method:	ME-(AU)-[ENV]AN420
BH17 0.9-1.0 SE 150233.002 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 24 Mar 2016 BH18 0.4-0.5 SE 150233.004 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 24 Mar 2016 BH20 3.3.4 SE 150233.004 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 24 Mar 2016 BH21 4.4.15 SE 150233.004 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 24 Mar 2016 BH22 4.4.5 SE 150233.001 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 24 Mar 2016 BH23 4.4.15 SE 15023.001 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 24 Mar 2016 BH23 4.4.5 SE 15023.011 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 24 Mar 2016 BH23 4.4.5 SE 15023.011 LB097548	Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH18 0.4-0.5 SE 150233.003 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 24 Mar 2016 BH20 3.3.4 SE 150233.004 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 24 Mar 2016 BH21 0.4-0.5 SE 150233.006 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 24 Mar 2016 BH21 1.4-1.5 SE 150233.007 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 24 Mar 2016 BH22 1.4-12 SE 150233.001 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 24 Mar 2016 BH23 0.4-0.5 SE 15023.010 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 24 Mar 2016 BH24 0.4-0.5 SE 15023.011 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 24 Mar 2016 BH24 0.4-5 SE 15023.011 LB097548 </td <td>BH16 0.4-0.5</td> <td>SE150233.001</td> <td>LB097548</td> <td>17 Mar 2016</td> <td>18 Mar 2016</td> <td>31 Mar 2016</td> <td>22 Mar 2016</td> <td>01 May 2016</td> <td>24 Mar 2016</td>	BH16 0.4-0.5	SE150233.001	LB097548	17 Mar 2016	18 Mar 2016	31 Mar 2016	22 Mar 2016	01 May 2016	24 Mar 2016
BH20 3.3.4 SE 150233.004 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 24 Mar 2016 BH21 0.4.0.5 SE 150233.005 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 24 Mar 2016 BH21 1.4.1.5 SE 150233.007 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 24 Mar 2016 BH22 0.4.0.5 SE 150233.007 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 24 Mar 2016 BH23 0.4.0.5 SE 150233.010 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 24 Mar 2016 BH24 0.4.0.5 SE 150233.011 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 24 Mar 2016 BH24 4.4.2.5 SE 150233.012 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 24 Mar 2016 01 May 2016	BH17 0.9-1.0	SE150233.002	LB097548	17 Mar 2016	18 Mar 2016	31 Mar 2016	22 Mar 2016	01 May 2016	24 Mar 2016
BH21 0.4-0.5 SE 150233.005 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 24 Mar 2016 BH21 1.4-1.5 SE 150233.007 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 24 Mar 2016 BH22 1.4-1.5 SE 150233.008 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 24 Mar 2016 BH22 1.4-1.2 SE 150233.008 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 24 Mar 2016 BH23 1.4-1.5 SE 150233.011 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 24 Mar 2016 BH24 0.4-0.5 SE 150233.012 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 24 Mar 2016 BH24 0.4-0.5 SE 15023.012 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 24 Mar 2016 BH27 2.4-2.5 SE 15023.014 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016	BH18 0.4-0.5	SE150233.003	LB097548	17 Mar 2016	18 Mar 2016	31 Mar 2016	22 Mar 2016	01 May 2016	24 Mar 2016
BH21 0.4-0.5 SE 150233.005 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 24 Mar 2016 BH21 1.4-1.5 SE 150233.007 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 24 Mar 2016 BH22 1.4-1.5 SE 150233.008 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 24 Mar 2016 BH22 1.4-1.2 SE 150233.008 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 24 Mar 2016 BH23 1.4-1.5 SE 150233.011 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 24 Mar 2016 BH24 0.4-0.5 SE 150233.012 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 24 Mar 2016 BH24 0.4-0.5 SE 15023.012 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 24 Mar 2016 BH27 2.4-2.5 SE 15023.014 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016	BH20 3.3-3.4	SE150233.004	LB097548	17 Mar 2016	18 Mar 2016	31 Mar 2016	22 Mar 2016	01 May 2016	24 Mar 2016
BH21 1.4.1.5 SE 150233.006 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 24 Mar 2016 BH22 0.4-0.5 SE 150233.007 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 24 Mar 2016 BH22 1.1-1.2 SE 150233.009 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 24 Mar 2016 BH23 1.4-1.5 SE 150233.001 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 24 Mar 2016 BH24 0.4-0.5 SE 150233.011 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 24 Mar 2016 BH24 0.4-0.5 SE 150233.011 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 24 Mar 2016 BH22 0.4-0.5 SE 150233.013 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 24 Mar 2016 BH22 0.4-0.5 SE 150233.014 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016	BH21 0.4-0.5	SE150233.005	LB097548	17 Mar 2016	18 Mar 2016	31 Mar 2016	22 Mar 2016	01 May 2016	24 Mar 2016
BH22 0.4-0.5 SE 150233.007 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 24 Mar 2016 BH22 0.4-0.5 SE 150233.009 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 24 Mar 2016 BH23 0.4-0.5 SE 150233.009 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 24 Mar 2016 BH24 0.4-0.5 SE 150233.011 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 24 Mar 2016 BH24 0.4-0.5 SE 150233.012 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 24 Mar 2016 BH24 0.4-0.5 SE 150233.013 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 24 Mar 2016 BH27 3.4.2 SE 150233.01 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 24 Mar 2016 BH17 0.4.0.5 SE 150233.001 LB097	BH21 1.4-1.5	SE150233.006	LB097548	17 Mar 2016	18 Mar 2016	31 Mar 2016	22 Mar 2016	01 May 2016	24 Mar 2016
BH22 SE150233.008 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 24 Mar 2016 BH23 0.4.0.5 SE150233.009 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 24 Mar 2016 BH23 1.4.1.5 SE150233.010 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 24 Mar 2016 BH24 0.4.0.5 SE150233.011 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 24 Mar 2016 BH24 2.4.2.5 SE150233.013 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 24 Mar 2016 BH25 2.3.4.4 SE150233.013 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 24 Mar 2016 BH25 0.3.4 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 24 Mar 2016 BH26 <td>BH22 0.4-0.5</td> <td>SE150233.007</td> <td>LB097548</td> <td>17 Mar 2016</td> <td>18 Mar 2016</td> <td>31 Mar 2016</td> <td>22 Mar 2016</td> <td></td> <td>24 Mar 2016</td>	BH22 0.4-0.5	SE150233.007	LB097548	17 Mar 2016	18 Mar 2016	31 Mar 2016	22 Mar 2016		24 Mar 2016
BH23 0.4-0.5 SE 150233.009 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 24 Mar 2016 BH23 1.4-1.5 SE 150233.010 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 24 Mar 2016 BH24 1.4-2.5 SE 150233.011 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 24 Mar 2016 BH24 2.4-2.5 SE 150233.012 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 24 Mar 2016 BH22 0.3-0.4 SE 150233.012 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 24 Mar 2016 BH2 0.4-0.5 SE 150233.014 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 24 Mar 2016 BH16 0.4-0.5 SE 150233.001 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 24 Mar 2016 01 May 2016 29 Mar 2016 BH18 0.4-0.5 SE 150233.002 LB0	BH22 1.1-1.2								
BH23 1.4 1.5 SE 150233.010 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 24 Mar 2016 BH24 0.4 0.5 SE 150233.011 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 24 Mar 2016 BH24 2.4 2.5 SE 150233.012 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 24 Mar 2016 BH25 0.3 0.4 SE 150233.013 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 24 Mar 2016 BH27 2.3 2.4 SE 150233.014 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 24 Mar 2016 CBs In Soll Sample No. QC Ref Sample No Received Extraction Due Extracted Analysis Due								· · · · · · · · · · · · · · · · · · ·	
BH24 0.4-0.5 SE 150233.011 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 24 Mar 2016 BH24 2.4-2.5 SE 150233.012 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 24 Mar 2016 BH25 0.3-0.4 SE 150233.013 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 24 Mar 2016 BH27 2.3-2.4 SE 150233.013 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 24 Mar 2016 BH27 2.3-2.4 SE 150233.011 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 24 Mar 2016 SCBs SE 150233.001 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 20 Mar 2016 BH16 0.4-0.5 SE 150233.002 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 20 Mar 2016 BH16 0.4-0.5 SE 150233.002 LB097548 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
BH24 2.4.2.5 SE 150233.012 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 24 Mar 2016 BH25 0.3-0.4 SE 150233.013 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 24 Mar 2016 BH27 2.3-2.4 SE 150233.014 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 24 Mar 2016 CBS Set150233.014 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 O1 May 2016 24 Mar 2016 Sample Name Sample No. QC Ref Sampled Received Extraction Due Extracted Analysis Due Analysed BH16 0.4-0.5 SE 15023.001 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 29 Mar 2016 BH18 0.4-0.5 SE 15023.002 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 29 Mar 2016 BH20 3.3-3.4 SE 150233.002 LB097548 1								•	
BH25 0.3 0.4 SE 150233.013 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 24 Mar 2016 BH27 2.3 2.4 SE 150233.014 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 24 Mar 2016 CBs in Soll Method: ME-(AU)-[ENV]AN400/AN420 Sample Name Sample No. QC Rof Sampled Received Extraction Due Extracted Analysis Due Analysed BH16 0.4-0.5 SE 150233.001 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 29 Mar 2016 BH17 0.9-1.0 SE 150233.002 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 30 Mar 2016 BH18 0.4-0.5 SE 150233.002 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 30 Mar 2016 BH20 3.3-3.4 SE 150233.005 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 30								· · · · · · · · · · · · · · · · · · ·	
BH27 2.3-2.4 SE150233.014 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 24 Mar 2016 CGBs in Soli Method: ME-(AU)-[ENV]AN400/AN420 Sample Name Sample No. QC Ref Sampled Received Extraction Due Extracted Analysis Due Analysed BH16 0.4-0.5 SE150233.001 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 29 Mar 2016 BH17 0.9-1.0 SE150233.002 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 29 Mar 2016 BH18 0.4-0.5 SE150233.003 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 29 Mar 2016 BH2 0.4-0.5 SE150233.004 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 29 Mar 2016 BH2 0.4-0.5 SE150233.005 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 29 Mar 2016 <									
CCBs in Soll Method:									
Sample NameSample No.QC RefSampledReceivedExtraction DueExtractedAnalysis DueAnalysedBH16 0.40.5SE150233.001LB09754817 Mar 201618 Mar 201631 Mar 201622 Mar 201601 May 201629 Mar 2016BH17 0.9-1.0SE150233.002LB09754817 Mar 201618 Mar 201631 Mar 201622 Mar 201601 May 201630 Mar 2016BH18 0.4-0.5SE150233.003LB09754817 Mar 201618 Mar 201631 Mar 201622 Mar 201601 May 201629 Mar 2016BH20 3.3-3.4SE150233.004LB09754817 Mar 201618 Mar 201631 Mar 201622 Mar 201601 May 201630 Mar 2016BH21 0.4-0.5SE150233.005LB09754817 Mar 201618 Mar 201631 Mar 201622 Mar 201601 May 201629 Mar 2016BH21 0.4-0.5SE150233.005LB09754817 Mar 201618 Mar 201631 Mar 201622 Mar 201601 May 201629 Mar 2016BH22 0.4-0.5SE150233.007LB09754817 Mar 201618 Mar 201631 Mar 201622 Mar 201601 May 201629 Mar 2016BH22 1.1-1.2SE150233.008LB09754817 Mar 201618 Mar 201631 Mar 201622 Mar 201601 May 201629 Mar 2016BH23 0.4-0.5SE150233.009LB09754817 Mar 201618 Mar 201631 Mar 201622 Mar 201601 May 201630 Mar 2016BH23 1.4-1.5SE150233.010LB09754817 Mar 201618 Mar 201631 Mar 201622 Mar 201601 May 201629 Ma		3E 130233.014	LB097546	17 1012010	10 Mai 2010	51 Mai 2010	22 Wai 2010	· · · · · · · · · · · · · · · · · · ·	
BH16 0.4-0.5 SE150233.001 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 29 Mar 2016 BH17 0.9-1.0 SE150233.002 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 30 Mar 2016 BH17 0.9-1.0 SE150233.002 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 29 Mar 2016 BH18 0.4-0.5 SE150233.003 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 29 Mar 2016 BH20 3.3-3.4 SE150233.004 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 29 Mar 2016 BH21 0.4-0.5 SE150233.005 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 29 Mar 2016 BH22 0.4-0.5 SE150233.007 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 29 Mar 2016 BH22 0.4-0.5 SE150233.009 LB097548 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
BH17 0.9-1.0 SE 150233.002 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 30 Mar 2016 BH18 0.4-0.5 SE 150233.003 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 29 Mar 2016 BH20 3.3-3.4 SE 150233.004 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 29 Mar 2016 BH20 3.3-3.4 SE 150233.004 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 29 Mar 2016 BH20 3.3-3.4 SE 150233.005 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 29 Mar 2016 BH21 0.4-0.5 SE 150233.006 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 29 Mar 2016 BH22 0.4-0.5 SE 150233.007 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 29 Mar 2016 BH22 0.4-0.5 SE 150233.009 LB				•				-	•
BH18 0.4-0.5 SE150233.003 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 29 Mar 2016 BH20 3.3-3.4 SE150233.004 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 30 Mar 2016 BH20 3.3-3.4 SE150233.004 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 29 Mar 2016 BH21 0.4-0.5 SE150233.005 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 29 Mar 2016 BH21 1.4-1.5 SE150233.006 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 29 Mar 2016 BH22 0.4-0.5 SE150233.007 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 29 Mar 2016 BH22 1.1-1.2 SE150233.009 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 29 Mar 2016 BH23 0.4-0.5 SE150233.010 LB097548 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
BH20 3.3.3.4 SE150233.004 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 30 Mar 2016 BH21 0.4-0.5 SE150233.005 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 29 Mar 2016 BH21 0.4-0.5 SE150233.005 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 29 Mar 2016 BH21 1.4-1.5 SE150233.006 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 29 Mar 2016 BH22 0.4-0.5 SE150233.007 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 29 Mar 2016 BH22 1.1-1.2 SE150233.008 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 30 Mar 2016 BH23 0.4-0.5 SE150233.009 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 29 Mar 2016 BH24 0.4-0.5 SE150233.011 LB097548 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>•</td> <td></td>								•	
BH21 0.4-0.5 SE150233.005 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 29 Mar 2016 BH21 1.4-1.5 SE150233.006 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 30 Mar 2016 BH21 1.4-1.5 SE150233.006 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 29 Mar 2016 BH22 0.4-0.5 SE150233.007 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 29 Mar 2016 BH22 1.1-1.2 SE150233.008 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 29 Mar 2016 BH23 0.4-0.5 SE150233.009 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 29 Mar 2016 BH24 0.4-0.5 SE150233.010 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 30 Mar 2016 BH24 0.4-0.5 SE150233.011 LB097548 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>· · · · · · · · · · · · · · · · · · ·</td> <td></td>								· · · · · · · · · · · · · · · · · · ·	
BH21 1.4.1.5 SE 150233.006 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 30 Mar 2016 BH22 0.4-0.5 SE 150233.007 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 29 Mar 2016 BH22 0.4-0.5 SE 150233.007 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 29 Mar 2016 BH22 1.1-1.2 SE 150233.008 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 30 Mar 2016 BH23 0.4-0.5 SE 150233.009 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 29 Mar 2016 BH23 1.4-1.5 SE 150233.010 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 30 Mar 2016 BH24 0.4-0.5 SE 150233.011 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 29 Mar 2016 BH24 2.4-2.5 SE 150233.012 LB									
BH22 0.4-0.5 SE 150233.007 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 29 Mar 2016 BH22 1.1-1.2 SE 150233.008 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 30 Mar 2016 BH23 0.4-0.5 SE 150233.009 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 29 Mar 2016 BH23 0.4-0.5 SE 150233.009 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 29 Mar 2016 BH23 1.4-1.5 SE 150233.010 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 30 Mar 2016 BH24 0.4-0.5 SE 150233.011 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 29 Mar 2016 BH24 2.4-2.5 SE 150233.012 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 29 Mar 2016 BH24 2.4-2.5 SE 150233.012 LB	BH21 0.4-0.5								
BH22 1.1.1.2 SE 150233.008 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 30 Mar 2016 BH23 0.4-0.5 SE 150233.009 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 29 Mar 2016 BH23 1.4-1.5 SE 150233.010 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 30 Mar 2016 BH24 0.4-0.5 SE 150233.010 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 30 Mar 2016 BH24 0.4-0.5 SE 150233.011 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 29 Mar 2016 BH24 2.4-2.5 SE 150233.012 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 30 Mar 2016 BH24 2.4-2.5 SE 150233.012 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 30 Mar 2016			LB007548	17 Mar 2016	18 Mar 2016	31 Mar 2016	22 Mar 2016	01 May 2016	30 Mar 2016
BH23 0.4-0.5 SE 150233.009 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 29 Mar 2016 BH23 1.4-1.5 SE 150233.010 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 30 Mar 2016 BH24 0.4-0.5 SE 150233.011 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 29 Mar 2016 BH24 0.4-0.5 SE 150233.011 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 29 Mar 2016 BH24 2.4-2.5 SE 150233.012 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 29 Mar 2016	BH21 1.4-1.5								
BH23 1.4-1.5 SE 150233.010 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 30 Mar 2016 BH24 0.4-0.5 SE 150233.011 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 29 Mar 2016 BH24 2.4-2.5 SE 150233.012 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 29 Mar 2016 BH24 2.4-2.5 SE 150233.012 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 30 Mar 2016					18 Mar 2016	31 Mar 2016	22 Mar 2016	01 May 2016	29 Mar 2016
BH24 0.4-0.5 SE 150233.011 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 29 Mar 2016 BH24 2.4-2.5 SE 150233.012 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 29 Mar 2016 BH24 2.4-2.5 SE 150233.012 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 30 Mar 2016	BH21 1.4-1.5	SE150233.007	LB097548	17 Mar 2016					
BH24 2.4-2.5 SE 150233.012 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 30 Mar 2016	BH21 1.4-1.5 BH22 0.4-0.5	SE150233.007 SE150233.008	LB097548 LB097548	17 Mar 2016 17 Mar 2016	18 Mar 2016	31 Mar 2016	22 Mar 2016	01 May 2016	30 Mar 2016
	BH21 1.4-1.5 BH22 0.4-0.5 BH22 1.1-1.2	SE150233.007 SE150233.008 SE150233.009	LB097548 LB097548 LB097548	17 Mar 2016 17 Mar 2016 17 Mar 2016	18 Mar 2016 18 Mar 2016	31 Mar 2016 31 Mar 2016	22 Mar 2016 22 Mar 2016	01 May 2016 01 May 2016	30 Mar 2016 29 Mar 2016
BH25 0.3-0.4 SE150233.013 LB097548 17 Mar 2016 18 Mar 2016 31 Mar 2016 22 Mar 2016 01 May 2016 29 Mar 2016	BH21 1.4-1.5 BH22 0.4-0.5 BH22 1.1-1.2 BH23 0.4-0.5	SE150233.007 SE150233.008 SE150233.009 SE150233.010	LB097548 LB097548 LB097548 LB097548	17 Mar 2016 17 Mar 2016 17 Mar 2016 17 Mar 2016	18 Mar 2016 18 Mar 2016 18 Mar 2016	31 Mar 2016 31 Mar 2016 31 Mar 2016	22 Mar 2016 22 Mar 2016 22 Mar 2016	01 May 2016 01 May 2016 01 May 2016	30 Mar 2016 29 Mar 2016 30 Mar 2016
	BH21 1.4-1.5 BH22 0.4-0.5 BH22 1.1-1.2 BH23 0.4-0.5 BH23 1.4-1.5	SE150233.007 SE150233.008 SE150233.009 SE150233.010 SE150233.011	LB097548 LB097548 LB097548 LB097548 LB097548	17 Mar 2016 17 Mar 2016 17 Mar 2016 17 Mar 2016 17 Mar 2016 17 Mar 2016	18 Mar 2016 18 Mar 2016 18 Mar 2016 18 Mar 2016	31 Mar 2016 31 Mar 2016 31 Mar 2016 31 Mar 2016	22 Mar 2016 22 Mar 2016 22 Mar 2016 22 Mar 2016	01 May 2016 01 May 2016 01 May 2016 01 May 2016	30 Mar 2016 29 Mar 2016 30 Mar 2016 29 Mar 2016

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

PCBs in Soil (continued)							Method: ME-(AL	I)-[ENV]AN400/AN4
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH27 2.3-2.4	SE150233.014	LB097548	17 Mar 2016	18 Mar 2016	31 Mar 2016	22 Mar 2016	01 May 2016	30 Mar 2016
otal Recoverable Metals	in Soil/Waste Solids/Mater	ials by ICPOES					Method: ME-(AL)-[ENV]AN040/AN3
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH16 0.4-0.5	SE150233.001	LB097673	17 Mar 2016	18 Mar 2016	13 Sep 2016	23 Mar 2016	13 Sep 2016	24 Mar 2016
BH17 0.9-1.0	SE150233.002	LB097673	17 Mar 2016	18 Mar 2016	13 Sep 2016	23 Mar 2016	13 Sep 2016	24 Mar 2016
BH18 0.4-0.5	SE150233.003	LB097673	17 Mar 2016	18 Mar 2016	13 Sep 2016	23 Mar 2016	13 Sep 2016	24 Mar 2016
BH20 3.3-3.4	SE150233.004	LB097673	17 Mar 2016	18 Mar 2016	13 Sep 2016	23 Mar 2016	13 Sep 2016	24 Mar 2016
BH21 0.4-0.5	SE150233.005	LB097673	17 Mar 2016	18 Mar 2016	13 Sep 2016	23 Mar 2016	13 Sep 2016	24 Mar 2016
BH21 1.4-1.5	SE150233.006	LB097673	17 Mar 2016	18 Mar 2016	13 Sep 2016	23 Mar 2016	13 Sep 2016	24 Mar 2016
BH22 0.4-0.5	SE150233.007	LB097673	17 Mar 2016	18 Mar 2016	13 Sep 2016	23 Mar 2016	13 Sep 2016	24 Mar 2016
BH22 1.1-1.2	SE150233.008	LB097673	17 Mar 2016	18 Mar 2016	13 Sep 2016	23 Mar 2016	13 Sep 2016	24 Mar 2016
BH23 0.4-0.5	SE150233.009	LB097673	17 Mar 2016	18 Mar 2016	13 Sep 2016	23 Mar 2016	13 Sep 2016	24 Mar 2016
BH23 1.4-1.5	SE150233.010	LB097673	17 Mar 2016	18 Mar 2016	13 Sep 2016	23 Mar 2016	13 Sep 2016	24 Mar 2016
BH24 0.4-0.5	SE150233.011	LB097673	17 Mar 2016	18 Mar 2016	13 Sep 2016	23 Mar 2016	13 Sep 2016	24 Mar 2016
3H24 2.4-2.5	SE150233.012	LB097674	17 Mar 2016	18 Mar 2016	13 Sep 2016	23 Mar 2016	13 Sep 2016	24 Mar 2016
3H25 0.3-0.4	SE150233.013	LB097674	17 Mar 2016	18 Mar 2016	13 Sep 2016	23 Mar 2016	13 Sep 2016	24 Mar 2016
3H27 2.3-2.4	SE150233.014	LB097674	17 Mar 2016	18 Mar 2016	13 Sep 2016	23 Mar 2016	13 Sep 2016	24 Mar 2016
QD2	SE150233.027	LB097674	17 Mar 2016	18 Mar 2016	13 Sep 2016	23 Mar 2016	13 Sep 2016	24 Mar 2016
QD3	SE150233.028	LB097674	17 Mar 2016	18 Mar 2016	13 Sep 2016	23 Mar 2016	13 Sep 2016	24 Mar 2016
RH (Total Recoverable H	lydrocarbons) in Soil						Method:	ME-(AU)-[ENV]AN4
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
3H16 0.4-0.5	SE150233.001	LB097548	17 Mar 2016	18 Mar 2016	31 Mar 2016	22 Mar 2016	01 May 2016	29 Mar 2016
3H17 0.9-1.0	SE150233.002	LB097548	17 Mar 2016	18 Mar 2016	31 Mar 2016	22 Mar 2016	01 May 2016	29 Mar 2016
3H18 0.4-0.5	SE150233.003	LB097548	17 Mar 2016	18 Mar 2016	31 Mar 2016	22 Mar 2016	01 May 2016	29 Mar 2016
3H20 3.3-3.4	SE150233.004	LB097548	17 Mar 2016	18 Mar 2016	31 Mar 2016	22 Mar 2016	01 May 2016	29 Mar 2016
3H21 0.4-0.5	SE150233.005	LB097548	17 Mar 2016	18 Mar 2016	31 Mar 2016	22 Mar 2016	01 May 2016	29 Mar 2016
3H21 1.4-1.5	SE150233.006	LB097548	17 Mar 2016	18 Mar 2016	31 Mar 2016	22 Mar 2016	01 May 2016	29 Mar 2016
3H22 0.4-0.5	SE150233.007	LB097548	17 Mar 2016	18 Mar 2016	31 Mar 2016	22 Mar 2016	01 May 2016	29 Mar 2016
BH22 1.1-1.2	SE150233.008	LB097548	17 Mar 2016	18 Mar 2016	31 Mar 2016	22 Mar 2016	01 May 2016	29 Mar 2016
3H23 0.4-0.5	SE150233.009	LB097548	17 Mar 2016	18 Mar 2016	31 Mar 2016	22 Mar 2016	01 May 2016	29 Mar 2016
BH23 1.4-1.5	SE150233.010	LB097548	17 Mar 2016	18 Mar 2016	31 Mar 2016	22 Mar 2016	01 May 2016	29 Mar 2016
3H24 0.4-0.5	SE150233.011	LB097548	17 Mar 2016	18 Mar 2016	31 Mar 2016	22 Mar 2016	01 May 2016	29 Mar 2016
BH24 2.4-2.5	SE150233.012	LB097548	17 Mar 2016	18 Mar 2016	31 Mar 2016	22 Mar 2016	01 May 2016	29 Mar 2016
BH25 0.3-0.4	SE150233.013	LB097548	17 Mar 2016	18 Mar 2016	31 Mar 2016	22 Mar 2016	01 May 2016	29 Mar 2016
BH27 2.3-2.4	SE150233.014	LB097548	17 Mar 2016	18 Mar 2016	31 Mar 2016	22 Mar 2016	01 May 2016	29 Mar 2016
QD2	SE150233.027	LB097478	17 Mar 2016	18 Mar 2016	31 Mar 2016	21 Mar 2016	30 Apr 2016	29 Mar 2016
2D3	SE150233.028	LB097478	17 Mar 2016	18 Mar 2016	31 Mar 2016	21 Mar 2016	30 Apr 2016	29 Mar 2016
OC's in Soil)-[ENV]AN433/AN4
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
3H16 0.4-0.5	SE150233.001	LB097469	17 Mar 2016	18 Mar 2016	31 Mar 2016	21 Mar 2016	30 Apr 2016	29 Mar 2016
3H17 0.9-1.0	SE150233.002	LB097469	17 Mar 2016	18 Mar 2016	31 Mar 2016	21 Mar 2016	30 Apr 2016	29 Mar 2016
3H18 0.4-0.5	SE150233.002	LB097469	17 Mar 2016	18 Mar 2016	31 Mar 2016	21 Mar 2010	30 Apr 2016	29 Mar 2016
3H20 3.3-3.4	SE150233.004	LB097469	17 Mar 2016	18 Mar 2016	31 Mar 2016	21 Mar 2016	30 Apr 2016	29 Mar 2016
3H21 0.4-0.5	SE150233.005	LB097469	17 Mar 2016	18 Mar 2016	31 Mar 2016	21 Mar 2016	30 Apr 2016	29 Mar 2016
3H21 1.4-1.5	SE150233.006	LB097469	17 Mar 2016	18 Mar 2016	31 Mar 2016	21 Mar 2016	30 Apr 2016	29 Mar 2016
BH22 0.4-0.5	SE150233.007	LB097469	17 Mar 2016	18 Mar 2016	31 Mar 2016	21 Mar 2016	30 Apr 2016	29 Mar 2016
BH22 1.1-1.2	SE150233.008	LB097469	17 Mar 2016	18 Mar 2016	31 Mar 2016	21 Mar 2016	30 Apr 2016	29 Mar 2016
3H23 0.4-0.5	SE150233.009	LB097469	17 Mar 2016	18 Mar 2016	31 Mar 2016	21 Mar 2016	30 Apr 2016	29 Mar 2016
3H23 1.4-1.5	SE150233.010	LB097469	17 Mar 2016	18 Mar 2016	31 Mar 2016	21 Mar 2016	30 Apr 2016	29 Mar 2016
3H24 0.4-0.5	SE150233.011	LB097469	17 Mar 2016	18 Mar 2016	31 Mar 2016	21 Mar 2016	30 Apr 2016	29 Mar 2016
3H24 2.4-2.5	SE150233.012	LB097469	17 Mar 2016	18 Mar 2016	31 Mar 2016	21 Mar 2016	30 Apr 2016	29 Mar 2016
3H25 0.3-0.4	SE150233.013	LB097469	17 Mar 2016	18 Mar 2016	31 Mar 2016	21 Mar 2016	30 Apr 2016	29 Mar 2016
3H27 2.3-2.4	SE150233.014	LB097469	17 Mar 2016	18 Mar 2016	31 Mar 2016	21 Mar 2016	30 Apr 2016	29 Mar 2016
QD2	SE150233.014	LB097469	17 Mar 2016	18 Mar 2016	31 Mar 2016	21 Mar 2016	30 Apr 2016	29 Mar 2016
	SE150233.027	LB097469	17 Mar 2016	18 Mar 2016	31 Mar 2016	21 Mar 2016	30 Apr 2016	29 Mar 2016
202								
2D3 2TB1	SE150233.029	LB097469	17 Mar 2016	18 Mar 2016	31 Mar 2016	21 Mar 2016	30 Apr 2016	29 Mar 2016

30/3/2016

Page 4 of 26

Method: ME (ALI) TENROANIA92/ANIA94/ANIA40

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Volatile Petroleum Hydrocarbons in Soil (continued)

Volatile Petroleum Hydrod	carbons in Soil (continued)						Method: ME-(AU)-[ENV]	AN433/AN434/AN410
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH16 0.4-0.5	SE150233.001	LB097469	17 Mar 2016	18 Mar 2016	31 Mar 2016	21 Mar 2016	30 Apr 2016	29 Mar 2016
BH17 0.9-1.0	SE150233.002	LB097469	17 Mar 2016	18 Mar 2016	31 Mar 2016	21 Mar 2016	30 Apr 2016	29 Mar 2016
BH18 0.4-0.5	SE150233.003	LB097469	17 Mar 2016	18 Mar 2016	31 Mar 2016	21 Mar 2016	30 Apr 2016	29 Mar 2016
BH20 3.3-3.4	SE150233.004	LB097469	17 Mar 2016	18 Mar 2016	31 Mar 2016	21 Mar 2016	30 Apr 2016	29 Mar 2016
BH21 0.4-0.5	SE150233.005	LB097469	17 Mar 2016	18 Mar 2016	31 Mar 2016	21 Mar 2016	30 Apr 2016	29 Mar 2016
BH21 1.4-1.5	SE150233.006	LB097469	17 Mar 2016	18 Mar 2016	31 Mar 2016	21 Mar 2016	30 Apr 2016	29 Mar 2016
BH22 0.4-0.5	SE150233.007	LB097469	17 Mar 2016	18 Mar 2016	31 Mar 2016	21 Mar 2016	30 Apr 2016	29 Mar 2016
BH22 1.1-1.2	SE150233.008	LB097469	17 Mar 2016	18 Mar 2016	31 Mar 2016	21 Mar 2016	30 Apr 2016	29 Mar 2016
BH23 0.4-0.5	SE150233.009	LB097469	17 Mar 2016	18 Mar 2016	31 Mar 2016	21 Mar 2016	30 Apr 2016	29 Mar 2016
BH23 1.4-1.5	SE150233.010	LB097469	17 Mar 2016	18 Mar 2016	31 Mar 2016	21 Mar 2016	30 Apr 2016	29 Mar 2016
BH24 0.4-0.5	SE150233.011	LB097469	17 Mar 2016	18 Mar 2016	31 Mar 2016	21 Mar 2016	30 Apr 2016	29 Mar 2016
BH24 2.4-2.5	SE150233.012	LB097469	17 Mar 2016	18 Mar 2016	31 Mar 2016	21 Mar 2016	30 Apr 2016	29 Mar 2016
BH25 0.3-0.4	SE150233.013	LB097469	17 Mar 2016	18 Mar 2016	31 Mar 2016	21 Mar 2016	30 Apr 2016	29 Mar 2016
BH27 2.3-2.4	SE150233.014	LB097469	17 Mar 2016	18 Mar 2016	31 Mar 2016	21 Mar 2016	30 Apr 2016	29 Mar 2016
QD2	SE150233.027	LB097469	17 Mar 2016	18 Mar 2016	31 Mar 2016	21 Mar 2016	30 Apr 2016	29 Mar 2016
QD3	SE150233.028	LB097469	17 Mar 2016	18 Mar 2016	31 Mar 2016	21 Mar 2016	30 Apr 2016	29 Mar 2016
QTB1	SE150233.029	LB097469	17 Mar 2016	18 Mar 2016	31 Mar 2016	21 Mar 2016	30 Apr 2016	29 Mar 2016

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

OC Pesticides in Soil				Method: ME-(AU)-	ENVJAN400/AN
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Tetrachloro-m-xylene (TCMX) (Surrogate)	BH16 0.4-0.5	SE150233.001	%	60 - 130%	95
	BH18 0.4-0.5	SE150233.003	%	60 - 130%	91
	BH21 0.4-0.5	SE150233.005	%	60 - 130%	96
	BH22 0.4-0.5	SE150233.007	%	60 - 130%	96
	BH23 0.4-0.5	SE150233.009	%	60 - 130%	97
	BH24 0.4-0.5	SE150233.011	%	60 - 130%	91
	BH25 0.3-0.4	SE150233.013	%	60 - 130%	101
P Pesticides in Soil				Method: ME-(AU)-	ENVJAN400/AN
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery
2-fluorobiphenyl (Surrogate)	BH16 0.4-0.5	SE150233.001	%	60 - 130%	86
	BH18 0.4-0.5	SE150233.003	%	60 - 130%	90
	BH21 0.4-0.5	SE150233.005	%	60 - 130%	92
	BH22 0.4-0.5	SE150233.007	%	60 - 130%	86
	BH23 0.4-0.5	SE150233.009	%	60 - 130%	90
	BH24 0.4-0.5	SE150233.011	%	60 - 130%	78
	BH25 0.3-0.4	SE150233.013	%	60 - 130%	94
d14-p-terphenyl (Surrogate)	BH16 0.4-0.5	SE150233.001	%	60 - 130%	112
	BH18 0.4-0.5	SE150233.003	%	60 - 130%	106
	BH21 0.4-0.5	SE150233.005	%	60 - 130%	116
	BH22 0.4-0.5	SE150233.007	%	60 - 130%	112
	BH23 0.4-0.5	SE150233.009	%	60 - 130%	108
	BH24 0.4-0.5	SE150233.011	%	60 - 130%	94
	BH25 0.3-0.4	SE150233.013	%	60 - 130%	112
AH (Polynuclear Aromatic Hydrocarbons) in Soll				Method: M	E-(AU)-[ENV]A
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery
2-fluorobiphenyl (Surrogate)	BH16 0.4-0.5	SE150233.001	%	70 - 130%	86
z-ndorobiphenyi (Sunogate)	BH17 0.9-1.0	SE150233.007	%	70 - 130%	80
	BH18 0.4-0.5	SE150233.002	%	70 - 130%	90
		SE150233.004	%		84
	BH20 3.3-3.4			70 - 130%	
	BH21 0.4-0.5	SE150233.005 SE150233.006	%	70 - 130% 70 - 130%	92
	BH21 1.4-1.5		%		86
	BH22 0.4-0.5	SE150233.007		70 - 130%	86
	BH22 1.1-1.2	SE150233.008	%	70 - 130%	86
	BH23 0.4-0.5 BH23 1.4-1.5	SE150233.009 SE150233.010	%	70 - 130% 70 - 130%	90 82
		SE150233.010	%	70 - 130%	78
	BH24 0.4-0.5		%		82
	BH24 2.4-2.5 BH25 0.3-0.4	SE150233.012		70 - 130%	
		SE150233.013	%	70 - 130%	94
	BH27 2.3-2.4	SE150233.014	%	70 - 130%	84
d14-p-terphenyl (Surrogate)	BH16 0.4-0.5	SE150233.001	%	70 - 130%	112
	BH17 0.9-1.0	SE150233.002	%	70 - 130%	110
	BH18 0.4-0.5	SE150233.003		70 - 130%	106
	BH20 3.3-3.4	SE150233.004	%	70 - 130%	110
	BH21 0.4-0.5	SE150233.005	%	70 - 130%	116
	BH21 1.4-1.5	SE150233.006	%	70 - 130%	112
		SE150233.007	%	70 - 130%	112
	BH22 0.4-0.5		0/		118
	BH22 1.1-1.2	SE150233.008	%	70 - 130%	
	BH22 1.1-1.2 BH23 0.4-0.5	SE150233.008 SE150233.009	%	70 - 130%	108
	BH22 1.1-1.2 BH23 0.4-0.5 BH23 1.4-1.5	SE150233.008 SE150233.009 SE150233.010	%	70 - 130% 70 - 130%	108 112
	BH22 1.1-1.2 BH23 0.4-0.5 BH23 1.4-1.5 BH24 0.4-0.5	SE150233.008 SE150233.009 SE150233.010 SE150233.011	% % %	70 - 130% 70 - 130% 70 - 130%	108 112 94
	BH22 1.1-1.2 BH23 0.4-0.5 BH23 1.4-1.5 BH24 0.4-0.5 BH24 2.4-2.5	SE150233.008 SE150233.009 SE150233.010 SE150233.011 SE150233.011 SE150233.012	% % %	70 - 130% 70 - 130% 70 - 130% 70 - 130%	108 112 94 114
	BH22 1.1-1.2 BH23 0.4-0.5 BH23 1.4-1.5 BH24 0.4-0.5 BH24 2.4-2.5 BH25 0.3-0.4	SE150233.008 SE150233.009 SE150233.010 SE150233.011 SE150233.012 SE150233.013	% % % %	70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130%	108 112 94 114 112
	BH22 1.1-1.2 BH23 0.4-0.5 BH23 1.4-1.5 BH24 0.4-0.5 BH24 2.4-2.5 BH25 0.3-0.4 BH27 2.3-2.4	SE150233.008 SE150233.009 SE150233.010 SE150233.011 SE150233.012 SE150233.013 SE150233.014	% % % % %	70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130%	108 112 94 114 112 112
d5-nitrobenzene (Surrogate)	BH22 1.1-1.2 BH23 0.4-0.5 BH23 1.4-1.5 BH24 0.4-0.5 BH24 2.4-2.5 BH25 0.3-0.4 BH27 2.3-2.4 BH16 0.4-0.5	SE150233.008 SE150233.009 SE150233.010 SE150233.011 SE150233.012 SE150233.013 SE150233.014 SE150233.001	% % % % %	70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130%	108 112 94 114 112 114 88
d5-nitrobenzene (Surrogate)	BH22 1.1-1.2 BH23 0.4-0.5 BH23 1.4-1.5 BH24 0.4-0.5 BH24 2.4-2.5 BH25 0.3-0.4 BH27 2.3-2.4 BH16 0.4-0.5 BH17 0.9-1.0	SE150233.008 SE150233.009 SE150233.010 SE150233.011 SE150233.012 SE150233.013 SE150233.014 SE150233.001 SE150233.002	% % % % %	70 - 130% 70 - 130%	108 112 94 114 112 114 88 88 86
d5-nitrobenzene (Surrogate)	BH22 1.1-1.2 BH23 0.4-0.5 BH23 1.4-1.5 BH24 0.4-0.5 BH24 2.4-2.5 BH25 0.3-0.4 BH27 2.3-2.4 BH16 0.4-0.5 BH17 0.9-1.0 BH18 0.4-0.5	SE150233.008 SE150233.009 SE150233.010 SE150233.011 SE150233.012 SE150233.013 SE150233.014 SE150233.001 SE150233.002 SE150233.003	% % % % % %	70 - 130% 70 - 130%	108 112 94 114 112 114 88 86 86 80
d5-nitrobenzene (Surrogate)	BH22 1.1-1.2 BH23 0.4-0.5 BH23 1.4-1.5 BH24 0.4-0.5 BH24 2.4-2.5 BH25 0.3-0.4 BH27 2.3-2.4 BH16 0.4-0.5 BH17 0.9-1.0 BH18 0.4-0.5 BH20 3.3-3.4	SE150233.008 SE150233.009 SE150233.010 SE150233.011 SE150233.012 SE150233.013 SE150233.014 SE150233.001 SE150233.002 SE150233.003 SE150233.004	% % % % % % %	70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130%	108 112 94 114 112 114 88 86 86 80 76
d5-nitrobenzene (Surrogate)	BH22 1.1-1.2 BH23 0.4-0.5 BH23 1.4-1.5 BH24 0.4-0.5 BH24 2.4-2.5 BH25 0.3-0.4 BH27 2.3-2.4 BH16 0.4-0.5 BH17 0.9-1.0 BH18 0.4-0.5	SE150233.008 SE150233.009 SE150233.010 SE150233.011 SE150233.012 SE150233.013 SE150233.014 SE150233.001 SE150233.002 SE150233.003	% % % % % %	70 - 130% 70 - 130%	108 112 94 114 112 114 88 86 86 80

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

PAH (Polynuclear Aromatic Hydrocarbons) in Soil (continued)

Method: ME-(AU)-[ENV]AN420

Sample Name	Sample Number	Units	Criteria	Recovery %
BH22 1.1-1.2	SE150233.008	%	70 - 130%	78
BH23 0.4-0.5	SE150233.009	%	70 - 130%	80
BH23 1.4-1.5	SE150233.010	%	70 - 130%	90
BH24 0.4-0.5	SE150233.011	%	70 - 130%	82
BH24 2.4-2.5	SE150233.012	%	70 - 130%	80
BH25 0.3-0.4	SE150233.013	%	70 - 130%	80
BH27 2.3-2.4	SE150233.014	%	70 - 130%	78
BH27 2.3-2.4	SE150233.014	%		E
	BH22 1.1-1.2 BH23 0.4-0.5 BH23 1.4-1.5 BH24 0.4-0.5 BH24 2.4-2.5 BH25 0.3-0.4	BH23 0.4-0.5 SE150233.009 BH23 1.4-1.5 SE150233.010 BH24 0.4-0.5 SE150233.011 BH24 2.4-2.5 SE150233.012 BH25 0.3-0.4 SE150233.013	BH22 1.1.1.2 SE150233.008 % BH23 0.4-0.5 SE150233.009 % BH23 1.4-1.5 SE150233.010 % BH24 0.4-0.5 SE150233.011 % BH24 2.4-2.5 SE150233.012 % BH25 0.3-0.4 SE150233.013 %	BH22 1.1.1.2 SE150233.008 % 70 - 130% BH23 0.4-0.5 SE150233.009 % 70 - 130% BH23 1.4-1.5 SE150233.010 % 70 - 130% BH24 0.4-0.5 SE150233.011 % 70 - 130% BH24 2.4-2.5 SE150233.012 % 70 - 130% BH25 0.3-0.4 SE150233.013 % 70 - 130%

				Mealoa. ML-(/10)-	
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Tetrachloro-m-xylene (TCMX) (Surrogate)	BH16 0.4-0.5	SE150233.001	%	60 - 130%	95
	BH18 0.4-0.5	SE150233.003	%	60 - 130%	91
	BH21 0.4-0.5	SE150233.005	%	60 - 130%	96
	BH22 0.4-0.5	SE150233.007	%	60 - 130%	96
	BH23 0.4-0.5	SE150233.009	%	60 - 130%	97
	BH24 0.4-0.5	SE150233.011	%	60 - 130%	91
	BH25 0.3-0.4	SE150233.013	%	60 - 130%	101

VOC's in Soil				Method: ME-(AU)-	[ENV]AN433/AN434
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	BH16 0.4-0.5	SE150233.001	%	60 - 130%	98
	BH17 0.9-1.0	SE150233.002	%	60 - 130%	93
	BH18 0.4-0.5	SE150233.003	%	60 - 130%	98
	BH20 3.3-3.4	SE150233.004	%	60 - 130%	103
	BH21 0.4-0.5	SE150233.005	%	60 - 130%	83
	BH21 1.4-1.5	SE150233.006	%	60 - 130%	99
	BH22 0.4-0.5	SE150233.007	%	60 - 130%	108
	BH22 1.1-1.2	SE150233.008	%	60 - 130%	98
	BH23 0.4-0.5	SE150233.009	%	60 - 130%	98
	BH23 1.4-1.5	SE150233.010	%	60 - 130%	99
	BH24 0.4-0.5	SE150233.011	%	60 - 130%	110
	BH24 2.4-2.5	SE150233.012	%	60 - 130%	99
	BH25 0.3-0.4	SE150233.013	%	60 - 130%	76
	BH27 2.3-2.4	SE150233.014	%	60 - 130%	96
	QD2	SE150233.027	%	60 - 130%	117
	QD3	SE150233.028	%	60 - 130%	113
	QTB1	SE150233.029	%	60 - 130%	71
d4-1,2-dichloroethane (Surrogate)	BH16 0.4-0.5	SE150233.001	%	60 - 130%	129
1,2-dichloroethane (Surrogate)	BH17 0.9-1.0	SE150233.002	%	60 - 130%	124
	BH18 0.4-0.5	SE150233.003	%	60 - 130%	114
	BH20 3.3-3.4	SE150233.004	%	60 - 130%	129
	BH21 0.4-0.5	SE150233.005	%	60 - 130%	121
	BH21 1.4-1.5	SE150233.006	%	60 - 130%	120
	BH22 0.4-0.5	SE150233.007	%	60 - 130%	126
	BH22 1.1-1.2	SE150233.008	%	60 - 130%	122
	BH23 0.4-0.5	SE150233.009	%	60 - 130%	125
	BH23 1.4-1.5	SE150233.010	%	60 - 130%	123
	BH24 0.4-0.5	SE150233.011	%	60 - 130%	119
	BH24 2.4-2.5	SE150233.012	%	60 - 130%	121
	BH25 0.3-0.4	SE150233.013	%	60 - 130%	101
	BH27 2.3-2.4	SE150233.014	%	60 - 130%	121
	QD2	SE150233.027	%	60 - 130%	127
	QD3	SE150233.028	%	60 - 130%	119
	QTB1	SE150233.029	%	60 - 130%	97
d8-toluene (Surrogate)	BH16 0.4-0.5	SE150233.001	%	60 - 130%	115
	BH17 0.9-1.0	SE150233.002	%	60 - 130%	81
	BH18 0.4-0.5	SE150233.003	%	60 - 130%	121
	BH20 3.3-3.4	SE150233.004	%	60 - 130%	92
	BH21 0.4-0.5	SE150233.005	%	60 - 130%	106
	BH21 1.4-1.5	SE150233.006	%	60 - 130%	93
	BH22 0.4-0.5	SE150233.007	%	60 - 130%	126
	BH22 1.1-1.2	SE150233.008	%	60 - 130%	88

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

OC's in Soll (continued)				Method: ME-(AU)-[
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery
d8-toluene (Surrogate)	BH23 0.4-0.5	SE150233.009	%	60 - 130%	112
	BH23 1.4-1.5	SE150233.010	%	60 - 130%	93
	BH24 0.4-0.5	SE150233.011	%	60 - 130%	128
	BH24 2.4-2.5	SE150233.012	%	60 - 130%	90
	BH25 0.3-0.4	SE150233.013	%	60 - 130%	86
	BH27 2.3-2.4	SE150233.014	%	60 - 130%	91
	QD2	SE150233.027	%	60 - 130%	127
	QD3	SE150233.028	%	60 - 130%	128
	QTB1	SE150233.029	%	60 - 130%	82
Dibromonuorometriane (Surrogate)	BH16 0.4-0.5	SE150233.001	%	60 - 130%	106
	BH17 0.9-1.0	SE150233.002	%	60 - 130%	101
	BH18 0.4-0.5	SE150233.003	%	60 - 130%	110
	BH20 3.3-3.4	SE150233.004	%	60 - 130%	107
	BH21 0.4-0.5	SE150233.005	%	60 - 130%	97
	BH21 1.4-1.5	SE150233.006	%	60 - 130%	110
Dibromofluoromethane (Surrogate) Dibromofluoromethane (Surrogate) Addate Petroleum Hydrocarbons in Soli Parameter Bromofluorobenzene (Surrogate)	BH22 0.4-0.5	SE150233.007	%	60 - 130%	126
	BH22 1.1-1.2	SE150233.008	%	60 - 130%	108
	BH23 0.4-0.5	SE150233.009	%	60 - 130%	104
	BH23 1.4-1.5	SE150233.010	%	60 - 130%	116
	BH24 0.4-0.5	SE150233.011	%	60 - 130%	119
	BH24 2.4-2.5	SE150233.012	%	60 - 130%	102
	BH25 0.3-0.4	SE150233.013	%	60 - 130%	79
	BH27 2.3-2.4	SE150233.014	%	60 - 130%	111
	QD2	SE150233.027	%	60 - 130%	125
	QD3	SE150233.028	%	60 - 130%	118
	QTB1	SE150233.029	%	60 - 130%	74
	QIBI	3E130233.029	/0	00 - 130 %	
olatile Petroleum Hydrocarbons in Soil			Metho	od: ME-(AU)-[ENV]AN	1433/AN434/
	Sample Name	Sample Number	Methe Units	od: ME-(AU)-[ENV]AN Criteria	
arameter	Sample Name BH16 0.4-0.5	Sample Number SE150233.001			
arameter			Units	Criteria	Recover
arameter	BH16 0.4-0.5 BH17 0.9-1.0	SE150233.001 SE150233.002	Units %	Criteria 60 - 130% 60 - 130%	Recover 98 93
arameter	BH16 0.4-0.5 BH17 0.9-1.0 BH18 0.4-0.5	SE150233.001 SE150233.002 SE150233.003	Units % % %	Criteria 60 - 130% 60 - 130% 60 - 130%	Recover 98 93 98
arameter	BH16 0.4-0.5 BH17 0.9-1.0 BH18 0.4-0.5 BH20 3.3-3.4	SE150233.001 SE150233.002 SE150233.003 SE150233.004	Units % % %	Criteria 60 - 130% 60 - 130% 60 - 130% 60 - 130%	Recover 98 93 98 103
arameter	BH16 0.4-0.5 BH17 0.9-1.0 BH18 0.4-0.5 BH20 3.3-3.4 BH21 0.4-0.5	SE150233.001 SE150233.002 SE150233.003 SE150233.004 SE150233.005	Units % % % %	Criteria 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130%	Recover 98 93 98 103 83
arameter	BH16 0.4-0.5 BH17 0.9-1.0 BH18 0.4-0.5 BH20 3.3-3.4 BH21 0.4-0.5 BH21 1.4-1.5	SE150233.001 SE150233.002 SE150233.003 SE150233.004 SE150233.005 SE150233.006	Units % % % % %	Criteria 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130%	Recover 98 93 98 103 83 99
arameter	BH16 0.4-0.5 BH17 0.9-1.0 BH18 0.4-0.5 BH20 3.3-3.4 BH21 0.4-0.5 BH21 1.4-1.5 BH22 0.4-0.5	SE150233.001 SE150233.002 SE150233.003 SE150233.004 SE150233.005 SE150233.006 SE150233.007	Units % % % % %	Criteria 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130%	Recover 98 93 98 103 83 99 108
arameter	BH16 0.4-0.5 BH17 0.9-1.0 BH18 0.4-0.5 BH20 3.3-3.4 BH21 0.4-0.5 BH21 1.4-1.5 BH22 0.4-0.5 BH22 1.1-1.2	SE150233.001 SE150233.002 SE150233.003 SE150233.004 SE150233.005 SE150233.006 SE150233.007 SE150233.008	Units % % % % %	Criteria 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130%	Recover 98 93 98 103 83 99 108 98
arameter	BH16 0.4-0.5 BH17 0.9-1.0 BH18 0.4-0.5 BH20 3.3-3.4 BH21 0.4-0.5 BH21 1.4-1.5 BH22 0.4-0.5 BH22 1.1-1.2 BH23 0.4-0.5	SE150233.001 SE150233.002 SE150233.003 SE150233.004 SE150233.005 SE150233.006 SE150233.007 SE150233.008 SE150233.009	Units % % % % % %	Criteria 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130%	Recover 98 93 98 103 83 99 108 98 98
arameter	BH16 0.4-0.5 BH17 0.9-1.0 BH18 0.4-0.5 BH20 3.3-3.4 BH21 0.4-0.5 BH22 0.4-0.5 BH22 0.4-0.5 BH22 1.1-1.2 BH23 0.4-0.5 BH23 1.4-1.5	SE150233.001 SE150233.002 SE150233.003 SE150233.004 SE150233.005 SE150233.006 SE150233.007 SE150233.008 SE150233.009 SE150233.010	Units % % % % % %	Criteria 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130%	Recover 98 93 98 103 83 99 108 98 98 99
arameter	BH16 0.4-0.5 BH17 0.9-1.0 BH18 0.4-0.5 BH20 3.3-3.4 BH21 0.4-0.5 BH21 1.4-1.5 BH22 0.4-0.5 BH22 1.1-1.2 BH23 0.4-0.5	SE150233.001 SE150233.002 SE150233.003 SE150233.004 SE150233.005 SE150233.006 SE150233.007 SE150233.008 SE150233.009	Units % % % % % % %	Criteria 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130%	Recover 98 93 98 103 83 99 108 98 98
arameter	BH16 0.4-0.5 BH17 0.9-1.0 BH18 0.4-0.5 BH20 3.3-3.4 BH21 0.4-0.5 BH22 0.4-0.5 BH22 0.4-0.5 BH22 1.1-1.2 BH23 0.4-0.5 BH23 1.4-1.5	SE150233.001 SE150233.002 SE150233.003 SE150233.004 SE150233.005 SE150233.006 SE150233.007 SE150233.008 SE150233.009 SE150233.010	Units % % % % % % %	Criteria 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130%	Recover 98 93 98 103 83 99 108 98 98 99
arameter	BH16 0.4-0.5 BH17 0.9-1.0 BH18 0.4-0.5 BH20 3.3-3.4 BH21 0.4-0.5 BH21 1.4-1.5 BH22 0.4-0.5 BH22 1.1-1.2 BH23 0.4-0.5 BH23 1.4-1.5 BH24 0.4-0.5	SE150233.001 SE150233.002 SE150233.003 SE150233.004 SE150233.005 SE150233.006 SE150233.007 SE150233.008 SE150233.009 SE150233.010 SE150233.011	Units % % % % % % %	Criteria 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130%	Recover 98 93 98 103 83 99 108 98 98 99 103
arameter	BH16 0.4-0.5 BH17 0.9-1.0 BH18 0.4-0.5 BH20 3.3-3.4 BH21 0.4-0.5 BH21 1.4-1.5 BH22 0.4-0.5 BH22 1.1-1.2 BH23 0.4-0.5 BH23 1.4-1.5 BH24 0.4-0.5 BH24 2.4-2.5	SE150233.001 SE150233.002 SE150233.003 SE150233.004 SE150233.005 SE150233.006 SE150233.007 SE150233.008 SE150233.009 SE150233.010 SE150233.011 SE150233.012	Units % % % % % % %	Criteria 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130%	Recover 98 93 98 103 83 99 108 98 99 101 99 103
arameter	BH16 0.4-0.5 BH17 0.9-1.0 BH18 0.4-0.5 BH20 3.3-3.4 BH21 0.4-0.5 BH21 0.4-0.5 BH22 0.4-0.5 BH22 0.4-0.5 BH23 0.4-0.5 BH23 0.4-0.5 BH24 0.4-0.5 BH24 0.4-0.5 BH25 0.3-0.4	SE150233.001 SE150233.002 SE150233.003 SE150233.004 SE150233.005 SE150233.006 SE150233.007 SE150233.008 SE150233.009 SE150233.010 SE150233.011 SE150233.012 SE150233.013	Units % % % % % % % % %	Criteria 60 - 130%	Recover 98 93 98 103 83 99 108 98 98 98 98 98 99 101 99 110 99 76
arameter	BH16 0.4-0.5 BH17 0.9-1.0 BH18 0.4-0.5 BH20 3.3-3.4 BH21 0.4-0.5 BH22 0.4-0.5 BH22 0.4-0.5 BH23 0.4-0.5 BH23 0.4-0.5 BH23 1.4-1.5 BH24 2.4-2.5 BH25 0.3-0.4 BH27 2.3-2.4	SE150233.001 SE150233.002 SE150233.003 SE150233.004 SE150233.005 SE150233.006 SE150233.007 SE150233.008 SE150233.009 SE150233.010 SE150233.011 SE150233.012 SE150233.013 SE150233.014	Units % % % % % % % % % %	Criteria 60 - 130%	Recover 98 93 98 103 83 99 108 98 99 101 99 102 99 103 98 99 110 99 76 96
arameter Bromofluorobenzene (Surrogate)	BH16 0.4-0.5 BH17 0.9-1.0 BH18 0.4-0.5 BH20 3.3-3.4 BH21 0.4-0.5 BH22 0.4-0.5 BH22 0.4-0.5 BH22 1.1-1.2 BH23 0.4-0.5 BH23 1.4-1.5 BH24 2.4-2.5 BH25 0.3-0.4 BH27 2.3-2.4 QD2	SE150233.001 SE150233.002 SE150233.003 SE150233.004 SE150233.005 SE150233.006 SE150233.007 SE150233.008 SE150233.009 SE150233.010 SE150233.011 SE150233.012 SE150233.013 SE150233.014 SE150233.027	Units % % % % % % % % % %	Criteria 60 - 130%	Recover 98 93 98 103 83 99 108 98 99 110 99 110 99 110 99 110 99 76 96 117
arameter Bromofluorobenzene (Surrogate)	BH16 0.4-0.5 BH17 0.9-1.0 BH18 0.4-0.5 BH20 3.3-3.4 BH21 0.4-0.5 BH22 0.4-0.5 BH22 0.4-0.5 BH22 1.1-1.2 BH23 0.4-0.5 BH23 1.4-1.5 BH24 2.4-2.5 BH25 0.3-0.4 BH27 2.3-2.4 QD2 QD3	SE150233.001 SE150233.002 SE150233.003 SE150233.004 SE150233.005 SE150233.006 SE150233.007 SE150233.008 SE150233.009 SE150233.010 SE150233.011 SE150233.012 SE150233.013 SE150233.014 SE150233.027 SE150233.028	Units % % % % % % % % % % %	Criteria 60 - 130%	Recover 98 93 98 103 83 99 108 98 99 110 99 110 99 110 99 110 99 110 99 110 99 1117 113
arameter Bromofluorobenzene (Surrogate)	BH16 0.4-0.5 BH17 0.9-1.0 BH18 0.4-0.5 BH20 3.3-3.4 BH21 0.4-0.5 BH22 0.4-0.5 BH22 0.4-0.5 BH22 1.1-1.2 BH23 0.4-0.5 BH23 1.4-1.5 BH24 0.4-0.5 BH24 0.4-0.5 BH25 0.3-0.4 BH27 2.3-2.4 QD2 QD3 BH16 0.4-0.5	SE150233.001 SE150233.002 SE150233.003 SE150233.004 SE150233.005 SE150233.006 SE150233.007 SE150233.008 SE150233.009 SE150233.010 SE150233.010 SE150233.011 SE150233.012 SE150233.013 SE150233.014 SE150233.028 SE150233.001	Units % % % % % % % % % % % %	Criteria 60 - 130%	Recover 98 93 98 103 83 99 108 98 98 99 110 99 76 96 117 113 129
arameter sromofluorobenzene (Surrogate)	BH16 0.4-0.5 BH17 0.9-1.0 BH18 0.4-0.5 BH20 3.3-3.4 BH21 0.4-0.5 BH21 0.4-0.5 BH22 0.4-0.5 BH22 0.4-0.5 BH23 0.4-0.5 BH23 1.4-1.5 BH24 0.4-0.5 BH24 2.4-2.5 BH25 0.3-0.4 BH27 2.3-2.4 QD2 QD3 BH16 0.4-0.5 BH18 0.4-0.5	SE150233.001 SE150233.002 SE150233.003 SE150233.004 SE150233.005 SE150233.006 SE150233.007 SE150233.008 SE150233.009 SE150233.009 SE150233.009 SE150233.010 SE150233.011 SE150233.012 SE150233.013 SE150233.014 SE150233.028 SE150233.001 SE150233.001 SE150233.001	Units % % % % % % % % % % % % %	Criteria 60 - 130%	Recover 98 93 98 103 83 99 108 98 99 110 99 76 96 117 113 129 124 114
arameter sromofluorobenzene (Surrogate)	BH16 0.4-0.5 BH17 0.9-1.0 BH18 0.4-0.5 BH20 3.3-3.4 BH21 0.4-0.5 BH22 0.4-0.5 BH22 0.4-0.5 BH22 1.1-1.2 BH23 0.4-0.5 BH23 1.4-1.5 BH24 2.4-2.5 BH25 0.3-0.4 BH27 2.3-2.4 QD2 QD3 BH16 0.4-0.5 BH17 0.9-1.0 BH18 0.4-0.5 BH20 3.3-3.4	SE150233.001 SE150233.002 SE150233.003 SE150233.004 SE150233.005 SE150233.006 SE150233.007 SE150233.008 SE150233.009 SE150233.010 SE150233.010 SE150233.011 SE150233.012 SE150233.013 SE15023.027 SE15023.028 SE150233.001 SE150233.002 SE150233.003 SE150233.004	Units % % % % % % % % % % % % % % % % % %	Criteria 60 - 130%	Recover 98 93 98 103 83 99 108 98 99 110 99 76 96 117 113 129 124 114 129
arameter Iromofluorobenzene (Surrogate)	BH16 0.4-0.5 BH17 0.9-1.0 BH18 0.4-0.5 BH20 3.3-3.4 BH21 0.4-0.5 BH22 0.4-0.5 BH22 0.4-0.5 BH22 1.1-1.2 BH23 0.4-0.5 BH23 1.4-1.5 BH24 0.4-0.5 BH24 2.4-2.5 BH25 0.3-0.4 BH27 2.3-2.4 QD2 QD3 BH16 0.4-0.5 BH17 0.9-1.0 BH18 0.4-0.5 BH20 3.3-3.4 BH21 0.4-0.5	SE150233.001 SE150233.002 SE150233.003 SE150233.004 SE150233.005 SE150233.006 SE150233.007 SE150233.008 SE150233.009 SE150233.009 SE150233.010 SE150233.011 SE150233.012 SE150233.013 SE15023.027 SE150233.028 SE150233.001 SE150233.002 SE150233.003 SE150233.004 SE150233.005	Units % % % % % % % % % % % % % % % % % % %	Criteria 60 - 130%	Recover 98 93 98 103 83 99 108 98 99 110 99 110 99 1110 99 112 113 129 124 114 129 121
arameter iromofluorobenzene (Surrogate)	BH16 0.4-0.5 BH17 0.9-1.0 BH18 0.4-0.5 BH20 3.3-3.4 BH21 0.4-0.5 BH21 0.4-0.5 BH22 0.4-0.5 BH22 0.4-0.5 BH23 1.4-1.5 BH23 0.4-0.5 BH24 0.4-0.5 BH24 0.4-0.5 BH25 0.3-0.4 BH27 2.3-2.4 QD2 QD3 BH16 0.4-0.5 BH20 3.3-3.4 BH21 0.4-0.5 BH21 0.4-0.5	SE150233.001 SE150233.002 SE150233.003 SE150233.004 SE150233.005 SE150233.006 SE150233.007 SE150233.008 SE150233.009 SE150233.010 SE150233.011 SE150233.012 SE150233.013 SE150233.014 SE150233.027 SE150233.028 SE150233.001 SE150233.002 SE15023.003 SE15023.003 SE15023.004 SE150233.005 SE150233.006	Units % % % % % % % % % % % % % % % % % % %	Criteria 60 - 130%	Recover 98 93 98 103 83 99 108 98 99 110 99 110 99 110 99 76 96 117 113 129 124 114 129 121 120
arameter Iromofluorobenzene (Surrogate)	BH16 0.4-0.5 BH17 0.9-1.0 BH18 0.4-0.5 BH20 3.3-3.4 BH21 0.4-0.5 BH21 0.4-0.5 BH22 0.4-0.5 BH22 0.4-0.5 BH22 1.1-1.2 BH23 0.4-0.5 BH24 0.4-0.5 BH24 0.4-0.5 BH24 0.4-0.5 BH27 2.3-2.4 QD2 QD3 BH16 0.4-0.5 BH20 0.3-3.4 BH21 0.4-0.5 BH20 0.3-3.4 BH21 0.4-0.5	SE150233.001 SE150233.002 SE150233.003 SE150233.004 SE150233.005 SE150233.006 SE150233.007 SE150233.008 SE150233.009 SE150233.010 SE150233.011 SE150233.012 SE150233.013 SE150233.014 SE150233.027 SE150233.013 SE150233.028 SE150233.001 SE150233.002 SE150233.003 SE150233.004 SE150233.005 SE150233.006 SE150233.007	Units % % % % % % % % % % % % % % % % % % %	Criteria 60 - 130%	Recover 98 93 98 103 83 99 108 98 99 110 99 110 99 110 99 110 99 111 129 124 114 129 121 120 121
arameter sromofluorobenzene (Surrogate)	BH16 0.4-0.5 BH17 0.9-1.0 BH18 0.4-0.5 BH20 3.3-3.4 BH21 0.4-0.5 BH21 0.4-0.5 BH22 0.4-0.5 BH22 0.4-0.5 BH23 0.4-0.5 BH23 0.4-0.5 BH24 0.4-0.5 BH24 0.4-0.5 BH24 0.4-0.5 BH24 0.4-0.5 BH24 0.4-0.5 BH24 0.4-0.5 BH25 0.3-0.4 BH27 2.3-2.4 QD2 QD3 BH16 0.4-0.5 BH20 0.3-3.4 BH21 0.4-0.5 BH22 0.4-0.5 BH22 0.4-0.5 BH22 0.4-0.5 BH22 0.4-0.5	SE150233.001 SE150233.002 SE150233.003 SE150233.004 SE150233.005 SE150233.006 SE150233.007 SE150233.008 SE150233.009 SE150233.010 SE150233.010 SE150233.011 SE150233.012 SE150233.013 SE150233.014 SE150233.027 SE150233.028 SE150233.001 SE150233.002 SE150233.003 SE150233.004 SE150233.005 SE150233.006 SE150233.007 SE150233.007 SE150233.007 SE150233.007	Units % % % % % % % % % % % % % % % % % % %	Criteria 60 - 130%	Recover 98 93 98 103 83 99 108 98 99 110 99 110 99 110 99 110 99 111 129 124 112 120 121 120 126 122
arameter Bromofluorobenzene (Surrogate)	BH16 0.4-0.5 BH17 0.9-1.0 BH18 0.4-0.5 BH20 3.3-3.4 BH21 0.4-0.5 BH21 1.4-1.5 BH22 0.4-0.5 BH22 1.1-1.2 BH23 0.4-0.5 BH24 2.4-2.5 BH25 0.3-0.4 BH27 2.3-2.4 QD2 QD3 BH18 0.4-0.5 BH21 0.4-0.5 BH24 2.4-2.5 BH25 0.3-0.4 BH27 2.3-2.4 QD2 QD3 BH16 0.4-0.5 BH21 1.4-1.5 BH20 3.3-3.4 BH21 1.4-1.5 BH21 0.4-0.5 BH21 0.4-0.5 BH21 1.4-1.5 BH22 0.4-0.5 BH21 1.4-1.5 BH22 0.4-0.5	SE150233.001 SE150233.002 SE150233.003 SE150233.004 SE150233.005 SE150233.006 SE150233.007 SE150233.008 SE150233.009 SE150233.010 SE150233.011 SE150233.012 SE150233.013 SE150233.014 SE150233.028 SE150233.010 SE150233.028 SE150233.001 SE150233.002 SE150233.003 SE150233.004 SE150233.005 SE150233.006 SE150233.007 SE150233.008 SE150233.009	Units % % % % % % % % % % % % % % % % % % %	Criteria 60 - 130%	Recover 98 93 98 103 83 99 108 98 99 110 99 110 99 110 99 110 99 121 120 121 120 122 122 125
arameter Bromofluorobenzene (Surrogate)	BH16 0.4-0.5 BH17 0.9-1.0 BH18 0.4-0.5 BH20 3.3-3.4 BH21 0.4-0.5 BH21 0.4-0.5 BH22 0.4-0.5 BH22 1.1-1.2 BH23 0.4-0.5 BH22 1.1-1.2 BH23 0.4-0.5 BH24 2.4-2.5 BH25 0.3-0.4 BH27 2.3-2.4 QD2 QD3 BH16 0.4-0.5 BH21 0.4-0.5 BH20 3.3-3.4 BH21 0.4-0.5 BH22 0.4-0.5	SE150233.001 SE150233.002 SE150233.003 SE150233.004 SE150233.005 SE150233.006 SE150233.007 SE150233.008 SE150233.009 SE150233.010 SE150233.011 SE150233.012 SE150233.013 SE150233.014 SE150233.028 SE150233.028 SE150233.001 SE150233.002 SE150233.003 SE150233.004 SE150233.005 SE150233.006 SE150233.007 SE150233.006 SE150233.007 SE150233.008 SE150233.009 SE150233.009 </td <td>Units % % % % % % % % % % % % % % % % % % %</td> <td>Criteria 60 - 130%</td> <td>Recover 98 93 98 103 83 99 108 98 99 110 99 110 99 110 99 110 99 110 99 110 99 121 121 120 126 122 125 123</td>	Units % % % % % % % % % % % % % % % % % % %	Criteria 60 - 130%	Recover 98 93 98 103 83 99 108 98 99 110 99 110 99 110 99 110 99 110 99 110 99 121 121 120 126 122 125 123
arameter 3romofluorobenzene (Surrogate)	BH16 0.4-0.5 BH17 0.9-1.0 BH18 0.4-0.5 BH20 3.3-3.4 BH21 0.4-0.5 BH21 0.4-0.5 BH22 0.4-0.5 BH22 0.4-0.5 BH22 1.1-1.2 BH23 0.4-0.5 BH23 1.4-1.5 BH24 0.4-0.5 BH25 0.3-0.4 BH27 2.3-2.4 QD2 QD3 BH16 0.4-0.5 BH20 0.3-3.4 BH20 0.3-3.4 BH21 0.4-0.5 BH21 0.4-0.5 BH22 0.4-0.5 BH20 0.4-0.5 BH21 0.4-0.5 BH21 0.4-0.5 BH22 0.4-0.5 BH22 0.4-0.5 BH22 0.4-0.5 BH22 0.4-0.5 BH22 0.4-0.5 BH22 0.4-0.5 BH23 0.4-0.5 BH23 0.4-0.5 BH23 1.4-1.5 BH23 0.4-0.5	SE150233.001 SE150233.002 SE150233.003 SE150233.004 SE150233.005 SE150233.006 SE150233.007 SE150233.008 SE150233.009 SE150233.010 SE150233.011 SE150233.012 SE150233.013 SE150233.014 SE150233.028 SE150233.020 SE150233.001 SE150233.002 SE150233.003 SE150233.004 SE150233.005 SE150233.006 SE150233.007 SE150233.007 SE150233.008 SE150233.009 SE150233.007 SE150233.008 SE150233.009 SE150233.009 SE150233.001 SE150233.002	Units % % % % % % % % % % % % % % % % % % %	Criteria 60 - 130%	Recover 98 93 98 103 83 99 108 98 99 110 99 110 99 110 99 110 99 110 99 110 99 121 122 122 125 123 119
arameter 3romofluorobenzene (Surrogate)	BH16 0.4-0.5 BH17 0.9-1.0 BH18 0.4-0.5 BH20 3.3-3.4 BH21 0.4-0.5 BH21 0.4-0.5 BH22 0.4-0.5 BH22 1.1-1.2 BH23 0.4-0.5 BH22 1.1-1.2 BH23 0.4-0.5 BH24 2.4-2.5 BH25 0.3-0.4 BH27 2.3-2.4 QD2 QD3 BH16 0.4-0.5 BH21 0.4-0.5 BH20 3.3-3.4 BH21 0.4-0.5 BH22 0.4-0.5	SE150233.001 SE150233.002 SE150233.003 SE150233.004 SE150233.005 SE150233.006 SE150233.007 SE150233.008 SE150233.009 SE150233.010 SE150233.011 SE150233.012 SE150233.013 SE150233.014 SE150233.028 SE150233.028 SE150233.001 SE150233.002 SE150233.003 SE150233.004 SE150233.005 SE150233.006 SE150233.007 SE150233.006 SE150233.007 SE150233.008 SE150233.009 SE150233.009 </td <td>Units % % % % % % % % % % % % % % % % % % %</td> <td>Criteria 60 - 130%</td> <td>Recover 98 93 98 103 83 99 108 98 99 110 99 110 99 110 99 110 99 110 99 110 99 121 121 120 126 122 125 123</td>	Units % % % % % % % % % % % % % % % % % % %	Criteria 60 - 130%	Recover 98 93 98 103 83 99 108 98 99 110 99 110 99 110 99 110 99 110 99 110 99 121 121 120 126 122 125 123
arameter Bromofluorobenzene (Surrogate)	BH16 0.4-0.5 BH17 0.9-1.0 BH18 0.4-0.5 BH20 3.3-3.4 BH21 0.4-0.5 BH21 0.4-0.5 BH22 0.4-0.5 BH22 0.4-0.5 BH22 1.1-1.2 BH23 0.4-0.5 BH23 1.4-1.5 BH24 0.4-0.5 BH25 0.3-0.4 BH27 2.3-2.4 QD2 QD3 BH16 0.4-0.5 BH20 0.3-3.4 BH20 0.3-3.4 BH21 0.4-0.5 BH21 0.4-0.5 BH22 0.4-0.5 BH20 0.4-0.5 BH21 0.4-0.5 BH21 0.4-0.5 BH22 0.4-0.5 BH22 0.4-0.5 BH22 0.4-0.5 BH22 0.4-0.5 BH22 0.4-0.5 BH22 0.4-0.5 BH23 0.4-0.5 BH23 0.4-0.5 BH23 1.4-1.5 BH23 0.4-0.5	SE150233.001 SE150233.002 SE150233.003 SE150233.004 SE150233.005 SE150233.006 SE150233.007 SE150233.008 SE150233.009 SE150233.010 SE150233.011 SE150233.012 SE150233.013 SE150233.014 SE150233.028 SE150233.020 SE150233.001 SE150233.002 SE150233.003 SE150233.004 SE150233.005 SE150233.006 SE150233.007 SE150233.007 SE150233.008 SE150233.009 SE150233.007 SE150233.008 SE150233.009 SE150233.009 SE150233.001 SE150233.002	Units % % % % % % % % % % % % % % % % % % %	Criteria 60 - 130%	Recover 98 93 98 103 83 99 108 98 99 110 99 110 99 110 99 110 99 110 99 110 99 121 122 122 125 123 119
arameter	BH16 0.4-0.5 BH17 0.9-1.0 BH18 0.4-0.5 BH20 3.3-3.4 BH21 0.4-0.5 BH21 0.4-0.5 BH22 0.4-0.5 BH22 0.4-0.5 BH22 1.1-1.2 BH23 0.4-0.5 BH23 1.4-1.5 BH25 0.3-0.4 BH27 2.3-2.4 QD2 QD3 BH16 0.4-0.5 BH20 0.3-3.4 BH20 0.3-3.4 BH21 0.4-0.5 BH21 0.4-0.5 BH22 0.4-0.5 BH21 0.4-0.5 BH21 0.4-0.5 BH22 0.4-0.5 BH23 0.4-0.5 BH23 0.4-0.5 BH24 0.4-0.5 BH24 0.4-0.5 BH24 0.4-0.5	SE150233.001 SE150233.002 SE150233.003 SE150233.004 SE150233.005 SE150233.006 SE150233.007 SE150233.008 SE150233.009 SE150233.010 SE150233.010 SE150233.011 SE150233.012 SE150233.013 SE150233.014 SE150233.027 SE150233.028 SE150233.020 SE150233.001 SE150233.002 SE150233.003 SE150233.004 SE150233.005 SE150233.007 SE150233.007 SE150233.007 SE150233.007 SE150233.009 SE150233.009 SE150233.001 SE150233.002 SE150233.003 SE150233.004 SE150233.007 SE150233.008 SE150233.009 SE150233.010 SE150233.010 SE150233.011 SE150233.011 SE150233.012	Units % % % % % % % % % % % % % % % % % % %	Criteria 60 - 130%	Recover 98 93 98 103 83 99 108 98 99 100 99 110 99 110 99 120 121 122 123 119 121
arameter 3romofluorobenzene (Surrogate)	BH16 0.4-0.5 BH17 0.9-1.0 BH18 0.4-0.5 BH20 3.3-3.4 BH21 0.4-0.5 BH21 0.4-0.5 BH22 0.4-0.5 BH23 0.4-0.5 BH25 0.3-0.4 BH27 2.3-2.4 QD2 QD3 BH16 0.4-0.5 BH20 3.3-3.4 BH21 0.4-0.5 BH21 0.4-0.5 BH22 0.4-0.5 BH22 0.4-0.5 BH22 0.4-0.5 BH22 0.4-0.5 BH23 0.4-0.5 BH23 0.4-0.5 BH23 0.4-0.5 BH23 0.4-0.5 BH23 0.4-0.5 BH23 0.4-0.5 BH24 0.4-0.5	SE150233.001 SE150233.002 SE150233.003 SE150233.004 SE150233.005 SE150233.006 SE150233.006 SE150233.007 SE150233.008 SE150233.009 SE150233.010 SE150233.010 SE150233.011 SE150233.012 SE150233.013 SE150233.014 SE150233.028 SE150233.020 SE150233.001 SE150233.002 SE150233.003 SE150233.004 SE150233.003 SE150233.004 SE150233.005 SE150233.006 SE150233.007 SE150233.008 SE150233.009 SE150233.009 SE150233.009 SE150233.010 SE150233.010 SE150233.010 SE150233.011 SE150233.012 SE150233.013	Units % % % % % % % % % % % % % % % % % % %	Criteria 60 - 130%	Recover 98 93 98 103 83 99 108 98 99 108 98 99 110 99 76 96 117 113 129 124 114 129 121 120 122 125 123 119 121 101

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Volatile Petroleum Hydrocarbons in Soil (continued) Method: ME-(AU)-[ENV]AN433/AN434/AN410 Criteria Recovery % Sample Name Sample Number Parameter d8-toluene (Surrogate) BH16 0.4-0.5 SE150233.001 % 60 - 130% 115 BH17 0.9-1.0 SE150233.002 60 - 130% 81 % BH18 0.4-0.5 SE150233.003 % 60 - 130% 121 BH20 3.3-3.4 SE150233.004 % 60 - 130% 92 BH21 0.4-0.5 SE150233.005 % 60 - 130% 106 BH21 1.4-1.5 SE150233.006 % 60 - 130% 93 BH22 0.4-0.5 SE150233.007 % 60 - 130% 126 60 - 130% 88 BH22 1.1-1.2 SE150233.008 % BH23 0.4-0.5 SE150233.009 % 60 - 130% 112 BH23 1.4-1.5 SE150233.010 % 60 - 130% 93 BH24 0.4-0.5 60 - 130% 128 SE150233.011 % BH24 2.4-2.5 SE150233.012 90 % 60 - 130% BH25 0.3-0.4 SE150233.013 % 60 - 130% 86 BH27 2.3-2.4 SE150233.014 % 60 - 130% 91 QD2 SE150233.027 % 60 - 130% 127 QD3 SE150233.028 % 60 - 130% 128 BH16 0.4-0.5 Dibromofluoromethane (Surrogate) SE150233.001 % 60 - 130% 106 BH17 0.9-1.0 SE150233.002 % 60 - 130% 101 % BH18 0.4-0.5 SE150233.003 60 - 130% 110 BH20 3.3-3.4 SE150233.004 % 60 - 130% 107 BH21 0.4-0.5 SE150233.005 % 60 - 130% 97 BH21 1.4-1.5 SE150233.006 % 60 - 130% 110 BH22 0.4-0.5 SE150233.007 % 60 - 130% 126 BH22 1.1-1.2 108 SE150233.008 % 60 - 130% BH23 0 4-0 5 SE150233.009 % 60 - 130% 104 BH23 1.4-1.5 SE150233.010 60 - 130% 116 % BH24 0.4-0.5 119 SE150233.011 % 60 - 130% BH24 2.4-2.5 SE150233.012 % 60 - 130% 102 BH25 0.3-0.4 SE150233.013 60 - 130% % 79 BH27 2.3-2.4 SE150233.014 60 - 130% 111 % QD2 SE150233.027 % 60 - 130% 125 QD3 SE150233.028 60 - 130% % 118

Mercury in Soil

METHOD BLANKS

SE150233 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Method: ME-(AU)-[ENV]AN312

Sample Number	Parameter	Units	LOR	Result
LB097696.001	Mercury	mg/kg	0.01	<0.01
LB097697.001	Mercury	mg/kg	0.01	<0.01

OC Pesticides in Soil			Method: ME-	(AU)-[ENV]AN400/AN420
Sample Number	Parameter	Units	LOR	Result
LB097548.001	Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1
	Alpha BHC	mg/kg	0.1	<0.1
	Lindane	mg/kg	0.1	<0.1
	Heptachlor	mg/kg	0.1	<0.1
	Aldrin	mg/kg	0.1	<0.1
	Beta BHC	mg/kg	0.1	<0.1
	Delta BHC	mg/kg	0.1	<0.1
	Heptachlor epoxide	mg/kg	0.1	<0.1
	Alpha Endosulfan	mg/kg	0.2	<0.2
	Gamma Chlordane	mg/kg	0.1	<0.1
	Alpha Chlordane	mg/kg	0.1	<0.1
	p,p'-DDE	mg/kg	0.1	<0.1
	Dieldrin	mg/kg	0.2	<0.2
	Endrin	mg/kg	0.2	<0.2
	Beta Endosulfan	mg/kg	0.2	<0.2
	p,p'-DDD	mg/kg	0.1	<0.1
	p,p'-DDT	mg/kg	0.1	<0.1
	Endosulfan sulphate	mg/kg	0.1	<0.1
	Endrin Aldehyde	mg/kg	0.1	<0.1
	Methoxychlor	mg/kg	0.1	<0.1
	Endrin Ketone	mg/kg	0.1	<0.1
	Isodrin	mg/kg	0.1	<0.1
	Mirex	mg/kg	0.1	<0.1
Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	81
OP Pesticides in Soil			Method: ME-	(AU)-[ENV]AN400/AN420
Sample Number	Parameter	Units	LOR	Result
LB097548.001	Dichlorvos	mg/kg	0.5	<0.5
	Dimethoate	mg/kg	0.5	<0.5
	Diazinon (Dimpylate)	mg/kg	0.5	<0.5
	Fenitrothion	mg/kg	0.2	<0.2
	Malathion	mg/kg	0.2	<0.2
	Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2
	Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2

	Chiorpyritos (Chiorpyritos Ethyl)	mg/kg	0.2	<0.2
	Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2
	Bromophos Ethyl	mg/kg	0.2	<0.2
	Methidathion	mg/kg	0.5	<0.5
	Ethion	mg/kg	0.2	<0.2
	Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2
Surrogates	2-fluorobiphenyl (Surrogate)	%	-	96
	d14-p-terphenyl (Surrogate)	%	-	112
PAH (Polynuclear Aromatic Hydrocarbons) i	n Soil		Meth	od: ME-(AU)-[ENV]AN420

PAR (Polynuclear Aromalic Hydrocarbon	is) in Soil		Meur	ou: ME-(AU)-[EINV]AIN420
Sample Number	Parameter	Units	LOR	Result
LB097548.001	Naphthalene	mg/kg	0.1	<0.1
	2-methylnaphthalene	mg/kg	0.1	<0.1
	1-methylnaphthalene	mg/kg	0.1	<0.1
	Acenaphthylene	mg/kg	0.1	<0.1
	Acenaphthene	mg/kg	0.1	<0.1
	Fluorene	mg/kg	0.1	<0.1
	Phenanthrene	mg/kg	0.1	<0.1
	Anthracene	mg/kg	0.1	<0.1
	Fluoranthene	mg/kg	0.1	<0.1
	Pyrene	mg/kg	0.1	<0.1
	Benzo(a)anthracene	mg/kg	0.1	<0.1
	Chrysene	mg/kg	0.1	<0.1
	Benzo(a)pyrene	mg/kg	0.1	<0.1

METHOD BLANKS

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

	matic Hydrocarbons) in Soli (con				d: ME-(AU)-[ENV]AN
Sample Number		Parameter	Units	LOR	Result
_B097548.001		Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1
		Dibenzo(ah)anthracene	mg/kg	0.1	<0.1
		Benzo(ghi)perylene	mg/kg	0.1	<0.1
		Total PAH (18)	mg/kg	0.8	<0.8
	Surrogates	d5-nitrobenzene (Surrogate)	%	-	108
		2-fluorobiphenyl (Surrogate)	%	-	96
		d14-p-terphenyl (Surrogate)	%	-	112
CBs in Soil				Method: ME-	(AU)-[ENV]AN400/AN
Sample Number		Parameter	Units	LOR	Result
.B097548.001		Arochlor 1016	mg/kg	0.2	<0.2
		Arochlor 1221	mg/kg	0.2	<0.2
		Arochlor 1232	mg/kg	0.2	<0.2
		Arochlor 1242	mg/kg	0.2	<0.2
		Arochlor 1248	mg/kg	0.2	<0.2
		Arochlor 1254	mg/kg	0.2	<0.2
		Arochlor 1260	mg/kg	0.2	<0.2
		Arochlor 1262	mg/kg	0.2	<0.2
		Arochlor 1268	mg/kg	0.2	<0.2
		Total PCBs (Arochlors)	mg/kg	1	<1
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	81
			/0		
otal Recoverable Met	als in Soil/Waste Solids/Material	s by ICPOES		Method: ME-	(AU)-[ENV]AN040/AN
Sample Number		Parameter	Units	LOR	Result
.B097673.001		Arsenic, As	mg/kg	3	<3
		Cadmium, Cd	mg/kg	0.3	<0.3
		Chromium, Cr	mg/kg	0.3	<0.3
		Copper, Cu	mg/kg	0.5	<0.5
		Lead, Pb	mg/kg	1	<1
		Nickel, Ni	mg/kg	0.5	<0.5
				0.5	<0.5
D007074 004		Zinc, Zn	mg/kg		
B097674.001		Arsenic, As	mg/kg	3	<3
		Cadmium, Cd	mg/kg	0.3	<0.3
		Chromium, Cr	mg/kg	0.3	<0.3
		Copper, Cu	mg/kg	0.5	<0.5
		Lead, Pb	mg/kg	1	<1
		Nickel, Ni	mg/kg	0.5	<0.5
		Zinc, Zn	mg/kg	0.5	<0.5
RH (Total Recoverab)	le Hydrocarbons) in Soil			Metho	d: ME-(AU)-[ENV]AN
		Daramotor	Unite	LOR	
Sample Number		Parameter	Units		Result
B097478.001		TRH C10-C14	mg/kg	20	<20
		TRH C15-C28	mg/kg	45	<45
		TRH C29-C36	mg/kg	45	<45
		TRH C37-C40	mg/kg	100	<100
		TRH C10-C36 Total	mg/kg	110	<110
B097548.001		TRH C10-C14	mg/kg	20	<20
		TRH C15-C28	mg/kg	45	<45
		TRH C29-C36	mg/kg	45	<45
		TRH C37-C40	mg/kg	100	<100
		TKH C37-C40		100	
		TRH C10-C36 Total	mg/kg	110	<110
OC's in Soil				110	
		TRH C10-C36 Total	mg/kg	110 Method: ME-	(AU)-[ENV]AN433/AN
ample Number		TRH C10-C36 Total Parameter	mg/kg Units	110 Method: ME- LOR	(<mark>AU)-[ENV]AN433/AN</mark> Result
ample Number	Fumigants	TRH C10-C36 Total Parameter 2,2-dichloropropane	mg/kg Units mg/kg	110 Method: ME- LOR 0.1	(AU)- <mark>[ENV]AN433/AN</mark> Result <0.1
Sample Number	Fumigants	TRH C10-C36 Total Parameter 2,2-dichloropropane 1,2-dichloropropane	mg/kg Units mg/kg mg/kg	110 Method: ME- LOR 0.1 0.1	(AU)-[ENV]AN433/AN Result <0.1 <0.1
Sample Number	Fumigants	TRH C10-C36 Total Parameter 2,2-dichloropropane	mg/kg Units mg/kg	110 Method: ME- LOR 0.1 0.1 0.1	(AU)-[ENV]AN433/AN Result <0.1 <0.1 <0.1
Sample Number	Fumigants	TRH C10-C36 Total Parameter 2,2-dichloropropane 1,2-dichloropropane	mg/kg Units mg/kg mg/kg	110 Method: ME- LOR 0.1 0.1	(AU)-[ENV]AN433/AN Result <0.1 <0.1
Sample Number	Fumigants	TRH C10-C36 Total Parameter 2,2-dichloropropane 1,2-dichloropropane cis-1,3-dichloropropene	mg/kg Units mg/kg mg/kg mg/kg	110 Method: ME- LOR 0.1 0.1 0.1	(AU)-[ENV]AN433/AN Result <0.1 <0.1 <0.1
Sample Number	Fumigants	TRH C10-C36 Total Parameter 2,2-dichloropropane 1,2-dichloropropane cis-1,3-dichloropropene trans-1,3-dichloropropene	mg/kg Units mg/kg mg/kg mg/kg mg/kg	110 Method: ME- LOR 0.1 0.1 0.1 0.1 0.1	(AU)-[ENV]AN433/AN Result <0.1 <0.1 <0.1 <0.1 <0.1
<mark>/OC's in Soil</mark> Sample Number _B097469.001		TRH C10-C36 Total Parameter 2,2-dichloropropane 1,2-dichloropropane cis-1,3-dichloropropene trans-1,3-dichloropropene 1,2-dibromoethane (EDB)	mg/kg Units mg/kg mg/kg mg/kg mg/kg mg/kg	110 Method: ME- LOR 0.1 0.1 0.1 0.1 0.1 0.1	(AU)-[ENV]AN433/AN Result <0.1 <0.1 <0.1 <0.1 <0.1 <0.1
Sample Number		TRH C10-C36 Total Parameter 2,2-dichloropropane 1,2-dichloropropane cis-1,3-dichloropropene trans-1,3-dichloropropene 1,2-dibromoethane (EDB) Dichlorodifluoromethane (CFC-12)	mg/kg Units mg/kg mg/kg mg/kg mg/kg mg/kg	110 Method: ME- LOR 0.1 0.1 0.1 0.1 0.1 0.1 1	AU)-[ENV]AN433/AN Result <0.1 <0.1 <0.1 <0.1 <0.1 <1

METHOD BLANKS

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

VOC's	in	Soil	(continued)	

OC's in Soil (continu	ied)			Method: ME-	(AU)-[ENV]AN433/AN
ample Number		Parameter	Units	LOR	Result
B097469.001	Halogenated Aliphatics	Chloroethane	mg/kg	1	<1
		Trichlorofluoromethane	mg/kg	1	<1
		lodomethane	mg/kg	5	<5
		1,1-dichloroethene	mg/kg	0.1	<0.1
		Dichloromethane (Methylene chloride)	mg/kg	0.5	<0.5
		Allyl chloride	mg/kg	0.1	<0.1
		trans-1,2-dichloroethene	mg/kg	0.1	<0.1
		1,1-dichloroethane		0.1	<0.1
			mg/kg		
		cis-1,2-dichloroethene	mg/kg	0.1	<0.1
		Bromochloromethane	mg/kg	0.1	<0.1
		1,2-dichloroethane	mg/kg	0.1	<0.1
		1,1,1-trichloroethane	mg/kg	0.1	<0.1
		1,1-dichloropropene	mg/kg	0.1	<0.1
		Carbon tetrachloride	mg/kg	0.1	<0.1
		Dibromomethane	mg/kg	0.1	<0.1
		Trichloroethene (Trichloroethylene -TCE)	mg/kg	0.1	<0.1
		1,1,2-trichloroethane	mg/kg	0.1	<0.1
		1,3-dichloropropane	mg/kg	0.1	<0.1
		Tetrachloroethene (Perchloroethylene,PCE)	mg/kg	0.1	<0.1
		1,1,1,2-tetrachloroethane	mg/kg	0.1	<0.1
		cis-1,4-dichloro-2-butene	mg/kg	1	<1
				0.1	<0.1
		1,1,2,2-tetrachloroethane	mg/kg	0.1	<0.1
		1,2,3-trichloropropane	mg/kg	- ÷ - · · · ·	
		trans-1,4-dichloro-2-butene	mg/kg	1	<1
		1,2-dibromo-3-chloropropane	mg/kg	0.1	<0.1
		Hexachlorobutadiene	mg/kg	0.1	<0.1
	Halogenated Aromatics	Chlorobenzene	mg/kg	0.1	<0.1
		Bromobenzene	mg/kg	0.1	<0.1
		2-chlorotoluene	mg/kg	0.1	<0.1
		4-chlorotoluene	mg/kg	0.1	<0.1
		1,3-dichlorobenzene	mg/kg	0.1	<0.1
		1,4-dichlorobenzene	mg/kg	0.1	<0.1
		1,2-dichlorobenzene	mg/kg	0.1	<0.1
		1,2,4-trichlorobenzene	mg/kg	0.1	<0.1
		1,2,3-trichlorobenzene	mg/kg	0.1	<0.1
	Monocyclic Aromatic	Benzene	mg/kg	0.1	<0.1
					<0.1
	Hydrocarbons	Toluene	mg/kg	0.1	
		Ethylbenzene	mg/kg	0.1	<0.1
		m/p-xylene	mg/kg	0.2	<0.2
		o-xylene	mg/kg	0.1	<0.1
		Styrene (Vinyl benzene)	mg/kg	0.1	<0.1
		Isopropylbenzene (Cumene)	mg/kg	0.1	<0.1
		n-propylbenzene	mg/kg	0.1	<0.1
		1,3,5-trimethylbenzene	mg/kg	0.1	<0.1
		tert-butylbenzene	mg/kg	0.1	<0.1
		1,2,4-trimethylbenzene	mg/kg	0.1	<0.1
		sec-butylbenzene	mg/kg	0.1	<0.1
		p-isopropyltoluene	mg/kg	0.1	<0.1
		n-butylbenzene	mg/kg	0.1	<0.1
	Nitrogenous Compounds	Acrylonitrile	mg/kg	0.1	<0.1
	Mitrogenous Compounds			10	<10
	0	2-nitropropane	mg/kg		
	Oxygenated Compounds	Acetone (2-propanone)	mg/kg	10	<10
		MtBE (Methyl-tert-butyl ether)	mg/kg	0.1	<0.1
		Vinyl acetate	mg/kg	10	<10
		MEK (2-butanone)	mg/kg	10	<10
		MIBK (4-methyl-2-pentanone)	mg/kg	1	<1
		2-hexanone (MBK)	mg/kg	5	<5
	Polycyclic VOCs	Naphthalene	mg/kg	0.1	<0.1
	Polycyclic VOCs Sulphonated	Naphthalene Carbon disulfide		0.1	<0.1 <0.5
		· · · · · · · · · · · · · · · · · · ·	mg/kg mg/kg %		

METHOD BLANKS

SE150233 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

VOC's in Soil (continued)

VOC's in Soil (contine	ued)			Method: ME-	(AU)-[ENV]AN433/AN43
Sample Number		Parameter	Units	LOR	Result
LB097469.001	Surrogates	d8-toluene (Surrogate)	%	-	110
		Bromofluorobenzene (Surrogate)	%	-	116
	Totals	Total BTEX	mg/kg	0.6	<0.6
	Trihalomethanes	Chloroform	mg/kg	0.1	<0.1
		Bromodichloromethane	mg/kg	0.1	<0.1
		Chlorodibromomethane	mg/kg	0.1	<0.1
		Bromoform	mg/kg	0.1	<0.1
Volatile Petroleum Hy	ydrocarbons in Soil			Method: ME-(AU)-[E	NV]AN433/AN434/AN41
Sample Number		Parameter	Units	LOR	Result
LB097469.001		TRH C6-C9	mg/kg	20	<20
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	112
		d4-1,2-dichloroethane (Surrogate)	%	-	126
		d8-toluene (Surrogate)	%	-	122

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury in Soil

Mercury in Soil						Meth	od: ME-(AU)-	ENVJAN312
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE150233.002	LB097696.014	Mercury	mg/kg	0.01	0.03	0.09	115	56
SE150233.011	LB097696.024	Mercury	mg/kg	0.01	0.08	0.08	91	7
SE150249.004	LB097697.014	Mercury	mg/kg	0.01	0.22	0.20	54	6
SE150249.013	LB097697.024	Mercury	mg/kg	0.01	0.07	0.06	108	17
Moisture Content						Meth	od: ME-(AU)-	ENVJAN002
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE150233.009	LB097486.011	% Moisture	%w/w	0.5	24	23	34	3
SE150233.029	LB097486.020	% Moisture	%w/w	0.5	<0.5	<0.5	200	0

OC Pesticides in Soil

C Pesticides in S	oil						Method: ME	-(AU)-[ENV]A	N400/AN42
Driginal	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
E150233.013	LB097548.029		Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	0	200	0
			Alpha BHC	mg/kg	0.1	<0.1	0	200	0
			Lindane	mg/kg	0.1	<0.1	0	200	0
			Heptachlor	mg/kg	0.1	<0.1	0	200	0
			Aldrin	mg/kg	0.1	<0.1	0	200	0
			Beta BHC	mg/kg	0.1	<0.1	0	200	0
			Delta BHC	mg/kg	0.1	<0.1	0	200	0
			Heptachlor epoxide	mg/kg	0.1	<0.1	0	200	0
			o,p'-DDE	mg/kg	0.1	<0.1	0	200	0
			Alpha Endosulfan	mg/kg	0.2	<0.2	0	200	0
			Gamma Chlordane	mg/kg	0.1	<0.1	0.058	200	0
			Alpha Chlordane	mg/kg	0.1	<0.1	0	200	0
			trans-Nonachlor	mg/kg	0.1	<0.1	0	200	0
			p,p'-DDE	mg/kg	0.1	<0.1	0	200	0
			Dieldrin	mg/kg	0.2	<0.2	0.098	140	0
			Endrin	mg/kg	0.2	<0.2	0	200	0
			o,p'-DDD	mg/kg	0.1	<0.1	0	200	0
			o,p'-DDT	mg/kg	0.1	<0.1	0	200	0
			Beta Endosulfan	mg/kg	0.2	<0.2	0	200	0
			p,p'-DDD	mg/kg	0.1	<0.1	0	200	0
			p,p'-DDT	mg/kg	0.1	<0.1	0	200	0
			Endosulfan sulphate	mg/kg	0.1	<0.1	0	200	0
			Endrin Aldehyde	mg/kg	0.1	<0.1	0	200	0
			Methoxychlor	mg/kg	0.1	<0.1	0	200	0
			Endrin Ketone	mg/kg	0.1	<0.1	0	200	0
			Isodrin	mg/kg	0.1	<0.1	0	200	0
			Mirex	mg/kg	0.1	<0.1	0	200	0
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.15	0.156	30	3
SE150248.002	LB097548.026		Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	0	200	0
			Alpha BHC	mg/kg	0.1	<0.1	0	200	0
			Lindane	mg/kg	0.1	<0.1	0	200	0
			Heptachlor	mg/kg	0.1	<0.1	0	200	0
			Aldrin	mg/kg	0.1	<0.1	0	200	0
			Beta BHC	mg/kg	0.1	<0.1	0	200	0
			Delta BHC	mg/kg	0.1	<0.1	0	200	0
			Heptachlor epoxide	mg/kg	0.1	<0.1	0	200	0
			o,p'-DDE	mg/kg	0.1	<0.1	0	200	0
			Alpha Endosulfan	mg/kg	0.2	<0.2	0	200	0
			Gamma Chlordane	mg/kg	0.1	<0.1	0	200	0
			Alpha Chlordane	mg/kg	0.1	<0.1	0	200	0
			trans-Nonachlor	mg/kg	0.1	<0.1	0	200	0
			p,p'-DDE	mg/kg	0.1	<0.1	0	200	0
			Dieldrin	mg/kg	0.2	<0.2	0	200	0
			Endrin	mg/kg	0.2	<0.2	0	200	0
			o,p'-DDD	mg/kg	0.1	<0.1	0	200	0
			o,p'-DDT	mg/kg	0.1	<0.1	0	200	0
			Beta Endosulfan	mg/kg	0.2	<0.2	0	200	0
			p,p'-DDD	mg/kg	0.1	<0.1	0	200	0

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

JC Pesticides in 5	ioil (continued)						Method: ME	-(AU)-[ENV]AI	N400/AN4
Original	Duplicate		Parameter	Units	LOR	Original	Dup <u>licate</u>	Criteria %	RPD %
SE150248.002	LB097548.026		p,p'-DDT	mg/kg	0.1	<0.1	0	200	0
SE130240.002	LD037340.020		Endosulfan sulphate	mg/kg	0.1	<0.1	0	200	0
			· · · ·						
			Endrin Aldehyde	mg/kg	0.1	<0.1	0	200	0
			Methoxychlor	mg/kg	0.1	<0.1	0	200	0
			Endrin Ketone	mg/kg	0.1	<0.1	0	200	0
			Isodrin	mg/kg	0.1	<0.1	0	200	0
			Mirex	mg/kg	0.1	<0.1	0	200	0
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.14	0.141	30	4
AH (Polynuclear	Aromatic Hydrocarbo	ons) in Soil					Meth	od: ME-(AU)-	ENVJAN4
Original	Duplicate	·	Parameter	Units	LOR	Original		Criteria %	RPD %
SE150233.010	LB097548.014		Naphthalene	mg/kg	0.1	<0.1	<0.1	200	0
02100200.010	20001040.014		2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	200	0
			1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	200	0
			Acenaphthylene	mg/kg	0.1	<0.1	<0.1	200	0
			Acenaphthene	mg/kg	0.1	<0.1	<0.1	200	0
			Fluorene	mg/kg	0.1	<0.1	<0.1	200	0
			Phenanthrene	mg/kg	0.1	<0.1	<0.1	200	0
			Anthracene	mg/kg	0.1	<0.1	<0.1	200	0
			Fluoranthene	mg/kg	0.1	<0.1	<0.1	200	0
			Pyrene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	200	0
			Chrysene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	200	0
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	200	0
			Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	200	0
						<0.1			0
			Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td></td><td><0.2</td><td>200</td><td></td></lor=0<>	TEQ (mg/kg)	0.2		<0.2	200	
			Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td><td>134</td><td>0</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	<0.3	134	0
			Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td>175</td><td>0</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	175	0
			Total PAH (18)	mg/kg	0.8	<0.8	<0.8	200	0
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.5	0.4	30	14
			2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.4	30	2
			d14-p-terphenyl (Surrogate)	mg/kg	_	0.6	0.6	30	2
SE150262.021	LB097548.027		Naphthalene	mg/kg	0.1	<0.1	0	200	0
SE 150202.021	LD037340.027		· · ·				0		
			2-methylnaphthalene	mg/kg	0.1	<0.1		200	0
			1-methylnaphthalene	mg/kg	0.1	<0.1	0	200	0
			Acenaphthylene	mg/kg	0.1	<0.1	0.01	200	0
			Acenaphthene	mg/kg	0.1	<0.1	0	200	0
			Fluorene	mg/kg	0.1	<0.1	0	200	0
			Phenanthrene	mg/kg	0.1	<0.1	0.01	200	0
			Anthracene	mg/kg	0.1	<0.1	0.01	200	0
			Fluoranthene	mg/kg	0.1	<0.1	0.01	200	0
			Pyrene	mg/kg	0.1	<0.1	0	200	0
			Benzo(a)anthracene	mg/kg	0.1	<0.1	0.01	200	0
			Chrysene	mg/kg	0.1	<0.1	0	200	0
			Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	0	200	0
			Benzo(k)fluoranthene	mg/kg	0.1	<0.1	0	200	0
			Benzo(a)pyrene	mg/kg	0.1	<0.1	0	200	0
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	0	200	0
			Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	0	200	0
							0		0
			Benzo(ghi)perylene	mg/kg	0.1	<0.1		200	
			Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ</td><td>0.2</td><td><0.2</td><td>0</td><td>200</td><td>0</td></lor=0<>	TEQ	0.2	<0.2	0	200	0
				TEQ (mg/kg)	0.2	<0.2	0	200	0
			Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td>0.242</td><td>134</td><td>0</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	0.242	134	0
			Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td>0.121</td><td>175</td><td>0</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	0.121	175	0
			Total PAH (18)	ma/ka	0.8	<0.8	0	200	0
		Surrogates	Total PAH (18) d5-nitrobenzene (Surrogate)	mg/kg	0.8	<0.8 0.4	0.4	200 30	0

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

Driginal	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD
150262.021	LB097548.027	Surrogates		mg/kg	-	0.6	0.54	30	4
	LB097546.027	Surrogates	d14-p-terphenyl (Surrogate)	під/ку	-	0.0			
Bs in Soil							Method: ME-	-(AU)-[ENV]AI	N400/A
riginal	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD
150233.013	LB097548.027		Arochlor 1016	mg/kg	0.2	0.7	0.503	63	3
			Arochlor 1221	mg/kg	0.2	<0.2	0	200	(
			Arochlor 1232	mg/kg	0.2	<0.2	0	200	(
			Arochlor 1242	mg/kg	0.2	<0.2	0	200	(
			Arochlor 1248	mg/kg	0.2	<0.2	0	200	(
			Arochlor 1254	mg/kg	0.2	<0.2	0	200	(
			Arochlor 1260	mg/kg	0.2	<0.2	0	200	(
			Arochlor 1262	mg/kg	0.2	<0.2	0	200	(
			Arochlor 1268	mg/kg	0.2	<0.2	0	200	(
			Total PCBs (Arochlors)	mg/kg	1	<1	0.503	195	(
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0	0.156	30	
E150248.002	LB097548.026		Arochlor 1016	mg/kg	0.2	<0.2	0	200	(
			Arochlor 1221	mg/kg	0.2	<0.2	0	200	
			Arochlor 1232	mg/kg	0.2	<0.2	0	200	
			Arochlor 1242	mg/kg	0.2	<0.2	0	200	
			Arochlor 1248	mg/kg	0.2	<0.2	0	200	
			Arochlor 1254	mg/kg	0.2	<0.2	0	200	
			Arochlor 1260	mg/kg	0.2	<0.2	0	200	
			Arochlor 1262	mg/kg	0.2	<0.2	0	200	
			Arochlor 1268	mg/kg	0.2	<0.2	0	200	
			Total PCBs (Arochlors)	mg/kg	1	<1	0	200	(
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0	0.141	30	
otal Recoverable	Metals in Soil/Waste	Solids/Materials t	ICPOES				Method: ME	-(AU)-[ENV]AI	N040/
		Solids/Materials t		Units	LOR	Original			
original	Duplicate	Solids/Materials t	Parameter			Original	Duplicate	Criteria %	RP
original) Solids/Materials t	Parameter Arsenic, As	mg/kg	LOR 3 0.3	Original <3 0.3			RP
riginal	Duplicate) Solids/Materials t	Parameter Arsenic, As Cadmium, Cd	mg/kg mg/kg	3 0.3	<3 0.3	Duplicate <3 <0.3	Criteria % 79 133	RP
riginal	Duplicate	o Solids/Materials t	Parameter Arsenic, As Cadmium, Cd Chromium, Cr	mg/kg mg/kg mg/kg	3 0.3 0.3	<3 0.3 5.1	Duplicate <3	Criteria % 79 133 40	RP
riginal	Duplicate	o Solids/Materials t	Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu	mg/kg mg/kg mg/kg mg/kg	3 0.3 0.3 0.5	<3 0.3 5.1 25	Duplicate <3	Criteria % 79 133 40 32	RP
riginal	Duplicate	Solids/Materials b	Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb	mg/kg mg/kg mg/kg mg/kg mg/kg	3 0.3 0.3 0.5 1	<3 0.3 5.1 25 21	Duplicate <3	Criteria % 79 133 40 32 35	RP
original	Duplicate	Solids/Materials b	Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	3 0.3 0.3 0.5 1 0.5	<3 0.3 5.1 25 21 2.6	Duplicate <3	Criteria % 79 133 40 32 35 50	RP
briginal E150233.002	Duplicate LB097673.014	Solids/Materials b	Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	3 0.3 0.5 1 0.5 0.5 0.5	<3 0.3 5.1 25 21 2.6 12	Duplicate <3	Criteria % 79 133 40 32 35 50 47	RP
riginal E150233.002	Duplicate	e Solids/Materials b	Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn Arsenic, As	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	3 0.3 0.5 1 0.5 0.5 3	<3 0.3 5.1 25 21 2.6 12 8	Duplicate <3	Criteria % 79 133 40 32 35 50 47 43	RP
briginal E150233.002	Duplicate LB097673.014	e Solids/Materials t	Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn Arsenic, As Cadmium, Cd	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	3 0.3 0.5 1 0.5 0.5 3 0.3	<3 0.3 5.1 25 21 2.6 12 8 0.6	Duplicate <3	Criteria % 79 133 40 32 35 50 47 43 83	
riginal E150233.002	Duplicate LB097673.014	e Solids/Materials b	Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	3 0.3 0.5 1 0.5 0.5 3 0.3 0.3 0.3	<3 0.3 5.1 25 21 2.6 12 8 0.6 15	Duplicate <3	Criteria % 79 133 40 32 35 50 47 43 83 83 33	
vital Recoverable Priginal E150233.002 E150233.011	Duplicate LB097673.014	e Solids/Materials b	Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	3 0.3 0.5 1 0.5 0.5 3 0.3 0.3 0.3 0.5	<3 0.3 5.1 25 21 2.6 12 8 0.6 15 27	Duplicate <3	Criteria % 79 133 40 32 35 50 47 43 83 83 33 32	
Driginal E150233.002	Duplicate LB097673.014	9 Solids/Materials b	Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	3 0.3 0.5 1 0.5 0.5 3 0.3 0.3 0.3 0.5 1	<3 0.3 5.1 25 21 2.6 12 8 0.6 15 27 130	Duplicate <3	Criteria % 79 133 40 32 35 50 47 43 83 83 33 33 32 31	
briginal E150233.002	Duplicate LB097673.014	9 Solids/Materials b	Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni Nickel, Ni	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	3 0.3 0.5 1 0.5 0.5 3 0.3 0.3 0.3 0.5 1 0.5	<3 0.3 5.1 25 21 2.6 12 8 0.6 15 27 130 7.9	Duplicate <3	Criteria % 79 133 40 32 35 50 47 47 43 83 33 33 33 22 31 37	
riginal E150233.002 E150233.011	Duplicate LB097673.014 LB097673.024	9 Solids/Materials b	Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	3 0.3 0.5 1 0.5 0.5 3 0.3 0.3 0.3 0.5 1 0.5 0.5	<3 0.3 5.1 25 21 2.6 12 8 0.6 15 27 130 7.9 220	Duplicate <3	Criteria % 79 133 40 32 35 50 47 43 43 33 33 33 32 31 37 31	
riginal E150233.002 E150233.011	Duplicate LB097673.014	9 Solids/Materials b	Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn Arsenic, As Cadmium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn Arsenic, As	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	3 0.3 0.5 1 0.5 0.5 3 0.3 0.3 0.3 0.5 1 0.5 3	<3 0.3 5.1 25 21 2.6 12 8 0.6 15 27 130 7.9 220 <3	Duplicate <3	Criteria % 79 133 40 32 35 50 47 43 83 83 83 33 22 31 37 31 63	RPP
briginal E150233.002	Duplicate LB097673.014 LB097673.024	e Solids/Materials t	Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn Arsenic, As Cadmium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn Arsenic, As Cadmium, Cd	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	3 0.3 0.5 1 0.5 0.5 3 0.3 0.3 0.3 0.5 1 0.5 0.5 3 0.3	<3 0.3 5.1 25 21 2.6 12 8 0.6 15 27 130 7.9 220 <3 <0.3 <0.3	Duplicate <3	Criteria % 79 133 40 32 35 50 47 43 33 33 33 33 32 31 37 31 63 160	RPP
riginal E150233.002 E150233.011	Duplicate LB097673.014 LB097673.024	e Solids/Materials t	Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	3 0.3 0.5 1 0.5 3 0.3 0.3 0.3 0.3 0.5 1 0.5 0.5 3 0.3 0.5 3 0.3 0.5 0.5 3 0.3	<3 0.3 5.1 25 21 2.6 12 8 0.6 15 27 130 7.9 220 <3 <0.3 11	Duplicate <3	Criteria % 79 133 40 32 35 50 47 43 83 33 33 33 33 33 33 33 33 33 33 33 33	RPP
riginal E150233.002 E150233.011	Duplicate LB097673.014 LB097673.024	e Solids/Materials t	Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	3 0.3 0.5 1 0.5 3 0.3 0.3 0.3 0.3 0.3 0.5 1 0.5 0.5 3 0.3 0.3 0.3 0.3 0.3	<3 0.3 5.1 25 21 2.6 12 8 0.6 15 27 130 7.9 220 <3 <0.3 11 21	Duplicate <3	Criteria % 79 133 40 32 35 50 47 43 83 33 33 33 33 33 33 33 33 33 33 33 33	
riginal E150233.002 E150233.011	Duplicate LB097673.014 LB097673.024	e Solids/Materials t	Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn Arsenic, As Cadmium, Cr Copper, Ca Lead, Pb Nickel, Ni Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb	mg/kg	3 0.3 0.5 1 0.5 3 0.3 0.3 0.3 0.5 1 0.5 3 0.3 0.5 3 0.3 0.5 1	 <3 0.3 5.1 25 21 2.6 12 8 0.6 15 27 130 7.9 220 <3 <0.3 11 21 69 	Duplicate <3	Criteria % 79 133 40 32 35 50 47 43 83 33 33 33 33 33 33 33 33 33 33 33 33	
riginal :150233.002	Duplicate LB097673.014 LB097673.024	e Solids/Materials t	Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn Arsenic, As Cadmium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni	mg/kg	3 0.3 0.5 1 0.5 3 0.3 0.3 0.3 0.5 1 0.5 3 0.3 0.5 3 0.3 0.5 1 1 0.5 0.5 3 0.3	 <3 0.3 5.1 25 21 2.6 12 8 0.6 15 27 130 7.9 220 <3 <0.3 11 21 69 15 	Duplicate <3	Criteria % 79 133 40 32 35 50 47 43 83 33 33 33 33 33 33 33 33 33 33 33 33	
riginal E150233.002 E150233.011 E150249.005	Duplicate LB097673.014	e Solids/Materials t	Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cd Chromium, Cd Chromium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn	mg/kg	3 0.3 0.5 1 0.5 3 0.3 0.3 0.5 1 0.5 0.5 3 0.3 0.5 3 0.3 0.5 1 0.5 3 0.3 0.5 1 0.5 5 0.5	 <3 0.3 5.1 25 21 2.6 12 8 0.6 15 27 130 7.9 220 <3 <0.3 11 21 69 15 120 	Duplicate <3	Criteria % 79 133 40 32 35 50 47 43 83 33 33 33 33 32 31 63 160 63 41 63 432 31 160 34 32 31 33 32	RP
riginal E150233.002 E150233.011 E150249.005	Duplicate LB097673.014 LB097673.024	e Solids/Materials t	Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cd Chromium, Cd Chromium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn Arsenic, As Zinc, Zn Arsenic, As	mg/kg	3 0.3 0.5 1 0.5 3 0.3 0.3 0.5 1 0.5 0.5 3 0.3 0.5 3 0.3 0.5 1 0.5 3 0.3 0.5 3 0.3 0.5 3 0.3 0.5 3 0.3 0.5 3 0.5 3 0.5 3 0.5 10 10 10 10 10 10 10 10 10 10 10 10 10	<3	Duplicate <3	Criteria % 79 133 40 32 35 50 47 47 47 43 33 33 33 33 32 31 63 160 34 63 160 34 32 31 33 23 31 33 23 32 31	RP
riginal E150233.002 E150233.011 E150249.005	Duplicate LB097673.014	e Solids/Materials b	Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn Arsenic, As Cadmium, Cd	mg/kg	3 0.3 0.5 1 0.5 0.5 3 0.3 0.3 0.3 0.5 1 0.5 0.5 3 0.3 0.3 0.3 0.3 0.3 0.5 1 0.5 0.5 3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0	 <3 0.3 5.1 25 21 2.6 12 8 0.6 15 27 130 7.9 220 <3 <0.3 <0.3 	Duplicate <3	Criteria % 79 133 40 32 35 50 47 47 43 33 33 33 32 31 63 31 63 160 34 32 31 33 160 34 32 31 33 2 31 33 2 31 33 2 32 31 33 2 31 33 32 32 31 33 32 33 33 32 33 33 32 33 33 33 33 33	
riginal E150233.002 E150233.011 E150249.005	Duplicate LB097673.014	e Solids/Materials t	Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cd Chromium, Cd Chromium, Cr	mg/kg	3 0.3 0.5 1 0.5 0.5 3 0.3 0.3 0.3 0.5 1 0.5 3 0.3 0.3 0.3 0.5 1 1 0.5 3 0.3 0.5 3 0.3 0.5 3 0.3 0.5 3 0.3 0.5 5 3 0.3 0.5 5 1 0.5 5 1 0.5 5 5 5 0.5 5 1 0.5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	 <3 0.3 5.1 25 21 2.6 12 8 0.6 15 27 130 7.9 220 <3 <0.3 11 21 69 15 120 <3 <0.3 7.2 	Duplicate <3	Criteria % 79 133 40 32 35 50 47 43 33 33 33 32 31 63 160 34 32 31 63 31 63 31 33 32 31 33 32 32 31 33 32 33 33 20 33 33 32 33 33 32 33 33 33 33 33 33 33	
riginal E150233.002 E150233.011 E150249.005	Duplicate LB097673.014	e Solids/Materials t	Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn Arsenic, As Cadmium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn Arsenic, As Cadmium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu	mg/kg	3 0.3 0.5 1 0.5 0.5 3 0.3 0.3 0.3 0.5 1 0.5 0.5 3 0.3 0.3 0.5 1 0.5 0.5 3 0.3 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	 <3 0.3 5.1 25 21 2.6 12 8 0.6 15 27 130 7.9 220 <3 <0.3 11 21 69 15 120 <3 <0.3 7.2 5.4 	Duplicate <3	Criteria % 79 133 40 32 35 50 47 43 33 33 32 31 63 31 63 160 34 32 31 63 31 63 31 37 31 33 20 77 77 200 37 39	
riginal E150233.002 E150233.011	Duplicate LB097673.014	e Solids/Materials t	Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb	mg/kg mg/kg </td <td>3 0.3 0.5 1 0.5 3 0.3 0.3 0.3 0.3 0.5 1 0.5 3 0.3 0.3 0.3 0.5 1 0.5 3 0.3 0.5 10 0.5 1 0.5 10 0.5 10 0.5 10 0.5 10 0.5 10 0.5 10 0.5 10 0.5 10 0.5 10 0.5 10 0.5 10 0.5 10 0.5 0.5 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td> <3 0.3 5.1 25 21 2.6 12 8 0.6 15 27 130 7.9 220 <3 <0.3 11 21 69 15 120 <3 <0.3 7.2 5.4 9 </td> <td>Duplicate <3</td> <0.3	3 0.3 0.5 1 0.5 3 0.3 0.3 0.3 0.3 0.5 1 0.5 3 0.3 0.3 0.3 0.5 1 0.5 3 0.3 0.5 10 0.5 1 0.5 10 0.5 10 0.5 10 0.5 10 0.5 10 0.5 10 0.5 10 0.5 10 0.5 10 0.5 10 0.5 10 0.5 10 0.5 0.5 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	 <3 0.3 5.1 25 21 2.6 12 8 0.6 15 27 130 7.9 220 <3 <0.3 11 21 69 15 120 <3 <0.3 7.2 5.4 9 	Duplicate <3	Criteria % 79 133 40 32 35 50 47 43 33 33 33 33 33 33 63 31 63 31 63 31 63 4 32 31 63 31 63 31 20 77 77 200 37 39 40	
riginal E150233.002 E150233.011 E150249.005	Duplicate LB097673.014	e Solids/Materials t	Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni	mg/kg mg/kg </td <td>3 0.3 0.5 1 0.5 3 0.3 0.3 0.3 0.3 0.5 1 0.5 3 0.3 0.3 0.5 1 0.5 3 0.3 0.3 0.5 1 0.5 3 0.3 0.5 10 0.5 10 0 0.5 10 0.5 10 0 0 0.5 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td> <3 0.3 5.1 25 21 2.6 12 8 0.6 15 27 130 7.9 220 <3 <0.3 11 21 69 15 120 <3 <0.3 7.2 5.4 9 4.8 </td> <td>Duplicate <3</td> <0.3	3 0.3 0.5 1 0.5 3 0.3 0.3 0.3 0.3 0.5 1 0.5 3 0.3 0.3 0.5 1 0.5 3 0.3 0.3 0.5 1 0.5 3 0.3 0.5 10 0.5 10 0 0.5 10 0.5 10 0 0 0.5 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	 <3 0.3 5.1 25 21 2.6 12 8 0.6 15 27 130 7.9 220 <3 <0.3 11 21 69 15 120 <3 <0.3 7.2 5.4 9 4.8 	Duplicate <3	Criteria % 79 133 40 32 35 50 47 43 33 33 33 33 33 163 37 31 63 40 34 32 31 63 40 34 32 31 33 20 77 7200 37 73 9 9 40 41	
riginal E150233.002 E150233.011 E150249.005	Duplicate LB097673.014	Solids/Materials t	Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb	mg/kg mg/kg </td <td>3 0.3 0.5 1 0.5 3 0.3 0.3 0.3 0.3 0.5 1 0.5 3 0.3 0.3 0.3 0.5 1 0.5 3 0.3 0.5 10 0.5 1 0.5 10 0.5 10 0.5 10 0.5 10 0.5 10 0.5 10 0.5 10 0.5 10 0.5 10 0.5 10 0.5 10 0.5 10 0.5 0.5 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td> <3 0.3 5.1 25 21 2.6 12 8 0.6 15 27 130 7.9 220 <3 <0.3 11 21 69 15 120 <3 <0.3 7.2 5.4 9 </td> <td>Duplicate <3</td> <0.3	3 0.3 0.5 1 0.5 3 0.3 0.3 0.3 0.3 0.5 1 0.5 3 0.3 0.3 0.3 0.5 1 0.5 3 0.3 0.5 10 0.5 1 0.5 10 0.5 10 0.5 10 0.5 10 0.5 10 0.5 10 0.5 10 0.5 10 0.5 10 0.5 10 0.5 10 0.5 10 0.5 0.5 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	 <3 0.3 5.1 25 21 2.6 12 8 0.6 15 27 130 7.9 220 <3 <0.3 11 21 69 15 120 <3 <0.3 7.2 5.4 9 	Duplicate <3	Criteria % 79 133 40 32 35 50 47 43 33 33 33 33 33 33 63 31 63 31 63 31 63 4 32 31 63 31 63 31 20 77 77 200 37 39 40	RP

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

	verable Hydrocarbons	/ In Son (conunued)	- · · · · · · · · · · · · · · · · · · ·						[ENV]AN
Original	Duplicate		Parameter	Units	LOR	Original		Criteria %	
SE150233.010	LB097548.028		TRH C10-C14	mg/kg	20	<20	0	200	0
			TRH C15-C28	mg/kg	45	<45	0	200	0
			TRH C29-C36	mg/kg	45	<45	0	200	0
			TRH C37-C40	mg/kg	100	<100	0	200	0
			TRH C10-C36 Total	mg/kg	110	<110	0	200	0
			TRH C10-C40 Total	mg/kg	210	<210	0	200	0
		TRH F Bands	TRH >C10-C16 (F2)	mg/kg	25	<25	0	200	0
			TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	<25	-1	200	0
			TRH >C16-C34 (F3)	mg/kg	90	<90	0	200	0
			TRH >C34-C40 (F4)	mg/kg	120	<120	0	200	0
SE150233.028	LB097478.021		TRH C10-C14	mg/kg	20	<20	<20	200	0
			TRH C15-C28	mg/kg	45	<45	<45	200	0
			TRH C29-C36	mg/kg	45	<45	<45	200	0
			TRH C37-C40	mg/kg	100	<100	<100	200	0
			TRH C10-C36 Total	mg/kg	110	<110	<110	200	0
			TRH C10-C40 Total	mg/kg	210	<210	<210	200	0
		TRH F Bands	TRH >C10-C16 (F2)	mg/kg	25	<25	<25	200	0
			TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	<25	<25	200	0
			TRH >C16-C34 (F3)	mg/kg	90	<90	<90	200	0
			TRH >C34-C40 (F4)	mg/kg	120	<120	<120	200	0
SE150262.021	LB097548.026		TRH C10-C14	mg/kg	20	<20	0	200	0
			TRH C15-C28	mg/kg	45	<45	0	200	0
			TRH C29-C36	mg/kg	45	<45	0	200	0
			TRH C37-C40	mg/kg	100	<100	0	200	0
			TRH C10-C36 Total	mg/kg	110	<110	0	200	0
			TRH C10-C40 Total	mg/kg	210	<210	0	200	0
		TRH F Bands	TRH >C10-C16 (F2)	mg/kg	25	<25	0	200	0
		That Pando	TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	<25	0	200	0
			TRH >C16-C34 (F3)	mg/kg	90	<90	0	200	0
			TRH >C34-C40 (F4)	mg/kg	120	<120	0	200	0
					120				
OC's in Soil								(AU)-[ENV]A	
Driginal	Duplicate		Parameter	Units	LOR	Original		Criteria %	RPD %
SE150233.008	LB097469.014	Fumigants	2,2-dichloropropane	mg/kg	0.1	<0.1	<0.1	200	0
			1,2-dichloropropane	mg/kg	0.1	<0.1	<0.1	200	0
			cis-1,3-dichloropropene	mg/kg	0.1	<0.1	<0.1	200	0
			trans-1,3-dichloropropene	mg/kg	0.1	<0.1	<0.1	200	0
			1,2-dibromoethane (EDB)	mg/kg	0.1	<0.1	<0.1	200	0
		Halogenated	Dichlorodifluoromethane (CFC-12)	mg/kg	1	<1	<1	200	0
		Aliphatics	Chloromethane	mg/kg	1	<1	<1	200	0
			Vinyl chloride (Chloroethene)	mg/kg	0.1	<0.1	<0.1	200	0
			Bromomethane	mg/kg	1	<1	<1	200	0
			Chloroethane	mg/kg	1	<1	<1	200	0
			Trichlorofluoromethane	mg/kg	1	<1	<1	200	0
			lodomethane	mg/kg	5	<5	<5	200	0
							<0.1	200	0
			1,1-dichloroethene		0.1	<0.1			0
			1,1-dichloroethene Dichloromethane (Methylene chloride)	mg/kg	0.1	<0.1	<0.5	200	
								200 200	0
			Dichloromethane (Methylene chloride)	mg/kg mg/kg mg/kg	0.5	<0.5	<0.5		0
			Dichloromethane (Methylene chloride) Allyl chloride	mg/kg mg/kg mg/kg mg/kg	0.5 0.1	<0.5 <0.1	<0.5 <0.1	200	
			Dichloromethane (Methylene chloride) Allyl chloride trans-1,2-dichloroethene	mg/kg mg/kg mg/kg mg/kg mg/kg	0.5 0.1 0.1 0.1	<0.5 <0.1 <0.1 <0.1	<0.5 <0.1 <0.1 <0.1	200 200 200	0
			Dichloromethane (Methylene chloride) Allyl chloride trans-1,2-dichloroethene 1,1-dichloroethane cis-1,2-dichloroethene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.5 0.1 0.1 0.1 0.1	<0.5 <0.1 <0.1 <0.1 <0.1 <0.1	<0.5 <0.1 <0.1 <0.1 <0.1	200 200 200 200	0 0 0
			Dichloromethane (Methylene chloride) Allyl chloride trans-1,2-dichloroethene 1,1-dichloroethane cis-1,2-dichloroethene Bromochloromethane	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.5 0.1 0.1 0.1 0.1 0.1 0.1	<0.5 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.5 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	200 200 200 200 200 200	0 0 0 0
			Dichloromethane (Methylene chloride) Allyl chloride trans-1,2-dichloroethene 1,1-dichloroethane cis-1,2-dichloroethene Bromochloromethane 1,2-dichloroethane	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.5 0.1 0.1 0.1 0.1 0.1 0.1 0.1	<0.5 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.5 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	200 200 200 200 200 200 200	0 0 0 0
			Dichloromethane (Methylene chloride) Allyl chloride trans-1,2-dichloroethene 1,1-dichloroethane cis-1,2-dichloroethene Bromochloromethane 1,2-dichloroethane 1,1,1-trichloroethane	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.5 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	<0.5 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.5 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	200 200 200 200 200 200 200 200	0 0 0 0 0 0
			Dichloromethane (Methylene chloride) Allyl chloride trans-1,2-dichloroethene 1,1-dichloroethane cis-1,2-dichloroethene Bromochloromethane 1,2-dichloroethane 1,1,1-trichloroethane 1,1,1-trichloroethane	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.5 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	<0.5 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.5 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	200 200 200 200 200 200 200 200 200	0 0 0 0 0 0 0
			Dichloromethane (Methylene chloride) Allyl chloride trans-1,2-dichloroethene 1,1-dichloroethane cis-1,2-dichloroethene Bromochloromethane 1,2-dichloroethane 1,2-dichloroethane 1,1-dichloroethane 1,1-dichloroethane 1,1-trichloroethane 1,1-trichloroethane 1,1-dichloropropene Carbon tetrachloride	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.5 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	<0.5 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.5 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	200 200 200 200 200 200 200 200 200 200	0 0 0 0 0 0 0 0
			Dichloromethane (Methylene chloride) Allyl chloride trans-1,2-dichloroethene 1,1-dichloroethane cis-1,2-dichloroethene Bromochloromethane 1,2-dichloroethane 1,1-dichloroethane 1,1-dichloroethane 1,1-dichloroethane 1,1-trichloroethane 1,1-trichloroethane 1,1-dichloropropene Carbon tetrachloride Dibromomethane	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.5 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	<0.5 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.5 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	200 200 200 200 200 200 200 200 200 200	0 0 0 0 0 0 0 0 0
			Dichloromethane (Methylene chloride) Allyl chloride trans-1,2-dichloroethene 1,1-dichloroethane cis-1,2-dichloroethene Bromochloromethane 1,2-dichloroethane 1,1-dichloroethane 1,2-dichloroethane 1,1-dichloroethane 1,1-trichloroethane 1,1-trichloroethane 1,1-dichloropropene Carbon tetrachloride Dibromomethane Trichloroethane Trichloroethane	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.5 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	<0.5 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.5 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	200 200 200 200 200 200 200 200 200 200	0 0 0 0 0 0 0 0 0 0 0 0
			Dichloromethane (Methylene chloride) Allyl chloride trans-1,2-dichloroethene 1,1-dichloroethane cis-1,2-dichloroethene Bromochloromethane 1,2-dichloroethane 1,1-dichloroethane 1,2-dichloroethane 1,1-trichloroethane 1,1-trichloroethane 1,1-trichloroethane 1,1-dichloropropene Carbon tetrachloride Dibromomethane Trichloroethane 1,1,2-trichloroethane	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.5 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	<0.5 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.5 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	200 200 200 200 200 200 200 200 200 200	0 0 0 0 0 0 0 0 0 0 0 0 0
			Dichloromethane (Methylene chloride) Allyl chloride trans-1,2-dichloroethene 1,1-dichloroethane cis-1,2-dichloroethene Bromochloromethane 1,2-dichloroethane 1,1-dichloroethane 1,2-dichloroethane 1,1-dichloroethane 1,1-trichloroethane 1,1-trichloroethane 1,1-dichloropropene Carbon tetrachloride Dibromomethane Trichloroethane Trichloroethane	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.5 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	<0.5 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.5 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	200 200 200 200 200 200 200 200 200 200	0 0 0 0 0 0 0 0 0 0 0

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

riginal	-		Paramotor		LOD	Original		-(AU)-[ENV]A	
-			Parameter	Units	LOR	Original		Criteria %	
150233.008	LB097469.014	Halogenated	1,1,1,2-tetrachloroethane	mg/kg	0.1	<0.1	<0.1	200	0
		Aliphatics	cis-1,4-dichloro-2-butene	mg/kg	1	<1	<1	200	0
C's in Soli (continu iginal 1150233.008			1,1,2,2-tetrachloroethane	mg/kg	0.1	<0.1	<0.1	200	0
			1,2,3-trichloropropane	mg/kg	0.1	<0.1	<0.1	200	0
	Duplicate Duplicate LE097469.014		trans-1,4-dichloro-2-butene	mg/kg	1	<1	<1	200	0
			1,2-dibromo-3-chloropropane	mg/kg	0.1	<0.1	<0.1	200	0
			Hexachlorobutadiene	mg/kg	0.1	<0.1	<0.1	200	0
		Halogenated	Chlorobenzene	mg/kg	0.1	<0.1	<0.1	200	0
		Aromatics	Bromobenzene	mg/kg	0.1	<0.1	<0.1	200	0
			2-chlorotoluene	mg/kg	0.1	<0.1	<0.1	200	
			4-chlorotoluene	mg/kg	0.1	<0.1	<0.1	200	
			1,3-dichlorobenzene	mg/kg	0.1	<0.1	<0.1	200	
			1,4-dichlorobenzene	mg/kg	0.1	<0.1	<0.1	200	(
			1,2-dichlorobenzene	mg/kg	0.1	<0.1	<0.1	200	(
			1,2,4-trichlorobenzene	mg/kg	0.1	<0.1	<0.1	200	
			1,2,3-trichlorobenzene	mg/kg	0.1	<0.1	<0.1	200	(
		Monocyclic	Benzene	mg/kg	0.1	<0.1	<0.1	200	
		Aromatic	Toluene	mg/kg	0.1	<0.1	<0.1	200	
			Ethylbenzene	mg/kg	0.1	<0.1	<0.1	200	
			m/p-xylene	mg/kg	0.2	<0.2	<0.2	200	
			o-xylene	mg/kg	0.1	<0.1	<0.1	200	
					0.1	<0.1	<0.1	200	
			Styrene (Vinyl benzene)	mg/kg					
			Isopropylbenzene (Cumene)	mg/kg	0.1	<0.1	<0.1	200	
			n-propylbenzene	mg/kg	0.1	<0.1	<0.1	200	
			1,3,5-trimethylbenzene	mg/kg	0.1	<0.1	<0.1	200	
			tert-butylbenzene	mg/kg	0.1	<0.1	<0.1	200	
			1,2,4-trimethylbenzene	mg/kg	0.1	<0.1	<0.1	200	
			sec-butylbenzene	mg/kg	0.1	<0.1	<0.1	200	
			p-isopropyltoluene	mg/kg	0.1	<0.1	<0.1	200	
			n-butylbenzene	mg/kg	0.1	<0.1	<0.1	200	
		Nitrogenous	Acrylonitrile	mg/kg	0.1	<0.1	<0.1	200	
		Compounds	2-nitropropane	mg/kg	10	<10	<10	200	
		Oxygenated	Acetone (2-propanone)	mg/kg	10	<10	<10	200	
		Compounds	MtBE (Methyl-tert-butyl ether)		0.1	<0.1	<0.1	200	
		Compounds		mg/kg					
			Vinyl acetate	mg/kg	10	<10	<10	200	
			MEK (2-butanone)	mg/kg	10	<10	<10	200	
			MIBK (4-methyl-2-pentanone)	mg/kg	1	<1	<1	200	
			2-hexanone (MBK)	mg/kg	5	<5	<5	200	
		Polycyclic	Naphthalene	mg/kg	0.1	<0.1	<0.1	200	
		Sulphonated	Carbon disulfide	mg/kg	0.5	<0.5	<0.5	200	
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	5.4	4.7	50	1
		Ū.	d4-1,2-dichloroethane (Surrogate)	mg/kg	_	6.1	5.8	50	
			d8-toluene (Surrogate)	mg/kg		4.4	4.0	50	1
						4.4	4.0	50	
			Bromofluorobenzene (Surrogate)	mg/kg					
		Totals	Total Xylenes*	mg/kg	0.3	<0.3	<0.3	200	
			Total BTEX	mg/kg	0.6	<0.6	<0.6	200	
		Trihalomethan	Chloroform	mg/kg	0.1	<0.1	<0.1	200	
		es	Bromodichloromethane	mg/kg	0.1	<0.1	<0.1	200	
			Chlorodibromomethane	mg/kg	0.1	<0.1	<0.1	200	
			Bromoform	mg/kg	0.1	<0.1	<0.1	200	
150233.028	LB097469.025	Monocyclic	Benzene	mg/kg	0.1	<0.1	0.01	200	
		Aromatic	Toluene	mg/kg	0.1	<0.1	0	200	
			Ethylbenzene	mg/kg	0.1	<0.1	0	200	
			m/p-xylene	mg/kg	0.1	<0.1	0.01	200	
			o-xylene	mg/kg	0.1	<0.1	0.01	200	
		Polycyclic	Naphthalene	mg/kg	0.1	<0.1	0.01	200	
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	5.9	6.26	50	
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	6.0	6.34	50	
			d8-toluene (Surrogate)	mg/kg	-	6.4	6.11	50	
			Bromofluorobenzene (Surrogate)	mg/kg	-	5.7	5.69	50	
			Biomondorobenzene (ourrogate)	mg/ng					

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

VOC's in Soil (cor	ntinued)						Method: ME-	(AU)-[ENV]AI	1433/AN434
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE150233.028	LB097469.025	Totals	Total BTEX	mg/kg	0.6	<0.6	0.03	200	0
Volatile Petroleum	Hydrocarbons in Soi	I				Metho	d: ME-(AU)-[E	NVJAN433/AI	1434/AN41
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE150233.008	LB097469.014		TRH C6-C10	mg/kg	25	<25	<25	200	0
			TRH C6-C9	mg/kg	20	<20	<20	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	5.4	4.7	30	14
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	6.1	5.8	30	4
			d8-toluene (Surrogate)	mg/kg	-	4.4	4.0	30	10
			Bromofluorobenzene (Surrogate)	mg/kg	-	4.9	4.5	30	7
		VPH F Bands	Benzene (F0)	mg/kg	0.1	<0.1	<0.1	200	0
			TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	200	0
SE150233.028	LB097469.025		TRH C6-C10	mg/kg	25	<25	0.46	200	0
			TRH C6-C9	mg/kg	20	<20	0.57	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	5.9	6.26	30	6
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	6.0	6.34	30	6
			d8-toluene (Surrogate)	mg/kg	-	6.4	6.11	30	4
			Bromofluorobenzene (Surrogate)	mg/kg	-	5.7	5.69	30	0
		VPH F Bands	Benzene (F0)	mg/kg	0.1	<0.1	0.01	200	0
			TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	0.43	200	0

Mathedu ME (ALD JEAD JAAN400/AN1400

Method: ME_(ALI)_TENVIAN040/AN320

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Mercury in Soil					1	Method: ME-(A	U)-[ENV]AN312
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB097696.002	Mercury	mg/kg	0.01	0.20	0.2	70 - 130	101
LB097697.002	Mercury	mg/kg	0.01	0.20	0.2	70 - 130	101

OC Pesticides in Soil					Method:	ME-(AU)-[EN	/JAN400/AN420
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB097548.002	Heptachlor	mg/kg	0.1	0.2	0.2	60 - 140	82
	Aldrin	mg/kg	0.1	0.2	0.2	60 - 140	90
	Delta BHC	mg/kg	0.1	0.2	0.2	60 - 140	83
	Dieldrin	mg/kg	0.2	<0.2	0.2	60 - 140	88
	Endrin	mg/kg	0.2	<0.2	0.2	60 - 140	84
	p,p'-DDT	mg/kg	0.1	0.2	0.2	60 - 140	78
Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.14	0.15	40 - 130	91
OP Pesticides in Soil					Method:	ME-(AU)-[EN	/JAN400/AN42
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB097548.002	Dichlorvos	mg/kg	0.5	2.1	2	60 - 140	107
	Diazinon (Dimpylate)	mg/kg	0.5	2.1	2	60 - 140	107
	Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	2.2	2	60 - 140	111
	Ethion	mg/kg	0.2	2.0	2	60 - 140	99
Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.5	40 - 130	88
	d14-p-terphenyl (Surrogate)	mg/kg	-	0.6	0.5	40 - 130	112
PAH (Polynuclear Aromatic Hyd	drocarbons) in Soli				I	/ethod: ME-(A	U)-[ENV]AN42
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB097548.002	Naphthalene	mg/kg	0.1	4.7	4	60 - 140	118
	Acenaphthylene	mg/kg	0.1	4.7	4	60 - 140	118
	Acenaphthene	mg/kg	0.1	4.4	4	60 - 140	111
	Phenanthrene	mg/kg	0.1	4.8	4	60 - 140	119
	Anthracene	mg/kg	0.1	4.6	4	60 - 140	116
	Fluoranthene	mg/kg	0.1	4.8	4	60 - 140	119
	Pyrene	mg/kg	0.1	4.7	4	60 - 140	118
	Benzo(a)pyrene	mg/kg	0.1	5.0	4	60 - 140	125
Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.5	0.5	40 - 130	100
	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.5	40 - 130	88
	d14-p-terphenyl (Surrogate)	mg/kg	-	0.6	0.5	40 - 130	112

	diff p terpiteriyi (ouriogate)	mgmg		0.0	0.0	40 100	112
PCBs in Soil					Method:	ME-(AU)-[EN	/JAN400/AN420
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB097548.002	Arochlor 1260	mg/kg	0.2	0.5	0.4	60 - 140	115

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES

Total Recoverable Metals III C	oil/waste Solius/waterials by ICPOES				Mediod.		vjA14040/A14320
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB097673.002	Arsenic, As	mg/kg	3	49	50	80 - 120	97
	Cadmium, Cd	mg/kg	0.3	49	50	80 - 120	97
	Chromium, Cr	mg/kg	0.3	48	50	80 - 120	95
	Copper, Cu	mg/kg	0.5	48	50	80 - 120	96
	Lead, Pb	mg/kg	1	50	50	80 - 120	99
	Nickel, Ni	mg/kg	0.5	49	50	80 - 120	99
	Zinc, Zn	mg/kg	0.5	48	50	80 - 120	97
LB097674.002	Arsenic, As	mg/kg	3	48	50	80 - 120	96
	Cadmium, Cd	mg/kg	0.3	48	50	80 - 120	95
	Chromium, Cr	mg/kg	0.3	47	50	80 - 120	94
	Copper, Cu	mg/kg	0.5	47	50	80 - 120	95
	Lead, Pb	mg/kg	1	49	50	80 - 120	98
	Nickel, Ni	mg/kg	0.5	49	50	80 - 120	97
	Zinc, Zn	mg/kg	0.5	48	50	80 - 120	95
TRH (Total Recoverable Hydr	ocarbons) in Soil				N	lethod: ME-(A	.U)-[ENV]AN403
Sample Number	Parameter	Units	LOR				

30/3/2016

SE150233 R0

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

RH (Total Recove	rable Hydrocarboi	ns) in Soil (continued)					Nethod: ME-(AU	J)-[ENV]AN40
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB097478.002		TRH C10-C14	mg/kg	20	39	40	60 - 140	98
		TRH C15-C28	mg/kg	45	<45	40	60 - 140	98
		TRH C29-C36	mg/kg	45	<45	40	60 - 140	83
	TRH F Bands	TRH >C10-C16 (F2)	mg/kg	25	39	40	60 - 140	98
		TRH >C16-C34 (F3)	mg/kg	90	<90	40	60 - 140	98
		TRH >C34-C40 (F4)	mg/kg	120	<120	20	60 - 140	70
LB097548.002		TRH C10-C14	mg/kg	20	39	40	60 - 140	98
		TRH C15-C28	mg/kg	45	<45	40	60 - 140	98
		TRH C29-C36	mg/kg	45	<45	40	60 - 140	83
	TRH F Bands	TRH >C10-C16 (F2)	mg/kg	25	39	40	60 - 140	98
		TRH >C16-C34 (F3)	mg/kg	90	<90	40	60 - 140	98
		TRH >C34-C40 (F4)	mg/kg	120	<120	20	60 - 140	70
/OC's in Soil						Method:	ME-(AU)-[ENV	JAN433/AN4
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery 9
LB097469.002	Halogenated	1,1-dichloroethene	mg/kg	0.1	2.6	2.56	60 - 140	103
	Aliphatics	1,2-dichloroethane	mg/kg	0.1	3.1	2.56	60 - 140	121
		Trichloroethene (Trichloroethylene -TCE)	mg/kg	0.1	2.0	2.56	60 - 140	77
	Halogenated	Chlorobenzene	mg/kg	0.1	3.2	2.56	60 - 140	124
	Monocyclic	Benzene	mg/kg	0.1	3.5	2.9	60 - 140	120
	Aromatic	Toluene	mg/kg	0.1	3.0	2.9	60 - 140	103
		Ethylbenzene	mg/kg	0.1	3.0	2.9	60 - 140	103
		m/p-xylene	mg/kg	0.2	5.8	5.8	60 - 140	99
		o-xylene	mg/kg	0.1	3.0	2.9	60 - 140	105
	Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	5.4	5	60 - 140	108
		d4-1,2-dichloroethane (Surrogate)	mg/kg	-	6.0	5	60 - 140	120
		d8-toluene (Surrogate)	mg/kg	-	5.3	5	60 - 140	106
		Bromofluorobenzene (Surrogate)	mg/kg	-	5.4	5	60 - 140	108
	Trihalomethan	Chloroform	mg/kg	0.1	3.3	2.56	60 - 140	130
/olatile Petroleum	Hydrocarbons in S	oil			N	/lethod: ME-(Al	J)-[ENV]AN433	/AN434/AN4
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery ^o
LB097469.002		TRH C6-C10	mg/kg	25	<25	24.65	60 - 140	97
		TRH C6-C9	mg/kg	20	<20	23.2	60 - 140	86
	Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	5.2	5	60 - 140	103
	-	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	6.4	5	60 - 140	128
		d8-toluene (Surrogate)	mg/kg	-	6.4	5	60 - 140	127
		Bromofluorobenzene (Surrogate)	mg/kg	-	5.8	5	60 - 140	115
			5.0					

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury in Soil

Mercury in Soil						Met	hod: ME-(AL	J)-[ENV]AN312
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE150225.024	LB097696.004	Mercury	mg/kg	0.01	0.22	0.03	0.2	96
SE150233.012	LB097697.004	Mercury	mg/kg	0.01	0.20	<0.01	0.2	100

OP Pesticides in Soil

0						inourour in	
QC Sample	Sample Number	Parameter	Units	LOR	Original	Spike	Recovery%
SE150233.001	LB097548.026	Dichlorvos	mg/kg	0.5	<0.5	2	85
		Dimethoate	mg/kg	0.5	<0.5	-	-
		Diazinon (Dimpylate)	mg/kg	0.5	<0.5	2	96
		Fenitrothion	mg/kg	0.2	<0.2	-	-
		Malathion	mg/kg	0.2	<0.2	-	-
		Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	2	91
		Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	-	-
		Bromophos Ethyl	mg/kg	0.2	<0.2	-	-
		Methidathion	mg/kg	0.5	<0.5	-	-
		Ethion	mg/kg	0.2	<0.2	2	80
		Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	-	-
	Surrogate	s 2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	-	80
		d14-p-terphenyl (Surrogate)	mg/kg	-	0.6	-	96

DAH (Delumueleer Aremetic Hudroserberg) in Seil

									_
PAH (Polynuclea	r Aromatic Hydrocarbo	ons) in Soil					Ме	thod: ME-(AU)	-[ENV]AN420
QC Sample	Sample Number		Parameter	Units	LOR	Original	Spike	Recovery%	
SE150233.001	LB097548.026		Naphthalene	mg/kg	0.1	<0.1	4	106]
			2-methylnaphthalene	mg/kg	0.1	<0.1	-	-	
			1-methylnaphthalene	mg/kg	0.1	<0.1	-	-]
			Acenaphthylene	mg/kg	0.1	<0.1	4	103]
			Acenaphthene	mg/kg	0.1	<0.1	4	106]
			Fluorene	mg/kg	0.1	<0.1	-	-]
			Phenanthrene	mg/kg	0.1	<0.1	4	99]
			Anthracene	mg/kg	0.1	<0.1	4	119	
			Fluoranthene	mg/kg	0.1	<0.1	4	113	
			Pyrene	mg/kg	0.1	<0.1	4	103	
			Benzo(a)anthracene	mg/kg	0.1	<0.1	-	-	
			Chrysene	mg/kg	0.1	<0.1	-	-	
			Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	-	-	
			Benzo(k)fluoranthene	mg/kg	0.1	<0.1	-	-	
			Benzo(a)pyrene	mg/kg	0.1	<0.1	4	116	
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	-	-	
			Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	-	-	
			Benzo(ghi)perylene	mg/kg	0.1	<0.1	-	-	
			Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ</td><td>0.2</td><td><0.2</td><td>-</td><td>-</td><td></td></lor=0<>	TEQ	0.2	<0.2	-	-	
			Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td>-</td><td>-</td><td></td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	-	-	
			Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td>-</td><td>-</td><td></td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	-	-	
			Total PAH (18)	mg/kg	0.8	<0.8	-	-	
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.4	-	88	
			2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	-	80	_
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.6	-	96]
Total Recoverabl	e Metals in Soil/Waste	Solids/Materia	Is by ICPOES				Method: M	IE-(AU)-[ENV]	AN040/AN320
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE150225.024	LB097673.004		Arsenic, As	mg/kg	3	50	3	50	93
			Cadmium, Cd	mg/kg	0.3	43	<0.3	50	85
			Chromium, Cr	mg/kg	0.3	56	18	50	75
			Copper, Cu	mg/kg	0.5	440	23	50	826
			Lead, Pb	mg/kg	1	95	75	50	40
			Nickel, Ni	mg/kg	0.5	50	4.7	50	90
			Zinc, Zn	mg/kg	0.5	140	84	50	114
SE150233.012	LB097674.004		Arsenic, As	mg/kg	3	47	5	50	85
1									

Cadmium, Cd

Chromium, Cr

Copper, Cu

Lead, Pb

87

83

86

84

50

50

50

50

0.3

0.3

0.5

1

mg/kg

mg/kg

mg/kg

mg/kg

44

54

60

65

0.3

13

18

23

Method: ME-(AU)-[ENV]AN400/AN420

30/3/2016

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

C Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recove
-									
E150233.012	LB097674.004		Nickel, Ni	mg/kg	0.5	45	1.3	50	88
			Zinc, Zn	mg/kg	0.5	56	15	50	83
RH (Total Reco	verable Hydrocarbor	is) in Soll					Me	thod: ME-(AU)-[ENV]AI
C Sample	Sample Number		Parameter	Units	LOR	Original	Spike	Recovery%	•
E150233.001	LB097548.027		TRH C10-C14	mg/kg	20	<20	40	90	1
			TRH C15-C28	mg/kg	45	<45	40	93	1
			TRH C29-C36	mg/kg	45	<45	40	80	1
			TRH C37-C40	mg/kg	100	<100	-	-	1
			TRH C10-C36 Total	mg/kg	110	<110	-	-	1
			TRH C10-C40 Total	mg/kg	210	<210	-	-	1
		TRH F Bands	TRH >C10-C16 (F2)	mg/kg	25	<25	40	93	1
		Internet Bando	TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	<25	-	-	1
			TRH >C16-C34 (F3)	mg/kg	90	<90	40	93	1
			TRH >C34-C40 (F4)	mg/kg	120	<120	-	-	1
			TKH 2034-040 (F4)	ing/kg	120	\$120			
C's in Soil							Method: N	ie-(AU)-[env]	AN433/A
C Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recov
150194.001	LB097469.004	Fumigants	2,2-dichloropropane	mg/kg	0.1	<0.1	<0.1	-	-
			1,2-dichloropropane	mg/kg	0.1	<0.1	<0.1	-	
			cis-1,3-dichloropropene	mg/kg	0.1	<0.1	<0.1	-	
			trans-1,3-dichloropropene	mg/kg	0.1	<0.1	<0.1	-	
			1,2-dibromoethane (EDB)	mg/kg	0.1	<0.1	0	-	
		Halogenated	Dichlorodifluoromethane (CFC-12)	mg/kg	1	<1	<1	-	
		Aliphatics	Chloromethane	mg/kg	1	<1	<1	-	-
			Vinyl chloride (Chloroethene)	mg/kg	0.1	<0.1	<0.1	-	
			Bromomethane	mg/kg	1	<1	0	-	-
			Chloroethane	mg/kg	1	<1	<1	-	
			Trichlorofluoromethane	mg/kg	1	<1	<1	_	
			lodomethane		5	<5	0		
				mg/kg	0.1	2.6		2.56	10
			1,1-dichloroethene	mg/kg			<0.1		
			Dichloromethane (Methylene chloride)	mg/kg	0.5	<0.5	<0.5	-	
			Allyl chloride	mg/kg	0.1	<0.1	<0.1	-	
			trans-1,2-dichloroethene	mg/kg	0.1	<0.1	<0.1	-	
			1,1-dichloroethane	mg/kg	0.1	<0.1	<0.1	-	
			cis-1,2-dichloroethene	mg/kg	0.1	<0.1	<0.1	-	
			Bromochloromethane	mg/kg	0.1	<0.1	<0.1	-	
			1,2-dichloroethane	mg/kg	0.1	3.2	<0.1	2.56	1:
			1,1,1-trichloroethane	mg/kg	0.1	<0.1	<0.1	-	
			1,1-dichloropropene	mg/kg	0.1	<0.1	<0.1	-	
			Carbon tetrachloride	mg/kg	0.1	<0.1	<0.1	-	
			Dibromomethane	mg/kg	0.1	<0.1	0	-	
			Trichloroethene (Trichloroethylene -TCE)	mg/kg	0.1	1.9	<0.1	2.56	7
			1,1,2-trichloroethane	mg/kg	0.1	<0.1	<0.1	-	
			1,3-dichloropropane	mg/kg	0.1	<0.1	<0.1	-	-
			Tetrachloroethene (Perchloroethylene,PCE)	mg/kg	0.1	<0.1	<0.1	-	-
			1,1,1,2-tetrachloroethane	mg/kg	0.1	<0.1	<0.1	-	-
			cis-1,4-dichloro-2-butene	mg/kg	1	<1	<1	-	-
			1,1,2,2-tetrachloroethane	mg/kg	0.1	<0.1	<0.1	-	-
			1,2,3-trichloropropane	mg/kg	0.1	<0.1	<0.1	-	-
			trans-1,4-dichloro-2-butene	mg/kg	1	<1	<1	-	_
			1,2-dibromo-3-chloropropane	mg/kg	0.1	<0.1	<0.1	-	
			Hexachlorobutadiene	mg/kg	0.1	<0.1	<0.1	_	
		Halogenated	Chlorobenzene	mg/kg	0.1	3.1	<0.1	2.56	12
		Aromatics	Bromobenzene		0.1	<0.1	0.1	- 2.50	12
		AUMAUCS		mg/kg					
			2-chlorotoluene	mg/kg	0.1	<0.1	<0.1	-	-
			4-chlorotoluene	mg/kg	0.1	<0.1	<0.1	-	-
			1,3-dichlorobenzene	mg/kg	0.1	<0.1	<0.1	-	-
			1,4-dichlorobenzene	mg/kg	0.1	<0.1	<0.1	-	-
			1,2-dichlorobenzene	mg/kg	0.1	<0.1	<0.1	-	-
			1,2,4-trichlorobenzene	mg/kg	0.1	<0.1	<0.1	-	-
			1,2,3-trichlorobenzene	mg/kg	0.1	<0.1	<0.1	-	

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Method: ME-(AU)-[ENV]AN433/AN434 VOC's in Soil (continued) QC Sample Sample Number Parameter Units LOR Result Original Spike Recovery% SE150194.001 LB097469.004 Monocyclic Benzene mg/kg 0.1 3.0 <0.1 2.9 103 Aromatic Toluene mg/kg 0.1 3.0 <0.1 2.9 104 0.1 2.9 <0.1 2.9 99 Ethylbenzene mg/kg m/p-xylene mg/kg 0.2 5.7 < 0.2 5.8 99 o-xylene 0.1 3.0 <0.1 2.9 103 mg/kg Polycyclic Naphthalene 0.1 <0.1 <0.1 mg/kg Dibromofluoromethane (Surrogate) 0.0 0 Surrogates mg/kg 4.9 d4-1,2-dichloroethane (Surrogate) mg/kg 0.0 5.8 0 --0.0 d8-toluene (Surrogate) 4.4 0 mg/kg 0.0 4.7 Bromofluorobenzene (Surrogate) mg/kg 0 -Totals Total Xylenes* mg/kg 0.3 8.7 <0.3 Total BTEX 0.6 18 <0.6 mg/kg Trihalometha <0.1 2.56 132 Chloroform mg/kg 0.1 3.4 nes Bromodichloromethane mg/kg 0.1 <0.1 <0.1 <0.1 Chlorodibromomethane 0.1 <0.1 mg/kg Bromoform mg/kg 0.1 <0.1 0 Method: ME-(AU)-[ENV]AN433/AN434/AN410 Volatile Petroleum Hydrocarbons in Soil QC Sample Sample Number Units LOR Result Original Spike Recovery% Parameter SE150194.001 LB097469.004 TRH C6-C10 25 <25 <25 24.65 96 mg/kg TRH C6-C9 mg/kg 20 <20 <20 23.2 83 Dibromofluoromethane (Surrogate) Surrogates mg/kg 5.8 5.0 116 d4-1,2-dichloroethane (Surrogate) 129 6.5 -6.1 mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

5.4

5.8

NVL

NVL

-

0.1

25

5.5

4.6

NVL

NVL

NVL

NVL

108

116

NVL

NVL

d8-toluene (Surrogate)

Benzene (F0)

VPH F

Bands

Bromofluorobenzene (Surrogate)

TRH C6-C10 minus BTEX (F1)

30/3/2016

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spike duplicates were required for this job.

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover the performance of this service.
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- ② RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ④ Recovery failed acceptance criteria due to matrix interference.
- Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- O LOR was raised due to dilution of significantly high concentration of analyte in sample.
- Image: Image:
- Recovery failed acceptance criteria due to sample heterogeneity.
- [®] LOR was raised due to high conductivity of the sample (required dilution).
- t Refer to Analytical Report comments for further information.

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service, available on request and accessible at http://www.sgs.com/en/terms-and-conditions. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained herein reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This test report shall not be reproduced, except in full.